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ABSTRACT

Carbon stock in tree biomass can be quantified directly by cutting and weighing trees. It is assumed that 50% 
of  the dry weight of  biomass consists of  carbon. This direct measurement is the most accurate method, however 
for large areas it is considered time consuming and costly. Remote sensing has been proven to be an important 
tool for mapping and monitoring carbon stock from landscape to global scale in order to support forest 
management and policy practices. The study aimed to (1) develop regression models for estimating carbon stock 
of  pine forests using field measurement and remotely sensed data; and (2) quantify soil carbon stock under pine 
forests using field measurement. The study was conducted in Kedung Bulus sub-watershed, Gombong - Central 
Java. The derived data from Satellite Probatoire d'Observation de la Terre (SPOT) included spectral band 1, 2, 3, and 4, 
Normalized Differences Vegetation Index (NDVI), and Principle Component Analysis (PCA) images. These 
data were integrated with field measurement to develop models. Soil samples were collected by augering for every 
20 cm until a depth of  100 cm. The potential of  remote sensing to estimate carbon stock was shown by the strong 
correlation between multiple bands of  SPOT (band 2 , 3; band 1, 2, 3; band 1, 3, 4; and band 1, 2, 3, 4) and carbon 
stock with r = 0.76, PCA (PC1, PC2, PC3) and carbon stock with r =  0.73. The role of  pine forest to reduce CO  2

in the atmosphere was demonstrated by the amount of  carbon in the tree and the soil. Carbon stock in the tree 
-1 -1

biomass varied from 26 to 206 Mg Cha  and in the soil under pine forest ranged from 85 to 194 Mg Cha .  

Keywords: Remote sensing, carbon stock, field measurement
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I.   INTRODUCTION

Carbon stock assessment in a forest ecosystem 
is necessary for many applications, from 
conservation of  land productivity to emission 
mitigation of  CO  purposes. Carbon stock in tree 2

biomass can be assessed using a destructive 
method or non-destructive methods, such as 
allometric equations or models based on remote 
sensing.  Direct measurement through destructive 
sampling can be conducted by felling and 
weighing tree biomass and assuming that 50% of  
the dry biomass composed by carbon organic 
(Intergovernmental Panel on Climate Change/ 
IPCC, 2003).

Direct measurement of  carbon stock in tree 
biomass is considered impractical for large areas 

(Gibbs et al., 2004). In this regard, remote sensing 
can be used to estimate tree biomass for landscape 
or broader levels. Remotely sensed data provide 
continuos information, cover large area, and 
objective data (Foody et al., 2003; Rosenqvist et al., 
2003). A common method to assess above-
ground biomass (AGB) or carbon stock in tree 
biomass using remote sensing is by developing a 
regression model between extracted values from a 
remote sensing image and AGB or tree 
parameters from field measurement. The 
developed model, then used to predict AGB for 
other trees having similar characteristics to those 
of  the trees used to develop the regression model. 
The extracted values are considered as 
independent variable and can be extracted from a 
single band, vegetation index, or image 
transformation.

Steininger (2000) reported that spectral band 
5 (middle infrared spectrum) of  Landsat TM had a 
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strong correlation with above-ground biomass in 
Brazilian forests. While Tangki and Chappell 
(2008) observed that radiance of  band 4 (near 
infrared) or band 5 of  Landsat TM image can be 
used to estimate above-ground biomass in 
Dipter ocar p  forest.  Simple and advanced 
vegetation indices have been developed to predict 
carbon stock in tree biomass. A simple vegetation 
index such as normalized difference vegetation 
index (NDVI) is frequently applied to estimate 
forest stand parameters or AGB.

In addi t ion to vegetat ion indices,  a 
transformation technique such as Principal 
Component Analysis (PCA) is applied to estimate 
tree biomass. The purpose of  this transformation 
is to compress all of  the information contained in 
an original n-band data set into fewer than n “new 
bands” (Lillesand et al., 2004). The new bands are 
then used instead of  the original data. Principal 
component image data values are simply linear 
combinations of  the original data values 
multiplied by the appropriate transformation 
coefficients. These coefficients are statistical 
quantities known as eigenvectors or principal 
c omponen t s  which are  der ived from the 
variance/covariance matrix of  the original image 
data (Lillesand et al., 2004). In other words, 
pr inc ipa l  component  image is  a  l inear 
combination of  the original data and the 
eigenvector on a pixel-by-pixel basis throughout 
the image. Image transformation using PCA was 
successfully applied by Lu et al. (2004) for biomass 
estimation in Brazilian forest. It was observed that 
PC1 had strong correlation with above-ground 
biomass (Lu et al., 2004).

