
Simulation of a workflow execution as a real Cloud by adding noise

Roland Matháa, Sasko Ristova,b, Radu Prodana,c

aDistributed and Parallel Systems Group, Institute for Computer Science, University of Innsbruck Technikerstr. 21a, A-6020 Innsbruck, Austria
bFaculty of Computer Science and Engineering, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, Macedonia

cInstitute of Information Technology, University of Klagenfurt, Universitätsstr. 65-67, 9020 Klagenfurt, Austria

Abstract

Cloud computing provides a cheap and elastic platform for executing large scientific workflow applications, but it
rises two challenges in prediction of makespan (total execution time): performance instability of Cloud instances
and variant scheduling of dynamic schedulers. Estimating the makespan is necessary for IT managers in order to
calculate the cost of execution, for which they can use Cloud simulators. However, the ideal simulated environment
produces the same output for the same workflow schedule and input parameters and thus can not reproduce the Cloud
variant behavior. In this paper, we define a model and a methodology to add a noise to the simulation in order to
equalise its behavior with the Clouds’ one. We propose several metrics to model a Cloud fluctuating behavior and
then by injecting them within the simulator, it starts to behave as close as the real Cloud. Instead of using a normal
distribution naively by using mean value and standard deviation of workflow tasks’ runtime, we inject two noises in the
tasks’ runtime: noisiness of tasks within a workflow (defined as average runtime deviation) and noisiness provoked
by the environment over the whole workflow (defined as average environmental deviation). In order to measure the
quality of simulation by quantifying the relative difference between the simulated and measured values, we introduce
the parameter inaccuracy. A series of experiments with different workflows and Cloud resources were conducted
in order to evaluate our model and methodology. The results show that the inaccuracy of the makespan’s mean
value was reduced up to 59 times compared to naively using the normal distribution. Additionally, we analyse the
impact of particular workflow and Cloud parameters, which shows that the Cloud performance instability is simulated
more correctly for small instance type (inaccuracy of up to 11.5%), instead of medium (inaccuracy of up to 35%),
regardless of the workflow. Since our approach requires collecting data by executing the workflow in the Cloud in
order to learn its behavior, we conduct a comprehensive sensitivity analysis. We determine the minimum amount
of data that needs to be collected or minimum number of test cases that needs to be repeated for each experiment
in order to get less than 12% inaccuracy for our noising parameter. Additionally, in order to reduce the number
of experiments and determine the dependency of our model against Cloud resource and workflow parameters, the
conducted comprehensive sensitivity analysis shows that the correctness of our model is independent of workflow
parallel section size. With our sensitivity analysis, we show that we can reduce the inaccuracy of the naive approach
with only 40% of total number of executions per experiment in the learning phase. In our case, 20 executions per
experiment instead of 50, and only half of all experiments, which means down to 20%, i.e. 120 test cases instead of
600.

Keywords: inaccuracy, makespan, metric, modelling, precision, simulator.

1. Introduction

Cloud has evolved in a promising platform for many scientific applications and workflows’ execution [1]. Still,
there are many challenges that could impact on the decision whether to migrate the execution to the Cloud [2]. Due
to Cloud’s performance instability [3], the cost and makespan (execution time) cannot be predicted correctly as they

Email addresses: roland@dps.uibk.ac.at (Roland Mathá), sashko@dps.uibk.ac.at (Sasko Ristov), radu@dps.uibk.ac.at (Radu
Prodan)

Preprint submitted to Journal of Simulation Modelling Practice and Theory November 27, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144872469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

depend on the amount of leased resources and time period of leasing. This is emphasised even more for dynamic
scheduling of workflows [4], since they consist of control and data dependent tasks. On the other hand, the same
instance can behave totally unexpected in two different periods of time [5], and even a small fluctuation in the task
runtime will change the scheduling, which can result in huge discrepancy of makespan caused by additional network
traffic between instances and shifting the starting time of tasks. Utilising more resources can reduce the makespan,
but in the same time it will increase the cost; this tradeoff between the cost and makespan is analysed by many authors
in the literature [6], which also impacts the Cloud’s performance instability.

Instead of executing a workflow schedule (usually in hours) to estimate its makespan and cost, one can use a Cloud
simulator, which can simulate the execution within seconds [7]. However, most simulators are static and will always
predict the same makespan for a specific workflow schedule and configured input parameters, such as workflow
structure and computation and communication requirements, available resources and their capacity or scheduling
policy. For the same schedule, each simulator will almost always return the constant result for the makespan. In
real Cloud environment, the makespan and cost will be always different, due to its pay-as-you-go pricing model,
dynamic starting of instances [8] and performance fluctuation [9] caused by heterogeneity of underlying hardware,
multi-tenancy, migrations and relocations, or other issues in order to satisfy the constraints in service level agreements.

Simulators should reproduce the execution in a real Cloud; therefore, a methodology is necessary that will make
the simulations accurate and precise [10]. In this paper, we propose a new methodology how a simulator can learn
from the Cloud’s behavior and then to configure the model for tasks’ runtime instability by introducing a noise in order
to reproduce the real Cloud dynamic environment for workflow executions. As a baseline, we consider the accuracy
of the model, which is represented through the trueness (i.e. how close the simulation’s mean values are with the
true mean values of Cloud executions) and the precision (i.e. how close are the corresponding standard deviations) of
the simulation, as defined in ISO-5725 standard [11]. This two-phase process consists of learning and configuration
phases. In the former, an agent learns the Cloud’s behavior by measuring the deviation of each pair of two executions
(repetitions) of the same experiment in the real Cloud. Further on, in the latter phase, the agent configures the simulator
by injecting the learned behavior as a noise within the simulation. By this process, the simulation becomes ”instable”
by generating task execution times as a random variable distributed with some probability function, in order to behave
more closely as the real Cloud. Instead of using a normal distribution naively by using mean value and standard
deviation of workflow tasks’ runtime, we inject two noises in the tasks’ runtime: noisiness of tasks within a workflow
(defined as average runtime deviation) and noisiness provoked by the environment over the whole workflow (defined
as average environmental deviation). Our noised model reduces the workflow makespan simulation inaccuracy up to
59 times compared with the simulation that naively uses the mean value and standard deviation of workflow tasks’
runtime. Apart of the improved accuracy of the introduced approach (or model), the sensitivity analysis shows that we
need only 15 to 20 ”repetitions” of some experiments in the learning phase. That is, we can reuse the learned behavior
for other workflow experiments.

The rest of the paper is organised as follows. Section 2 presents the related works in modeling the workflow
execution instability and the features of Cloud simulators in this domain. In Section 3, we present a short background
related to specific terms of workflows and Cloud. The theoretical analysis of Cloud instability and simulating its
behavior is conducted in Section 4. Our model of adding a noise in simulation is described in Section 5, followed by
process of noising in Section 6. In Section 7, we evaluate our model with a series of experiments, while in Section 8,
we conduct a comprehensive sensitivity analysis in order to determine the minimal number of repetitions of each
experiment in real Cloud for determining our noise metric. The strength and application domain of the model, along
with additional insights are discussed in Section 9. Finally, we conclude the paper and present our future work in
Section 10.

2. Related Work

In this section we present the related work divided in two parts: the review of the cloud performance instability
and the existing simulators and their features to simulate such instability.

2.1. Cloud performance instability
Many cloud features and parameters can cause the performance instability: heterogeneity of resources, instance

types, number of instances, instance straggling, instance failures, multi-tenancy, networking bottlenecks, resource

2

time-sharing, etc. We present several examples of the variant cloud behavior.
An instance of the same type provides different performance for the same task over some time period. Dejun et

al. [12] reported a high deviation in Amazon EC2. Jackson et al. [13] have determined that the different underlying
hardware for similar instances caused performance perturbation. Schad et al. [14] detected a long-term performance
instability of Amazon EC2, which was correlated also to the CPU model of the same instance type, the hour in a day
and day of the week. Iosup et al. [15] determined yearly and daily patterns of performance variability, but also periods
of constant performance. All these behaviors depend also on the application that is executed.

After presenting how unstable the cloud could be, the next subsection presents the existing simulators that can
predict the execution of a workflow or an application in the elastic cloud environment.

2.2. Simulators

GridSim [16] was a successful pioneer in simulating the scheduling algorithms for budget and deadline constraints
in grids. Although its successor CloudSim [17] extends the simulation of not only the scheduling algorithms, but also
the resource provisioning in the elastic cloud environment, still, the cloud performance instability is not simulated.
Chen and Deelman [18] extended the Cloudsim into WorkflowSim, in which they introduced several parameters
specific for workflows, while CloudAnalyst [19] is an extension towards evaluation of large-scale cloud applications.
Still, all of these extensions do not introduce the cloud performance instability.

Other works switched to develop scalable simulators that will resemble up to hundreds of thousands, even het-
erogeneous, machines [20]. For example, Donassolo et al. [21] extended the SimGrid [22] in order to be used for
volunteered computing simulation. GroudSim [23] is also a simulator that simulates grid and cloud scalable environ-
ments, which is used in this paper for the evaluation of our methodology. Adding the scalability will improve their
simulation features, but in the same time it will reduce their accuracy [24, 25]. Although all mentioned simulators
estimate the execution of some application or workflow, still none of them considers the cloud performance instability.

Bux and Leser [26] went further in this direction. They developed the DynamicCloudSim simulator, also as an
extension of CloudSim, in which they introduced several additional characteristics to simulate the cloud instability,
such as different kind of tasks, heterogeneity, struggles and failures, and long and short term fluctuations at runtime.
GloudSim [27] is also a simulator that introduces some dynamics, but only in resizing the instances and not for the
task runtime. Still, the performance per resource is constant during a time period.

Therefore, we go a step further as we use both the accuracy and the precision in our methodology, and introduce
the new metric - inaccuracy, in order to quantify and reduce the bias between the behavior of simulated and real
cloud environments. Schad et al. [14] have reported that several performance parameters are unstable with a normal
distribution. We also use the normal distribution to add a noise to the tasks runtime, but instead of naively generating
the random variables distributed with mean value and standard deviation for runtime of a single task, we inject the
noisiness of all tasks within a workflow and noisiness provoked by the environment over the whole workflow, to each
task runtime. We show that our model provides better simulation than naively using the normal distribution. Even
more, our experiments reported that the distribution is not normal for instance types with more computing resources
(vCPUs).

3. Background

In this section we present the important background of the workflow and challenges of its execution in Cloud for
a better understanding of the paper.

3.1. Workflow description

A workflow is defined as a directed acyclic graph G = (N, E), where N is a set of nodes and E is a set of edges.
The nodes represent the computational tasks, while the edges model the dependencies between the tasks. There are
two different types of dependencies: control and data dependencies. In this paper, we consider as data dependencies
file transfers, which are conducted to copy a file or files from a task that has already finished (output) to a task that
needs these files as an input. We have to mention that a task can send files to one or several tasks, and a task can
receive files from one or several tasks.

3

T1

T21 T22

T3

(a) Workflow example with 4 tasks and a parallel section

T1

T21

T22

T3

c1

c2

(b) Scheduling example of workflow on two Cloud instances c1

and c2

Figure 1: Examples for workflow and workflow execution

Fig. 1a depicts an example of a simple workflow with four tasks (N = {T1,T21,T22,T3}) and dependencies between
them. Due to these dependencies, a task is ready for execution, if and only if all its predecessor tasks and incoming
file transfers are finished. For instance, T3 is ready for execution, only after both T21 and T22 are finished and all
their output files are completely transfered to T3. This shows an example when a task is receiving files from several
tasks. Note that T21 and T22 are ready for execution only after T1 is finished and all corresponding file transfers will
be received. This shows an example of a task that sends files to other tasks. Since there is no dependency between
each other, T21 and T22 build a parallel section and can be executed in parallel. The size of a parallel section can differ
and tasks within can be the same (leading to data parallelism) or different (task parallelism).

3.2. Cloud resource and scheduling
For the workflow executions in this work, we use the Infrastructure as a Service (IaaS) Cloud service model,

which delivers computing resources i.a. as Cloud instances. A cloud instance, or short instance, is a virtual machine
(VM) hosted on the Cloud providers’ infrastructure. The VM properties of an instance, such as the number of virtual
CPUs (vCPUs), memory and storage size, etc. can be selected among a set of predefined instance types. Usually,
this instance types are defined by the Cloud provider. For example, a small instance type has 1 vCPU, 2GB RAM
and 20GB hard drive, while medium instance type has 2 vCPU, 4GB RAM and 40GB hard drive. The pricing model
is always similar and linear: more powerful (in terms of higher computational speed or computational capacity), or
greater number of instances will speedup the workflow execution, but simultaneously will increase the cost.

Fig. 1b presents a reasonable scheduling of the example workflow (see Fig. 1a) on two Cloud instances c1 and
c2. In detail, T1 is executed as first task on instance c1. Then, according to the dependencies, the tasks T21 and
T22 are executed in parallel and thus scheduled on two different instances. Finally, T3 is ready for execution and is
scheduled to instance c1. Note that this is only one possible scheduling plan to explain the terms task scheduling and
workflow execution. A state-of-the-art scheduler is dynamic, complex and will consider more information, such task
requirements (e.g. minumum memory), cost, energy consumption etc. Since we want to simulate the instability of
a workflow execution in a Cloud, we will use a simple job queue scheduling policy, while the scheduling policies
improvement is out of the scope of this paper.

4. Theoretical Analysis

This section elaborates the reasons for Cloud performance instability and the importance of introducing a proper
model in simulations. It also defines the parameters that make the performance unstable, which is especially empha-
sised for workflow executions.

4.1. Unstable performance in Cloud
Cloud simulators, such as Cloudsim [17] or Groudsim [23], provide a detailed workflow description and Cloud

instance setup to improve the accuracy of simulations as in real distributed environment. A crucial parameter in this

4

0 60 120 180 240 300 360 420 480
300
320
340
360
380
400

t [min]

m
ak

es
pa

n
[s

ec
]

(a) Unstable execution of the same workflow using two instance
types in Cloud for a time period of 8 hours

0 100 200 270

c2

c1

s2

s1

t [sec]

In
st

an
ce

s

Filetransfers Tasks

Task 1 Task 3

Task 2 Task 4

Task 1 Task 4

Task 2 Task 3

(b) Example of a workflow schedule plan in two same Cloud
instances c1 and c2 and simulated instances s1 and s2

Figure 2: Examples of cloud performance instability for workflow execution

scope is the task computation complexity, which is usually provided in MIPS (Million Instructions Per Second). From
this parameter, along with the CPU computation speed, we can simulate the task runtime and, using some scheduling
policy, also the workflow makespan. While in almost all simulators this parameter is considered to be a constant for the
same workflow task and traditional computing environment, it varies during some time period in Cloud environment
due to Cloud’s multi-tenant and heterogeneous environment.

We have conducted two experiments, presented in Fig. 2a, which show the Cloud performance instability during
a period of several hours. The experiment executes the WIEN2k/44 workflow (explained in Section 7.1), once using
four small and the second time four medium instances. Both workflow executions have variant makespan of up to
10% comparing with their mean values that are presented with dashed and dotted lines.

Let’s analyse what causes this performance instability. Several events impact the length and instability of the
workflow makespan, such as starting time of instances, file transfer time before each task, execution time of each task
and terminating the instances. Fig. 2b presents an example of executing a workflow in two environments, simulator
(S) and Cloud (C). Note that we consider instance start up time as warm up period and thus we omit it in this example
and in the experiments later. Similarly, we omit the termination time because the customer is not charged during this
period. Without loosing any generality, let us assume that all tasks are independent, and ranked to be executed in
ascending order. Also, let each environment has two available instances of the same type (s1 and s2 in simulator,
and c1 and c2 in cloud). As shown, simulation will provide the results with the constant values for all mentioned
parameters for both instances and all four tasks. The file transfers will be constant for the same schedule since the
bandwidth and file sizes are the same, as well as each task will not change the instance where it will be executed.
Therefore, the schedule of task execution, their execution time and file transfers, and thus the whole makespan, will
be retained.