Although all the studies mentioned above 
reported that independent variables derived from 
remotely sensed data had strong correlation with 
above-ground biomass, however, the models were 
not validated. Transferability of  the models to 
other study areas is uncertain. Therefore, in this 
study we  developed regression models followed 
by validation using independent data set.

Besides quantifying carbon stock in tree 
biomass, assessment on soil organic carbon is 
necessary because soil can also be used as a carbon 
sinks.  In addition, soil is an important source of  
nutrient and as media for crops and forests 
growth (Harrison et al., 2011). Surface and sub-
surface soils are essential to store organic carbon; 

however, most study examined organic carbon 
only in surface horizon. The potential of  sub-
surface soil to sequester carbon was found by 
Lorenz et al. (2011). They reported that soil under 
coniferous forest can store organic carbon around 
76%.

The purpose of  this study are (1) to develop 
regression models for estimating carbon stock of  
pine forests using field measurement and 
remotely sensed data; and (2) to quantify soil 
carbon stock under pine forests using field 
measurement. In this study, we applied a single 
band, NDVI, and PCA to estimate carbon stock in 
tree biomass.  In addit ion,  mult i  bands 
combination are also used in order to improve the 
accuracy of  carbon stock estimation.

II. MATERIAL AND METHOD

A. Study Area and Ground Data Collection

 The study was conducted in Kedung Bulus 
sub-watershed in Gombong, Central Java. The 
location lies between 336000 mE - 345000 mE  
and 9162500 mS - 9170000 mS. The forest is 
dominated by pine (Pinus merkusii) with various 
ages, from 4 to 37 years. Soil in the study area are 
association of  Distropets, Tropudults, and 
Troportents. Rainfall recorded in Somagede 
climate station from 2009 to 2012 showed that 

-1the mean annual rainfall was 3202 mm yr , 
and the mean monthly rainfall ranged from 7 to 

-1628 mm month . Topographic is from undulating 
to rolling with gentle to very steep slopes Figure 1 
shows location of  the study area.
 A field measurement was conducted to collect 
the necessary data. A purposive sampling 
regarding to stand age was applied to allocate 31 
sample plots. The size of  the plot was 20 by 20 m. 
The DBH of  all of  the trees within each plot were 
measured. Twenty one plots were used for 
developing regression models and the rest were 
for validation. The diameter range and the 
number of  trees within each plot are presented in 
Table 1.
 

An allometric equation for pine forest 
(IPCC, 2003) was used to convert the DBH data 
from field measurement into above ground 
biomass. This equation was constructed from 137 
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Figure 1. Location of  the study area on SPOT 4 (black line is the boundary of  Kedung Bulus sub-
watershed)

Table 1. Characteristics of  the trees within each plot for training and validation of  the models

Training plot 

No Age (Year) 
Diameter (cm)  No of  tree 

per plot  Minimum  Maximum  Average  

 1 34 21.3  47.8  37.4  19

 2 34 23.6  47.4  35.2  15

 3 4 4.1  19.7  10.0  47

 4  34 25.5  47.5  40.1  14

 5 36 16.2  47.8  32.3  18

 6 11 5.4  31.2  15.7  36
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2
trees with DBH ranged from 0.6 to 56 cm, the R  
of  the equation was 0.98 (IPCC, 2003). The 
formula is:

2.84 2.84Y = 0.887 + [(10486 * (DBH) )/((DBH ) + 
 376907)] .............................................................   (1)

Where: 
Y  =  above-ground tree biomass dry in matter (kg)
DBH = diameter at breast height (cm)

 The above-ground biomass resulted from the 
allometric equation was converted to carbon 
stock by assuming that 50 % of  the biomass 
consisted of  carbon (IPCC, 2003).
 Soil samples were collected by augering for 
every 20 cm depth until 100 cm or less than 100 
cm when parent material was found. The samples 
were undertaken from 8 selected plots where the 
forest inventories were conducted. The soil 
organic matter was analyzed using Walkley and 
Black method in the laboratory.