In contrast to the simulated environment, the Cloud behavior varies when the same workflow is executed with the
same schedule. As the lower part of Fig. 2b shows, both times (for file transfers and task execution) will be different
due to Cloud performance instability. The greatest difference will appear in the runtime of computational intensive
tasks due to Cloud heterogeneous environment, virtualisation layer and cloud multi-tenancy. All these differences
could even change the schedule of execution, that is, as presented, Task 3 could be executed on instance c2, instead of
planned instance c1. This change in scheduling could probably cause even additional file transfers, or possibly reduce
them. Nevertheless, both cases will generate performance instability.

4.2. Performance instability parameters definitions

There are many factors that can make the makespan discrepant. In this subsection we formally define those
parameters and present some dependencies that will be used in the next section for modeling the noised task runtime
and workflow makespan in a simulation. Table 1 presents the sets that will describe the environments where the
experiments are executed, along with their details, which are input parameters in the experiments. For each parameter,
we also present example values for better understanding. The set ENV presents the environments, at least by one

5

simulated and Cloud environments. Cloud environment can have specific types of instances, which are represented
with the set IT , and a customer can use a specific number of instances of particular type, represented with the set IN.
Elements of the set W denote different workfows that can be executed, each of which consists of a set Tw of tasks Tww ,
as explained in Section 3. Since our intention is not to improve the scheduling in simulator and Cloud, but to equalise
the simulator’s behavior as close as possible to the real Cloud’s one, we are not interested in analysing the scheduling
of tasks on instances.

Table 1: Definitions of input (environmental) parameters

Parameter description Formal definition Example values
Set of environments ENV = {ENV1, ENV2, . . . , ENVen } Cloud, S imulator
Set of instance types IT = {IT1, IT2, . . . , ITnt } S mall,Medium, Large, XLarge
Set of instance number IN = {IN1, IN2, . . . , INni } 1, 2, 3, 4, ...
Set of workflows W = {W1,W2, . . . ,Wnw } WIEN2k,Montage, S ynthetic
Set of tasks for Ww Tw = {Tw1,Tw2, . . . ,Twnw

} T1,T21,T22,T3 (Fig. 1a)
Set of experiments EXP = {(Ww, ITt, INi)|w ∈ W, t ∈

IT, i ∈ IN}
(WIEN2k, small, 3): Execute the WIEN2k
workflow using 3 instances of type small

Set of executions EXE = {1, 2, . . . ,Nx} Nx = 10 executions (repetitions) of an experi-
ment EXP

Set of test cases TC = {(ENVei , EXP(w, t, i), EXEx)} (Cloud, (WIEN2k, small, 3), 7): 7-th execution
of the WIEN2k workflow using 3 small in-
stances in Cloud environment

After definition of environments and workflows, as well as their properties, the lower part of Table 1 presents
the trials’ parameters. We define a set of experiments EXP, such that each experiment EXP(w, t, i) is represented
as a 3-tuple of a workflow Ww that runs on specific number of instances INi of the same type ITt. For example,
(WIEN2k, small, 3) denotes an experiment that executes WIEN2k workflow using three instances of type small. In
order to calculate the average values of some parameter, we need to repeat the execution EXEx of each experiment the
same number of times, which is denoted with the set EXE. For example, Nx = 10 means that each experiment will
be repeated (executed) 10 times and in this case, the elements of the set EXE are integers from 1 to 10. Finally, a test
case TC(ENVe, EXP(w, t, i), EXEx) represents a specific execution EXEx of the experiment EXP(w, t, i) on a spe-
cific environment ENVe. For example, (Cloud, (WIEN2k, small, 3), 7) denotes the test case, which is 7-th execution
(repetition) of the experiment (WIEN2k, small, 3) in Cloud environment, while (WIEN2k, small, 3) denotes the ex-
periment with WIEN2k workflow and three (3) small instances. Examples of real values for these specific parameters
are presented in Section 7.1.

Output parameters, which should be measured in each test case of an experiment, are presented in Table 2. In
order to simplify the presentation, we are using T for a task Tww , TC for a test case TC(ENVe, EXP(w, t, i), EXEx)
and EXP for an experiment EXP(w, t, i). Each task T of a test case TC, is executed from the starting time tstart(T,TC)
until the finish time t f in(T,TC). We define this elapsed time as runtime trun of a task T , which is formally defined
as trun(T,TC) = t f in(T,TC) − tstart(T,TC). Further on, the makespan M(TC) of each test case TC of an experiment
EXP is measured as the elapsed time from the start time of the entry task Tentry until the finish time of the end task
Tend of that test case TC. After executing all test cases of an experiment EXP in an environment ENV , the mean
value of the makespan M(EXP, ENV) is calculated, considering all conducted test cases of that experiment EXP in
that environment ENV .

4.3. Simulation inaccuracy

After definition of all parameters, we need a methodology in order to quantify the simulation and compare how
much it is accurate and precise. For this purpose, we introduce the metric inaccuracy δ as a relative distance of
a simulated value to the true measured value, which is defined in (1). This is a template definition, which can be

6

Table 2: Definitions of output (measured) parameters

Parameter description Formal definition
Start time of T tstart(T,TC)
Finish time of T t f in(T,TC)
Runtime of T trun(T,TC) = t f in(T,TC) − tstart(T,TC)
Makespan of TC M(TC) = t f in(Tend,TC) − tstart(Tentry,TC)
Mean makespan of EXP in ENV M(EXP, ENV) = M(TC),∀EXEx in EXP

overloaded with mean values of each defined parameter in the previous subsection.

δ =
| < Measured > − < S imulated > |

< Measured >
(1)

Since the accuracy is defined as the closeness of the simulated value to the measured value, reducing the simula-
tion’s inaccuracy means improving its accuracy.

5. Modeling the noising

Since most common Cloud simulators provide a user defined, but constant setup for workflow tasks, the output
workflow makespan will be constant. However, as both experiments show in Section 4.1, the Cloud behavior is
discrepant during some period of time, in our case up to 10%, while simulators should be configured to reproduce
the same behavior. A naive approach of statistics would be to generate an execution time of each task as a random
variable with a normal distribution. In this section we present a novel model how to add noise in the runtime of each
task type into a simulation.

The goal of our noising model is to be as simple as possible, but in the same time to be most accurate. The problem
here is that we do not have a single value that will be the goal to be targeted, but an unstable behavior. So, we are
looking to reduce its inaccuracy δ.

Since we want a simple model, our focus is not to add a noise in all parameters, but to the runtime of each task
execution only, which will automatically make the makespan unstable. The modeling has two steps. First, we model
the noisiness of tasks within a workflow (defined as average runtime deviation), and then we model the noisiness
provoked by the environment over a workflow (average environmental deviation).

5.1. Tasks noisiness within a workflow

In order to model the noisiness of each task within a workflow, first we model the noisiness of a task T itself with
the parameter task runtime deviation ρ(T,TC1,TC2), which is defined in (2) as a relative runtime difference of that
task, comparing executions of two test cases of the same experiment in Cloud.

ρ(T,TC1,TC2) =
|trun(T,TC1) − trun(T,TC2)|

max(trun(T,TC1), trun(T,TC2))
(2)

Now we use the task runtime deviation ρ(T,TC1,TC2) in order to introduce a parameter average runtime deviation
∆runtime, which will model the noisiness of each task runtime in a workflow, as defined in (3). It represents a normalised
mean runtime difference of all corresponding tasks T ∈ Tw of two test cases TC1 = TC(ENV, EXP, EXE j) and
TC2 = TC(ENV, EXP, EXEk), which are two different executions of the same experiment EXP = EXP(w, t, i) in the
same environment ENV . The same experiment EXP = EXP(w, t, i) means that the workflow Ww should be executed
using the same number of instances i, each of instance type t.

∆runtime(TC1,TC2) =
1
|Tw|
·

∑
∀T∈Tw

ρ(T,TC1,TC2) (3)

7

TC1

trun(T1)

trun(T2)

trun(T3)

trun(T4)

TC2

trun(T1)

trun(T2)

trun(T3)

trun(T4)

∆runtime(TC1,TC2) = 1
4 ·

{
ρ(T1,TC1,TC2)

+

ρ(T2,TC1,TC2)

+

ρ(T3,TC1,TC2)

+

ρ(T4,TC1,TC2)
}

Figure 3: Example of modeling the average runtime deviation ∆runtime with two test cases of a workflow execution

TC1 TC2 TC3 TC1

1
3·(3−1)

2
·
(

∆runtime(TC1,TC2) + ∆runtime(TC2,TC3) + ∆runtime(TC3,TC1)
)

=∆

Figure 4: Example of modeling the average environmental deviation ∆ with three test cases of a workflow execution of the same experiment in the
same environment

Let’s give an example with a simple workflow that has four tasks T j,∀ j ∈ {1, 2, 3, 4} and is executed in two test
cases TC1 and TC2, as shown in Fig. 3. In each test case, we measure the runtime of each task trun(T) of the workflow.
After the execution, we calculate task runtime deviation ρ(T,TC1,TC2) of each task T according to (2), and finally
the average runtime deviation ∆runtime according to (3).

As defined, the average runtime deviation ∆runtime can be used for two purposes: learn the noisiness of a single
environment (real Cloud) or measure the inaccuracy of simulation by comparing its values for different environments
(real Cloud versus simulation). This parameter includes vertical average of all task runtimes within a workflow.

5.2. Environment noisiness

In order to be more accurate in a specific environment ENV , we introduce the average environmental deviation
∆(EXP, ENV), which measures the average of an experiment’s makespan instability when being repeatedly executed
Nx times in a single environment, as defined in (4). That is, we measure the average runtime deviation ∆runtime of
each unique pair of test cases, which represent two different executions (repetitions) EXE j and EXEk of the same
experiment EXP (workflow, instance type, instance number) in the same environment ENV (some real Cloud).

∆(EXP, ENV) =
1

Nx·(Nx−1)
2

·
∑

∀ j<k≤Nx

(
∆runtime

(
TC(ENV, EXP, EXE j),TC(ENV, EXP, EXEk)

))
(4)

Fig. 4 shows an example of modeling the average environmental deviation ∆(EXPx, ENVe) with three test cases of
a workflow execution of the same experiment in the same Cloud environment. The average runtime deviation ∆runtime

is calculated for each pair of test cases, as presented in Fig. 3, and then the mean value of all of them represents the av-
erage environmental deviation ∆(EXP, ENV). This parameter includes horizontal average of all workflow executions
within a single Cloud environment.

We present the test case TC1 two times in Fig. 4 just for better understanding how the average environmental
deviation ∆(EXPx, ENVe) is modeled. For greater number of Nx executions, the total number of calculations for the
average runtime deviation ∆runtime will be

(
Nx
2

)
=

Nx·(Nx−1)
2 , which is the number of pairs that can be generated from a

set with Nx elements.

8

Cloud Simulator

Noising

Agent

1

2

3
4

5

6

7

8

Execution

Engine

Data transfer

Execute

Configure

Learning Configuration

Figure 5: Noise process architecture

5.3. Putting it all together: Modeling the noise for the task runtime

Now, when we have all necessary deviations, we define how to noise the runtime of tasks, in order to improve
the trueness, which is represented with the accuracy and precision of the simulations. Let σ(∆) denotes the standard
deviation of the average environmental deviation ∆(EXP, ENV). The noised runtime τnoise(T) of a task T is defined
in (5), where trun denotes the runtime’s mean value of Nx executions (repetitions) of the same task T of an experiment
in real Cloud environment, while gaussian(Mean, S T DEV) is a random function with gaussian (normal) distribution.

τnoise(TC) = (1 + ∆) · trun(T) + gaussian(0, σ(∆)) (5)

The noise in noised runtime τ of a task is modeled as a gaussian distribution, where the mean value is the runtime’s
mean value trun(T) of the tasks in the cloud environment, shifted with the average environmental deviation ∆ in order
to improve the accuracy, while its standard deviation, denoted as σ(∆), is used to add noise to the precision. Note, that
we are also introducing a normal (Gaussian) distribution of the task runtime τnaive, as, for example, Bux et al. [26]
or Poola et al. [28]. However, we shift the mean runtime and add a noise in the precision (deviation) of each task.
Let us explain the significance of shifting the runtime’s mean value trun(T) with average environmental deviation ∆,
i.e, (1 + ∆) · trun(T). Since the average environmental deviation ∆ depends on the average runtime deviation ∆runtime,
which accumulates noises of all tasks within a workflow, we inject this common noise of all tasks within their mean
value trun(T).

A normal distribution for the task runtime, on the other side, can be naively used as defined in (6). We show in
our evaluation that our noising model (5) provides smaller inaccuracy than using the normal distribution naively (6)
for tasks’ runtime.

τnaive(TC) = trun(T) + gaussian(0, σ(trun(T))) (6)

6. Process of Noising

In this section we present a generic architecture of our noising process and map it to our case study that will be
used to evaluate the correctness of our noising model.

6.1. Architecture

The generic architecture of the noising process is depicted in Fig. 5. It consists of four parts: Noising Agent, Exe-
cution Engine, and two environments, Cloud and Simulator. The process is divided into a learning and configuration
phase, which are described in the following subsections.

9

Table 3: Instance Types of our private OpenStack cloud

Type VCPUs RAM HDD
small 1 2 GB 20 GB
medium 2 4 GB 40 GB

6.1.1. Learning Phase
The learning phase gathers knowledge of real Cloud test cases and uses it for the later configuration of the sim-

ulator. To generate real data, Noising Agent uses Execution Engine to run Nx test cases TC of experiment EXP in
the Cloud environment, i.e. a specific workflow using some number of instances of one type. The measured data of
each test case is stored in a central database, where Noising Agent has a read access. After executing all Nx test cases,
the Noising Agent queries the database and calculates the runtime’s mean value trun(T), the average environmental
deviation ∆ and its standard deviation σ(∆). In order to determine or estimate the minimum number of test cases Nx

that is enough to be executed in order to provide ”acceptable” trueness simulation of a single experiment, we conduct
a comprehensive sensitivity analysis in Section 8. Additionally, the result of our sensitivity analysis shows that our
methodology can reduce even the number of different experiments, which significantly reduces the time and cost for
the learning phase. For example, instead of learning the execution of a workflow WIEN2k/44 by using for example
three small instances, we can use the prior learning phase of executing another experiment with the smaller workflow
WIEN2k/13, which is faster and cheaper.

6.1.2. Configuration Phase
After the learning phase, Noising Agent injects the noised runtimes τ(TC) into the simulator. Then, Noising Agent

executes the same experiment EXP in the simulator and stores the measured data in the database. Finally, Noising
Agent analyses and presents the simulator’s inaccuracy.

6.2. Case study

We created a case study to evaluate the process of noising. Askalon [29] is used as Execution Engine, which
supports workflow executions in different Clouds and Cloud simulator Groudsim [23]. As a Cloud environment, we
use a private Openstack Cloud with a total of 40 CPU cores of Intel(R) Xeon(R) CPU E5-2680 v2 with 2GHz. The
Openstack resources of two instance types are specified in Table 3. The VM image is with CentOS 6.3 as a guest
operating system. As a simulator, we use the already included simulator Groudsim [23] in Askalon. As part of
Askalon, a monitoring tool stores the monitored data in a central PostgreSQL database.