B. Image Processing and Data Analysis

 A SPOT 4 image acquired in May 13 2008, 
path/row 291/365, was geo-rectified to the 
Universal Transverse Mercator (UTM) coordinate 
system with datum WGS 1984 and zone 49 South. 
This image was used to generate independent 
variables consisted of  spectral band 1 (green), 
band 2 (red), band 3 (near infrared), band 4 
(middle infrared), NDVI and PCA.
 Two types of  NDVI were generated using the 
following formula:

NDVI23 = (b2-b3)/(b2+b3) ............................. (2)
NDVI24 = (b2-b4)/(b2+b4) ............................. (3)

Where:
NDVI23 is normalized difference vegetation 
index derived from band 2 and band 3
NDVI24 is normalized difference vegetation 
index derived from band 2 and band 4

 For the PCA, Figure 2 shows that data along 
the direction of  the first component (axis I) have a 
greater variance or dynamic range than data 
plotted against either of  the original axes (band A 
and B).The data along the second principal 
component direction have less variance. This is a 
characteristic for all the principal component 
images. In general, the first principal component 
(PC1) includes the largest percentage of  the total 
scene succeeding components images (PC2, Pc3, 
….PCn) in which each contains a decreasing 
percentage of  scene variance.
 To reduce error from GPS reading and geo-
referencing, the independent variables were the 
mean of  the extracted values from 3 x 3 pixels 
(Austin et al., 2003; Lucas et al., 2006). 
 Prior developing the regression models, the 
AGB data were tested for the normality (Figure 3). 
Simple and multiple regression models were 
developed to examine the correlations between 
dependent var iable (carbon stock) and 
independent variable (spectral band of  SPOT 4 
and PCA) using the training data. Every model 
was cross validated using an independent data 
set (n=10).  

Figure 2.  Rotated coordinates axes used in principal component analyses
(Source: Lillesand et al., 2004)
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III. RESULT AND DISCUSSION

A. Aboveground Carbon Stock Estimation 
Using Remotely Sensed Data and Field 
Measurements

 Based on the computation using the IPCC 
(2003)'s allometric equation, the estimated 
aboveground carbon stocks in the plot vary from 

-126 to 206 Mg Cha  (Table 2). 

 The estimated carbon stocks from plot 
measurements were assumed to be the measured 
values and then these were correlated with 
extracted values of  the SPOT image. Table 3 
presents regression models between independent 
(remotely sensed data) and dependent (carbon 
stock in tree biomass) variables. For a single band, 
near infrared band (b3) of  SPOT 4 shows the 
highest correlation with carbon stock in tree 
biomass, while PC3 and PC2 do not correlate with 

carbon in tree biomass.  In the near infrared 
spectrum region, vegetation provides the 
strongest reflectance that can be captured by the 
sensor. Chlorophyll content reflects most of  the 
near infrared spectrum. Moreover, chlorophyll 
content of  vegetation represents the canopy 
volume. This phenomenon is in agreement with 
research conducted by Tangki and Campell (2008) 
who found a strong relationship between above-
ground biomass with near infrared band of  
Landsat-5 TM.
 Multiple bands combination tends to slightly 
improve correlation between the remotely sensed 
data with the carbon stock in tree biomass. 
Multiple bands combinations involving the near 
infrared (e.g. b1,3; b2,3; b1,2,3; b2,3,4; and 
b1,2,3,4) provide higher correlation compared to 
the other combinations. Similar results are 
obtained by Basuki et al. (2012). Regression 

Figure 3. Normality test for the training data (n=21)

Table 2. The aboveground C-stock estimated using the IPCC (2003)'s allometric equation in the 21 
points for modeling

Plot no. 
Aboveground 

C-stock  
-1(Mg C ha ) 

Plot no.  
Aboveground  

C-stock   
-1(Mg C ha ) 

Plot no.  
Aboveground  

C-stock   
-1(Mg C ha )  

1 164.7 8 93.1  15  118.1  
2 114.2 9 116.6  16  189.6  
3 27.6 10 70.5  17  63.5  
4 140.0 11 104.0  18  206.4  
5 120.5 12 140.5  19  127.5  
6 25.9 13 109.0  20  114.3  
7 104.7 14 83.2  21  51.2  

Carbon Stock Assessment in Pine Forest of  Kedung Bulus Sub-watershed (Gombong District) using ..... (Tyas Mutiara Basuki et al.)
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models using multi bands combinations increased 
the coefficient correlation of  the model because 
every band complements to each other.
 The vegetation indices (NDVI) derived from 
red and near infrared bands provide higher 
correlation with carbon stock than NDVI derived 
from red and middle infrared bands (Table 3). A 
possible explanation for this result is that in the 
infrared region vegetation has higher reflectance 
than in the middle red region. As expected, PC1 
provides the highest correlation with carbon stock 
in tree biomass compared to PC2 and PC3. This 
condition is because the data have been 
compressed and presented in PC1. A multiple 
combination of  PC 1, 2, and 3 does not 
significantly improve the Pearson correlation 
(Table 3) because the PC 2 and 3 do not have 
correlation with the carbon stock in tree biomass.. 
The highest correlation between PC1 and AGB 
compared to PC2, PC3 and AGB is also found by 
Lu et al. (2004) in Amazonian forest in Brazil.

B. Validation of  Regression Models
 Regression models having Pearson correlation  
0.75 and the model based on PC 1, 2, and 3 were 
applied to  the independent data set for validation. 

Figure 4 shows the measured and the predicted of  
carbon stock in the tree biomass. The 1 - 1 line is 
used to examine whether predicted values are 
higher or lower than the measured carbon stock. 
Although Pearson correlation of  the regression 
model based on PC1, 2, and 3 is slightly lower than 
that of  the multiple bands combinations using 
band 3 (Table 3). However, validation using an 
independent data set suggests that the model 
based on the PC1, 2, and 3 is more stable. This is 
shown by the Pearson correlation (r = 0.63) 
between the measured and the predicted carbon 
as presented in Figure 4, it means that this model 
more applicable than the others.
 The correlation between the carbon stock and 
the independent variables (spectral band of  SPOT 
imagery, NDVI, and PC) may be improved by 
additional sample plots and topographic 
correction. In a rugged  terrain, a topographic 
correction is needed because a high variation in 
the reflectance response for similar vegetation 
condition (Riao et  al., 2003). However, Tokola et 
al. (2001) observed that a simple non-Lambertian 
methood could not be applied to normalize 
topographic effects and significantly improve the 
accuracy of  AGB estimation.

Table 3. Pearson correlation between carbon stock in tree biomass and a single band or multiple bands 
combinations of  SPOT 4 or PCA using 21 training data

No Regression model Pearson correlation  

1 Y = 259.81 – 1.47*b1  0.38  
2 Y = 274.22 – 5.52*b2  0.69  
3 Y = 534.27 – 8.62*b3 0.73  
4 Y = 252.20 – 2.07*b4 0.68  
5 Y =325.00 – 0.62*b1 – 5.08*b2 0.71  
6 Y = 542.20 – 0.21*b1 – 8.33*b3 0.75  
7 Y = 304.28 – 0.62*b1 – 1.90*b4 0.70  
8 Y = 782.27 + 6.21*b2 – 17.41*b3  0.76  
9 Y = 274.02 – 3.21*b2 – 1.00*b4 0.71  
10 Y = 512.82 – 7.88*b3 – 0.21*b4 0.74  
11 Y = 807.36 + 0.19*b1 + 7.02*b2 -18.80*b3  0.76  
12 Y = 319.82 -0.56*b1 -3.03*b2 -0.90*b4 0.72  
13 Y = 758.24 + 6.27*b1 -16.59*b3 – 0.27*b4 0.76  
14 Y = 783.13 + 0.17*b1 + 6.98*b2 -17.90*b3 – 0.23*b4  0.76  
15 Y = -39.80 – 594.56*NDVI23  0.64  
16 Y = 164.84 + 143.00*NDVI24  0.14  
17 Y = 332.73 – 1.89*PC1 0.71  
18 Y = 103.51 – 0.09*PC2 0.02  
19 Y = 112.36 – 0.15*PC3 0.01  
20 Y = 371.29 – 1.97*PC1 – 0.51*PC2 – 2.48*PC3 0.73  

Remarks:
Y = Predicted carbon stock in above-ground tree biomass
b1, b2, b3, b4 = retrieval values of  b1, b2, b3, and b4 of  SPOT imagery
NDVI = Normalized Difference Vegetation Index
PC = Principle Component

Journal of  Forestry Research Vol. 10 No. 1, July 2013: 21-30



27

Figure 4. The measured vs the predicted carbon stock in tree biomass (Mg C/ha) using different 
independent variables applied to the independent data (10 plots). The independent variables 
are: b1,3; b2,3; b1,2,3; b2,3,4; b1,2,3,4; PC1,2,3