7. Evaluation

In this section we present the results of a series of experiments with different workflows, instance types and number
of instances in order to evaluate the accuracy of our model and noising methodology. Each experiment is repeated in
the Cloud to learn its behavior and then reproduced in the simulator more successful than the naive approach.

First, we describe the testing methodology as one can reproduce the results and then we present the experimen-
tal results. In the experimental results, we analyse the inaccuracy of the results by comparing the mean workflow
makespans of experiments in Cloud and simulator.

7.1. Testing methodology

The presented testing methodology offers multitude options not only to evaluate our noising model, but also the
impact of various parameters on the Cloud performance instability. We present all necessary data in detail in order to
make the experiments easily reproducible.

Table 4 presents different values (elements) for all defined parameters (sets) that are used in evaluation. The
experiments were executed in four different environments C, S , S naive, and S noise. The cloud environment C is
our private Openstack cloud, where many users execute multiple tasks and workflows concurrently. Other three

10

Table 4: Test methodology

Parameter description Test values
Set of environments ENV = {C, S , S naive, S noise}

Set of instance types IT = {S mall,Medium}
Set of instance number IN = {2, 3, 4}
Set of workflows W = {WIEN2k/13,WIEN2k/44}
Set of executions EXE = {1, 2, . . . , 50}

· · ·

· · ·

(a) An example of the WIEN2k workflow

i1 i2 i1 i2
. . .

i1 i2

balanced

i1 i2 i1 i2
. . .

i1 i2

unbalanced

(b) Balanced and unbalanced execution of a
parallel part

Figure 6: The structure of the WIEN2k workflow and example of balanced and unbalanced execution of its parallel parts.

environments are simulated with the GroudSim simulator. The environment S is a simulation without any noise, or
τS (TC) = trun(T). The S naive assumes a normal distribution of the task runtimes, which is represented as a normally
distributed random variable with the mean value and the standard deviation of all executions of a single experiment
in Cloud environment for that task T , as defined in (6). The S noise environment is our approach simulated with noised
task runtime defined in (5).

In all four environments, we define a set of instance types as IT = {S mall,Medium} and the number of instances
as IN = {2, 3, 4}. The set of workflow consists of two elements (workflows), i.e. WIEN2k [30], with 13 and 44 same
tasks in the parallel section. It consists of two parallel sections with synchronizing tasks in between, as presented in
Fig. 6a. Although WIEN2k is a simple workflow, still, it offers various characteristics to be investigated, which could
impact the performance instability. The number of tasks within a parallel section is defined by an input parameter
workflow size. In the experiments we use the workflow sizes 13 and 44, as defined in Table 4. The sizes of a
workflow’s parallel section are chosen such that 13 is a prime number, while 44 can be divided with the number of
instances 2 and 4. Therefore, it is expected that the test cases with two and four instances will execute the parallel
sections of the workflow WIEN2k/44 with optimal load balancing, while the workflow WIEN2k/13 execution will
be unbalanced. Both workflow executions with three instances will be unbalanced. Fig. 6b shows an example of
unbalanced and balanced execution of the parallel section of the WIEN2k workflow on two instances i1 and i2.

To summarise, we execute 12 experiments in the Cloud, each executed (repeated) Nx = 50 times. Further on, all
these 600 test cases are reproduced in three simulator environments, leading to a total number of 2400 executed test
cases.

7.2. Corollary of tasks’ runtime noising: noise of the makespan

Adding the noise in the task runtimes generates noise in the makespan, as well. This subsection evaluates how
the workflow makespans in real Cloud (C) is reproduction with other three simulator environments: i) S without any
noise, ii) the naive approach S naive, and iii) our noise approach S noise.

11

2*s 3*s 4*s 2*m 3*m 4*m
50

100

150

IN ∗ IT

m
ea

n
m

ak
es

pa
n

[s
] C S S naive S noise

(a) WIEN2k/13

2*s 3*s 4*s 2*m 3*m 4*m
100

200

300

400

500

IN ∗ IT

m
ea

n
m

ak
es

pa
n

[s
] C S S naive S noise

(b) WIEN2k/44

Figure 7: Mean makespans of WIEN2k/13 and WIEN2k/44 on small and medium instance types, The presented variation of mean makespan is
±σ(mean makespan)

7.2.1. WIEN2k/13
The results of mean makespan, along with its standard deviation, for all experiments with the WIEN2k/13 work-

flow are depicted in Fig. 7a. Each experiment with the WIEN2k/13 workflow is denoted as the product of number of
instances and the abbreviation of its type (s for small and m for medium). For each experiment, each of four columns
represents the makespan for the environment where it is executed.

Our model S noise shows the lowest inaccuracy for almost all experiments in simulated environments. For small
instance types, our model leads the race with the inaccuracy of 2.29% up to 10.19%, while S naive’s inaccuracy is from
2.29% up to 15.21% and S ’s is in the range of 9.75% and 20.18%.

Similar results are achieved for medium instances, but with greater inaccuracy than experiments with small in-
stance types. Our model still shows the smallest inaccuracy, in the range of 5.68% up to 25.40%, while the S naive’s
inaccuracy is between 1.13% and 29.87%, and S ’s is from 4.13% up to 34.72%.

We observe that in experiments with two medium instances, both simulation environments S naive and S noise show
up to 5.68% higher makespans, while S remains again below the real Cloud experiments C. We explain this behavior
due to the fact, that the makespan’s inaccuracy of S is already very small with 4.13 and both noising simulation
environments are based on S . Additionally, the greater inaccuracy of the experiments with medium instance types is
due to tasks’ interference within the medium instances, while better task isolation in small instance types. That is,
in the experiments that use small instance types, each instance gets at most one task per time, due to the preemptive
execution, while in those with medium instance, the instances execute two tasks concurrently, which generates tasks
interference [31].

Let us discuss an additional paradoxical observation. The inaccuracy is also greater for all simulated environments
with greater number of instances. We explain this insight with the fact that file transfers are more discrepant in these
experiments, as tasks can be executed in different instances and thus generate additional or reduce the number of
file transfers. On the other hand, although one can conclude that these experiments provide greater inaccuracy in
the makespan’s mean value, still our opinion is that the Cloud’s behavior is unexpected. That is, the mean value of
experiments with two, three and four medium instances is similar in Cloud, which is a paradox since we use more
instances and expect some speedup, as the results of the experiments with small instances. Observing the simulators
behavior for all three models, we can conclude that their behaviors are expected. Once again, the Cloud shows its
unpredicted performance behavior.

7.2.2. WIEN2k/44
Fig. 7b depicts the average makespan results for all experiments with WIEN2k/44 workflow. Our noising S noise

model shows again the lowest inaccuracy of the workflow makespan in all simulated environments. When using small
instances, the inaccuracy is in the range of only 0.33% up to 11.49%, compared to the S naive’s inaccuracy of 4.5%

12

to 17.34% and S ’s from 0.5% to 22.81%. For the experiments with medium instances, the inaccuracy of our noising
S noise model is from only 0.24% up to 35.27%. The other simulated environments provided again worse inaccuracy.
The S naive’s reported from 8.23% to 40.83% inaccuracy, while the S ’s is in the range of 14.22% to 41.46%.

We observe that in the experiment with two small instances, S naive and S noise show up to 6.97% higher makespans
than the real Cloud C. As we already mentioned in the previous subsection for WIEN2k/13, those results are due
to the fact that both noising approaches are based on S and add additional task runtime noise. More precisely, S has
already a very small inaccuracy of 0.5% in experiments with two small instances and adding task runtime noise results
in higher makespans, which is important especially for increasing number of instances and vCPUs.

The maximal improvement of inaccuracy is observed for experiment with two medium instances, where our model
shows the inaccuracy of only 0.24% compared to S naive’s 14.22%, which is an improvement of even 59 times. How-
ever, we observe the same high inaccuracy for all simulation environments when using medium instances, especially
with four medium instances. The explanation for this is the same as for WIEN2k/13 workflow, although the Cloud
experiments slightly reduced the average makespan when more medium instances are used. That is, using more
medium instance achieves small, but inefficient speedup, while the simulations provided the range of the speedup for
the makespan as expected.