C. Soil Carbon Stocks

 Carbon stocks in the soil under Pine forest vary 
from one plot to the othe  (Table 4). The amount  rs  
of  carbon stocks range from 85 to 194 . -1Mg C ha
This is somewhat lower than SOC found by 

 

Loaiza et al. (2010) under pine plantation in  

Brazil. The mean SOC under pine forest at 25 cm 
depth was 92.6  (Loaiza et al., 2010), -1Mg C ha
while in the current study SOC ranges from 18 to 
47 .-1Mg C ha

Carbon Stock Assessment in Pine Forest of  Kedung Bulus Sub-watershed (Gombong District) using ..... (Tyas Mutiara Basuki et al.)
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Table 4. Soil organic carbon

No The age of  
pine stand 

(year) 

Soil depth 
(cm) 

Soil organic carbon  
-1(Mg C ha )

1. 34   0   –   20 cm 20.50 
  20   –   40 cm 18.50 
  40   –   60 cm 18.50 
  60   –   80 cm 12.75 
  80   –  100 cm 14.75 
  Total  85.00 
2. 34   0   –   20 cm 24.75 
  20   –   40 cm 34.25 
  40   –   60 cm 38.75 
  60   –   80 cm 26.00 
  80   –  100 cm 26.00 
  Total                     149.75 
3. 34   0   –   20 cm 30.00 
  20   –   40 cm 43.00 
  40   –   60 cm 47.25 
  60   –   80 cm 26.00 
  80   –  100 cm 47.50 
  Total                     193.75 
4. 36   0   –   20 cm 23.75 
  20   –   40 cm 23.25 
  40   –   60 cm 28.00 
  60   –   80 cm 19.25 
  80   –  100 cm 19.50 
  Total                     113.75 
5. 9   0   –   20 cm 18.00 
  20   –   40 cm 24.00 
  40   –   60 cm 21.75 
  60   –   80 cm 26.25 
  80   –  100 cm 17.50 
  Total                     107.50 
6. 21  0   –   20 cm 39.50 
  20   –   40 cm 34.25 
  40   –   60 cm 23.75 
  60   –   80 cm 30.00 
  80   –  100 cm 30.00 
  Total                     157.50 
7. 14   0   –   20 cm 47.00 
  20   –   40 cm 25.50 
  40   –   60 cm 21.50 
  60   –   80 cm 17.25 
  80   –  100 cm 10.75 
  Total                     122.00 
8. 25   0   –   20 cm 34.75 
  20   –   40 cm 34.25 
  40   –   60 cm 27.75 
  60   –   80 cm 30.00 
  Total                     126.75 
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 Our study showed that soil organic carbon 
under old stand (34-36 years old) was not always  
higher than that of  young one. Among the plots, 
the highest and the lowest soil carbon was found 
in 34 years pine forest (Table 4), this phenomenon 
could be caused by differences in biophysical 
conditions of  the plots. Regarding to differences 
of  soil organic carbon from one plot to the other 
could be caused by differences in soil texture, 
density of  the trees, and topographic condition 
(Lal, 2005).
 The potential of  soil to reduce CO  from the 2

atmosphere can be seen by the ratio of  carbon 
stock in tree biomass and in the soil which are 
more than 100%. This means the SOC higher than 
organic carbon in tree biomass(Table 5). As 
comparison, Loaiza et al. (2010) found that the 
ratio of  SOC at 50 cm depth to carbon stock in 
tree biomass was 169% in tropical pine forest in 
Brazil. In addition,  Allewell et al. (2009) stated that 
soil stores twice as much carbon as the 
atmosphere. Therefore maintaining soil 
productivity through conservation practices is 
essential to store organic carbon in soil since it is 
considered a slow renewable source (Harrison et 
al., 2011) and stabilizing organic carbon in soil 
horizons is essential to mitigate human-induced 
climate change (Lorenz et al., 2011). 

IV. CONCLUSION

 The study demonstrates the potential of  
remote sensing method to assess carbon stock of  
tree biomass. To achieve a higher accuracy of  the 
assessment, more sample plots which represent 
various ages of  the plantation, various amounts of  

biomass and biophysical conditions are needed. 
The study also highlights the potential role of  
forest soil for CO  mitigation. At a depth 100 cm, 2

forest soil can store more carbon than that of  
forest biomass.
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