8. Sensitivity Analysis

In this section, we present the results of a sensitivity analysis in order to reduce the total number of test cases that
should be executed in the learning phase and still to get accurate simulation. First, we determine the minimum number
of test cases per experiment (repetitive workflow executions) that are need in the real Cloud in order to minimise the
learning phase effort represented as execution time and cost. Second, we determine the minimum number of Cloud
experiments by comparing and analysing three aspects: workflow type, instance type, and number of instances. Our
idea is to determine a correlation between two experiments that differ with exactly one parameter and use the results
of one experiment for another, instead of conducting all Nx executions of that experiment.

8.1. Determine the minimum number of workflow executions (test cases) per experiment

In Section 7, we calculated the average environmental deviation ∆ by using 50 workflow executions per experiment
in the learning phase. In order to analyse the sensitivity of the average environmental deviation ∆ according to different
number of repeating workflow executions in real Cloud, we recalculate ∆ with only a subset of the original workflow
execution sets, denoted as ∆subset. For verification and validation, we choose first 5, 10, 15, 20, and 25 workflow
executions as a subset, which corresponds to 10%, 20%, 30%, 40%, and 50% of the original sets, and for each of them
we calculate ∆subset.

The results of the sensitivity analysis for all experiments are depicted in Fig. 8. In detail, Fig. 8a and Fig. 8b show
the relative subset deviation ρsubset(nx) = ∆subset(nx)/∆ for each experiment using the WIEN2k/13 and WIEN2k/44
workflows, correspondingly. The parameter nx shows the size of subset.

We observe that for all experiments, the relative subset deviation saturates after 20 workflow executions. In detail,
after 20 workflow executions, the relative subset deviation is less than 12.02% for all WIEN2k/13 experiments and
even less than 6.34% for all WIEN2k/44 experiments.

Compliant with our observation, Bux and Leser [26] used 20 workflow executions per experiment to evaluate
the accuracy and precision of their model without presenting a sensitivity analysis. Our sensitivity analysis reports
similar number of required workflow executions in the learning phase, regardless the difference of used workflow,
simulator and Cloud environments, that is, they used the Montage workflow on Amazon EC2 and CloudSim, while
our experiments used two WIEN2k workflows, on OpenStack Cloud and Groudsim simulator.

8.2. Determine minimum number of Cloud experiments

Previous subsection presents how we can determine the number of minimal executions per experiment, while still
achieving the accurate simulation. In this subsection we go further, that is, we analyse the correlation of various
experiments in order to reduce even the number of experiments with all executions (repetitions) in the learning phase.

In order to determine the impact of a specific parameter (workflow, instance type or instance number) to our nois-
ing parameter average environmental deviation ∆, we introduce the average parameter deviation ∆<Parameter><Value>,

13

5 10 15 20 25

0.8

1

1.2

1.4

Number of real workflow executions

R
el

at
iv

e
su

bs
et

de
vi

at
io

n 13S 2 13S 3
13S 4 13M2
13M3 13M4

(a) WIEN2k/13

5 10 15 20 25

0.8

1

1.2

1.4

Number of real workflow executions

R
el

at
iv

e
su

bs
et

de
vi

at
io

n 44S 2 44S 3 44S 4
44M2 44M3 44M4

(b) WIEN2k/44

Figure 8: Sensitivity analysis for WIEN2k/13 and WIEN2k/44 by using different subset of executions (repetitions)

Table 5: Average environmental deviation ∆(EXPx, ENVe) for each experiment

Experiment ∆W13 ∆W44 ∆ITS ∆IT M ∆IN2 ∆IN3 ∆IN4

13S2 0.079 0.079 0.079
13S3 0.106 0.106 0.106
13S4 0.129 0.129 0.129
13M2 0.183 0.183 0.183
13M3 0.193 0.193 0.193
13M4 0.177 0.177 0.177
44S2 0.081 0.081 0.081
44S3 0.113 0.113 0.113
44S4 0.140 0.140 0.140
44M2 0.186 0.186 0.186
44M3 0.200 0.200 0.200
44M4 0.192 0.192 0.192
AVG 0.145 0.152 0.108 0.189 0.132 0.153 0.160

which determines the average value of average environmental deviation ∆ for all experiments keeping exactly one
parameter constant, and changing others two (e.g. SELECT AVG(∆) FROM experiments WHERE EXP.Parameter =

value) Index in each average parameter deviation ∆W13, ∆W44, ∆ITS , ∆IT M , ∆IN2, ∆IN3, and ∆IN4 consists of two parts
< Parameter >< Value > and denotes the experiments with that value of the parameter that should be considered. Ta-
ble 5 presents the values of all seven average parameter deviation and how they are calculated. The rows represent the
value of average environmental deviation ∆ for a specific experiment. For example, 13M3 represents the experiment
EXP(WIEN2k/13,Medium, 3), that is, executing the workflow WIEN2k/13 using three Medium instances. The cells
are fulfilled with the value of average environmental deviation ∆ for those experiments that have the corresponding
parameter of the average parameter deviation. For example, the second column, or ∆W44, considers values for average
environmental deviation ∆ of all experiments with the WIEN2k/44 workflow, regardless of instance type and number
of instances, or experiments that start with 44.

Observing the values for average parameter deviations, we can conclude that average parameter deviations ∆W13
and ∆W44 are similar, or that different workflow has neglected impact compared to other two parameters. Instance
number has greater impact than the workflow, but the greatest impact has the instance type. For both parameters,
increasing the size or number of instances provides greater performance instability.

14

2*s 3*s 4*s 2*m 3*m 4*m

−50

−25

0

25

50

IN*IT

R
el

at
iv

e
pa

ra
m

et
er

de
vi

at
io

n
[%

]

WIEN2k/13
WIEN2k/44

(a) Analysis by workflow type

13*2 13*3 13*4 44*2 44*3 44*4

−50

−25

0

25

50

W*IN

Small
Medium

(b) Analysis by instance type

13*s
13*m 44*s

44*m

−50

−25

0

25

50

W*IT

2 3 4

(c) Analysis by instance number

Figure 9: Cloud experiments analysis by workflow type, instance type and number of instances

Although Table 5 yields valuable conclusions, still we want to quantify the impact of each parameter. There-
fore, we continue our sensitivity analysis by introducing relative parameter deviation δ<Parameter><Value>(EXP) for an
experiment, which shows the relative difference of average environmental deviation ∆ to the corresponding average
parameter deviation, as defined in 7. For example, δW13(13M2) = (0.183 − 0.145)/0.145 = 26.21%.

δ<Parameter><Value>(EXP) =
∆(EXP) − ∆<Parameter><Value>

∆<Parameter><Value>

(7)

Fig. 9 presents the relative parameter deviation for each experiment, separately for each parameter (a) workflow,
b) instance type and c) instance number). We clearly observe that there is a completely matching for the curves in
Fig. 9a for each value of other two parameters. However, the relative parameter deviation varies from −46.74% to
33.64% such that small instance type has lower deviation than the medium type. Figs. 9b and 9c show that other
two parameters (instance type and number of instances) have impact to the performance deviation, as the relative
parameter deviation is different for each value of both parameters.

9. Discussion

This section discusses about some additional insights of our versatile methodology and evaluation. It also discusses
which parameters mostly impact the performance instability.

9.1. Strength of the model

We have conducted 2400 test cases with various parameters and in different environments, that is, different work-
flows, instance types, instance number and environments. The results confirmed that our noising methodology can be
used for simulating the Cloud performance instability for workflow execution, and it is more accurate than naively
noising with the normal distribution approach. Note that both, noised and naive approach, use normal distribution,
but in contrast to Bux et al. [26], we assume that a task runtime is more likely to be slower instead of faster than
the average task runtime. Thus, similar to negative skew we shift the mean runtime and add a noise in the precision
(deviation) of each task. This improves both the accuracy and precision of simulation.

The strength of our S noise model, comparing with the naive normal distribution approach S naive, relies on its
parameters, especially the average environmental deviation ∆ and average runtime deviation ∆runtime. The former
estimates the environmental noise by calculating the horizontal average of the same task, while the latter smooths the
impact of the workflow structure by calculating the average of all tasks in a workflow. With these two parameters, we
inject not only the noise of a task itself, when being executed in Cloud, but we inject the impact of common tasks’

15

290 300 310 320 330 340 350 360 370 380 390 400 410
0

0.1

0.2

Figure 10: Distribution of makespans from Fig. 2a

noises within the workflow and Cloud environmental noise provided when a whole workflow is being repeatedly
executed in that environment.

9.2. Additional insights

For small instances, all environments behave as expected, that is, simulated makespan follows the Cloud’s behavior
when the instance number is increased. However, all simulated models failed to follow the Cloud’s behavior for
medium instances, although they behave as expected - they reduce the makespan when the number of instances is
increased.

In addition to this conclusion, let us analyse the Cloud’s instable behavior when the same number of resources are
used, but organised differently. That is, experiments 4 x small (horizontal scaling) vs 2 x medium (vertical scaling),
where both experiments use a total of four cores and 8GB RAM. Simulation shows smaller average makespan for
horizontal scaling, while the cloud provides smaller average makespan for vertical scaling. This insight opens new
research challenges for simulating multi-tenant execution of tasks in a single instance, or known as task interference.
Probably this is one of the reasons why simulation failed to follow Cloud’s behavior for experiments with medium
instances.

9.3. Distribution of noise

The distribution function of makespan can explain why simulations based on normal distribution provides worse
results for medium instance experiments. Let us discuss this paradox. Fig. 10 presents the distribution of both test
experiments (four medium and four small) presented in Fig. 2a, by grouping all points to the nearest even number
of seconds. We observe that both distributions are similar to normal distribution, but still, they are far from ideal
symmetric curve. The distribution function of small instances is closer to the ideal and its mean value divides the
cumulative probability function to 0.49 and 0.51. However, the distribution function of medium instances differs more
than the ideal normal distribution and its mean value divides the cumulative distribution function to 0.44 and 0.56.
It is also more discrepant, since one result was 30 seconds more than the mean value. As explained in the previous
subsection, one of possible reasons is the task interference, which increases the instability and unpredictability even
more. We can conclude that the instance type impacts differently on the performance instability on the same Cloud
environment. Additionally, the Kolmogorov-Smirnov (KS) test shows that medium instance fails the test to be a
normal distribution, with KS p-value p = 0.01 < 0.05, while the small instance complies with a normal distribution
with p = 0.96, with a confidence of 85.48% according to the Anderson-Darling normality test.

9.4. Application domain

This subsection discusses about the applicability of our approach for various Cloud or workflow types.

9.4.1. Public or private Clouds
Cloud computing is the latest paradigm of distributed systems, and as such, it is trying to be fully transparent to

users, i.e. to hide all internal architectures and organisations and all internal administrative and maintenance processes
[32]. Therefore, our Cloud noisiness approach consists in observing the Cloud as a black box without going into details

16

about its architecture and behavior. This is especially emphasised for the commercial Cloud providers that usually try
to hide the internal architecture of their Clouds and make it fully transparent to their customers.

In summary, the Cloud noisiness approach is applicable for both, the commercial and private on-site Clouds,
with the trade-off of some cost for learning the behavior. Nevertheless, using parameters that are learned with other
applications, in different time period, with different heterogeneity factor will probably lead to wrongly simulation. The
results show that the Cloud instability mostly depends on the instance type, much less on the number of that instance,
and neglectable dependence on the workflow’s parallel section size. This fact reduces the experiments necessary in
the learning phase, i.e., a user should execute smaller workflows that will finish faster and thus cheaper.

We must note that, still, due to very complex and uncertain Cloud architecture that changes its behavior during the
periods of time [14, 15], the accuracy and precision of each model could be slightly reduced. However, by repeating
the learning phase users can again improve the accuracy of our model compared to the latest Cloud’s behavior.

9.4.2. Workflow types
Workflows can be represented as a directed acyclic graph with three main types of complexities: computational,

I/O and bandwidth. The chosen workflow in our experiments consists of various ratios of computational complexity on
one side, and I/O and bandwidth on other side. With this, we wanted to have multiplicity of these three complexities in
order to cover different types of distributed workflow applications, with various tasks within, such as latency sensitive,
I/O and throughput oriented, and computational-intensive.

10. Conclusion and future work

This paper presents a new model and methodology for noising the runtime of a workflow tasks while its execution
is simulated in order to behave as the real cloud instable performance environment. The series of experiments and
many repetitive test cases show that our model improves the inaccuracy of up to 59 times compared to the basic
simulation without adding any noise.

Using our generic model, Cloud providers can offer a Simulation-as-a-Service to their customers after learning
how their Clouds behave for specific workflow executions. The noising model and methodology can be implemented
in each simulator in order to act more instable and as close as each Cloud. With this realistic simulation, the IT
managers can predict the inaccuracy about workflow execution more reliably in order to meet the cost and deadline
constraints.

Since the workflow’s parallel section does not impact on the makespan’s instability, it can be neglected in further
experiments in order to save resources, time, energy cost etc. Our sensitivity analysis shows that we can reduce the
number of experiments and their repetitions in learning phase. That is, we need only 20% of total number of test cases
in order to achieve the inaccuracy up to 12%. This makes our model to be a generic and independent of workflow
application type (parallel section size) and instance number that are used.

Our model and methodology improve the simulator’s accuracy for almost all instance types and number of in-
stances. The simulation makespan’s inaccuracy is up to 11.5% for small instance type, while up to 35% for medium
ones. In order to improve the accuracy for simulating instances with multiple vCPUs, such as medium or large
instances, we will extend our model and consider additionally file transfers instability. Especially for file transfer
intensive workflows, such as Montage [26], this extension could have huge impact on the workflow makespan.

Finally, while other approaches configure the simulator with the values of Cloud parameters, our model sees the
Cloud as a black box and configures the simulator considering the values of executions in learning phase. Nevertheless,
up to now, all approaches introduce a static noise. According to our best knowledge, no simulator exist that will
dynamically change its model during the time, as this is very difficult to achieve. Therefore, we plan to extend our
GroudSim simulator to dynamically change its behavior like a real Cloud.

References

[1] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, J. Good, On the use of cloud computing for scientific workflows, in:
eScience, 2008. eScience ’08. IEEE Fourth International Conference on, 2008, pp. 640–645. doi:10.1109/eScience.2008.167.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of
cloud computing, Commun. ACM 53 (4) (2010) 50–58.

17

http://dx.doi.org/10.1109/eScience.2008.167

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, Above the
clouds: A berkeley view of cloud computing, Tech. rep., University of California at Berkeley (February 2009).
URL http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html

[4] M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, Cost- and deadline-constrained provisioning for scientific workflow ensembles in iaas
clouds, in: Proc. of the Int. Conf. on HPC, Networking, Storage and Analysis, SC ’12, 2012, pp. 1–11.

[5] A. O. Ayodele, J. Rao, T. E. Boult, Performance measurement and interference profiling in multi-tenant clouds, in: Cloud Computing
(CLOUD), 2015 IEEE 8th Int. Conf. on, 2015, pp. 941–949. doi:10.1109/CLOUD.2015.128.

[6] E. N. Alkhanak, S. P. Lee, R. Rezaei, R. M. Parizi, Cost optimization approaches for scientific workflow scheduling in cloud and grid
computing: A review, classifications, and open issues, Journal of Systems and Software 113 (2016) 1 – 26.

[7] Open-source simulators for cloud computing: Comparative study and challenging issues, Simulation Modelling Practice and Theory 58, Part
2 (2015) 239 – 254, special issue on Cloud Simulation. doi:http://dx.doi.org/10.1016/j.simpat.2015.06.002.

[8] A. Tchernykh, U. Schwiegelsohn, V. Alexandrov, E. ghazali Talbi, Towards understanding uncertainty in cloud computing resource provi-
sioning, Procedia Computer Science 51 (2015) 1772 – 1781, int. Conf. on Computational Science, 2015.

[9] F. Wu, Q. Wu, Y. Tan, Workflow scheduling in cloud: a survey, The Journal of Supercomputing 71 (9) (2015) 3373–3418. doi:10.1007/
s11227-015-1438-4.

[10] A. Basu, S. Fleming, J. Stanier, S. Naicken, I. Wakeman, V. K. Gurbani, The state of peer-to-peer network simulators, ACM Comput. Surv.
45 (4) (2013) 46:1–46:25.

[11] ISO, ISO 5725:1994.
URL https://www.iso.org/obp/ui/#iso:std:11833:en

[12] J. Dejun, G. Pierre, C.-H. Chi, Service-oriented computing. icsoc/servicewave 2009 workshops: International workshops, icsoc/servicewave
2009, stockholm, sweden, november 23-27, 2009, revised selected papers, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, Ch. EC2
Performance Analysis for Resource Provisioning of Service-Oriented Applications, pp. 197–207.

[13] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. J. Wasserman, N. J. Wright, Performance analysis of high
performance computing applications on the amazon web services cloud, in: Cloud Computing Technology and Science (CloudCom), 2010
IEEE Second International Conference on, 2010, pp. 159–168. doi:10.1109/CloudCom.2010.69.

[14] J. Schad, J. Dittrich, J.-A. Quiané-Ruiz, Runtime measurements in the cloud: Observing, analyzing, and reducing variance, Proc. VLDB
Endow. 3 (1-2) (2010) 460–471.

[15] A. Iosup, N. Yigitbasi, D. Epema, On the performance variability of production cloud services, in: Cluster, Cloud and Grid Computing
(CCGrid), 2011 11th IEEE/ACM International Symposium on, 2011, pp. 104–113. doi:10.1109/CCGrid.2011.22.

[16] R. Buyya, M. Murshed, Gridsim: A toolkit for the modeling and simulation of distributed resource management and scheduling for grid
computing, Concurrency and computation: practice and experience 14 (13-15) (2002) 1175–1220.

[17] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, R. Buyya, CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms, Software: Practice and Experience 41 (1) (2011) 23–50.

[18] W. Chen, E. Deelman, Workflowsim: A toolkit for simulating scientific workflows in distributed environments, in: E-Science (e-Science),
2012 IEEE 8th International Conference on, 2012, pp. 1–8.

[19] B. Wickremasinghe, R. N. Calheiros, R. Buyya, Cloudanalyst: A cloudsim-based visual modeller for analysing cloud computing environ-
ments and applications, in: 2010 24th IEEE International Conference on Advanced Information Networking and Applications, 2010, pp.
446–452.

[20] W. Depoorter, N. De Moor, K. Vanmechelen, J. Broeckhove, Scalability of grid simulators: An evaluation, in: E. Luque, T. Margalef,
D. Benı́tez (Eds.), Euro-Par 2008 – Parallel Processing: 14th International Euro-Par Conference, Las Palmas de Gran Canaria, Spain, August
26-29, 2008. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 544–553.

[21] B. Donassolo, H. Casanova, A. Legrand, P. Velho, Fast and scalable simulation of volunteer computing systems using simgrid, in: Proceedings
of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC ’10, ACM, 2010, pp. 605–612.

[22] H. Casanova, A. Legrand, M. Quinson, SimGrid: A generic framework for large-scale distributed experiments, in: Computer Modeling and
Simulation, 2008. UKSIM 2008. Tenth International Conference on, 2008, pp. 126–131.

[23] S. Ostermann, K. Plankensteiner, R. Prodan, T. Fahringer, Groudsim: An event-based simulation framework for computational grids and
clouds., in: M. R. Guarracino, F. Vivien, J. L. Trff, M. Cannataro, M. Danelutto, A. Hast, F. Perla, A. Knpfer, B. D. Martino, M. Alexander
(Eds.), Euro-Par Workshops, Lecture Notes in Computer Science, Springer, pp. 305–313.

[24] H. Casanova, A. Giersch, A. Legrand, M. Quinson, F. Suter, Versatile, scalable, and accurate simulation of distributed applications and
platforms, Journal of Parallel and Distributed Computing 74 (10) (2014) 2899 – 2917.

[25] A. Nuñez, J. L. Vázquez-Poletti, A. C. Caminero, J. Carretero, I. M. Llorente, Design of a New Cloud Computing Simulation Platform,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 582–593.

[26] M. Bux, U. Leser, Dynamiccloudsim: Simulating heterogeneity in computational clouds, Future Generation Computer Systems 46 (2015) 85
– 99.

[27] S. Di, F. Cappello, Gloudsim: Google trace based cloud simulator with virtual machines, Softw. Pract. Exper. 45 (11) (2015) 1571–1590.
[28] D. Poola, S. Garg, R. Buyya, Y. Yang, K. Ramamohanarao, Robust scheduling of scientific workflows with deadline and budget constraints in

clouds, in: Advanced Information Networking and Applications, 2014 IEEE Int. Conf. on, 2014, pp. 858–865. doi:10.1109/AINA.2014.
105.

[29] S. Ostermann, R. Prodan, T. Fahringer, Extending grids with cloud resource management for scientific computing, in: Grid Computing, 2009
10th IEEE/ACM International Conference on, IEEE, 2009, pp. 42–49.

[30] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, Wien2k, An augmented plane wave+ local orbitals program for calculating crystal
properties.

[31] A. M. Sampaio, J. G. Barbosa, R. Prodan, Piasa: A power and interference aware resource management strategy for heterogeneous workloads
in cloud data centers, Simulation Modelling Practice and Theory 57 (2015) 142 – 160. doi:https://doi.org/10.1016/j.simpat.

2015.07.002.

18

http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
http://dx.doi.org/10.1109/CLOUD.2015.128
http://dx.doi.org/http://dx.doi.org/10.1016/j.simpat.2015.06.002
http://dx.doi.org/10.1007/s11227-015-1438-4
http://dx.doi.org/10.1007/s11227-015-1438-4
https://www.iso.org/obp/ui/#iso:std:11833:en
https://www.iso.org/obp/ui/#iso:std:11833:en
http://dx.doi.org/10.1109/CloudCom.2010.69
http://dx.doi.org/10.1109/CCGrid.2011.22
http://dx.doi.org/10.1109/AINA.2014.105
http://dx.doi.org/10.1109/AINA.2014.105
http://www.sciencedirect.com/science/article/pii/S1569190X15001069
http://www.sciencedirect.com/science/article/pii/S1569190X15001069
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2015.07.002
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2015.07.002

URL http://www.sciencedirect.com/science/article/pii/S1569190X15001069

[32] A. S. Tanenbaum, M. Van Steen, Distributed systems, 2nd Edition, Prentice-Hall, 2007.

19

http://www.sciencedirect.com/science/article/pii/S1569190X15001069

	Introduction
	Related Work
	Cloud performance instability
	Simulators

	Background
	Workflow description
	Cloud resource and scheduling

	Theoretical Analysis
	Unstable performance in Cloud
	Performance instability parameters definitions
	Simulation inaccuracy

	Modeling the noising
	Tasks noisiness within a workflow
	Environment noisiness
	Putting it all together: Modeling the noise for the task runtime

	Process of Noising
	Architecture
	Learning Phase
	Configuration Phase

	Case study

	Evaluation
	Testing methodology
	Corollary of tasks' runtime noising: noise of the makespan
	WIEN2k/13
	WIEN2k/44

	Sensitivity Analysis
	Determine the minimum number of workflow executions (test cases) per experiment
	Determine minimum number of Cloud experiments

	Discussion
	Strength of the model
	Additional insights
	Distribution of noise
	Application domain
	Public or private Clouds
	Workflow types

	Conclusion and future work

