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Abstract

Many authors have defined smells from their perspective. This document
attempts to provide a consolidated list of such definitions.

1. Definitions

1. Smells are certain structures in the code that suggest (sometimes they
scream for) the possibility of refactoring [5].

2. Code smells are a metaphor to describe patterns that are generally
associated with bad design and bad programming practices [19].

3. Code smells are indicators or symptoms of the possible presence of
design smells [12].

4. Code smells are implementation structures that negatively affect sys-
tem lifecycle properties, such as understandability, testability, extensi-
bility, and reusability; that is, code smells ultimately result in main-
tainability problems [6].

5. A “bad smell” describes a situation where there are hints that suggest
there can be a design problem [13].

6. We define design defects as solutions to recurring problems that gen-
erate negative consequences on the quality of object-oriented systems
[11].

7. Antipatterns are “poor” solutions to recurring implementation and de-
sign problems that impede the maintenance and evolution of programs
[9].

8. Anti-patterns are bad solutions to recurring design problems [4].

9. An anti-pattern is a commonly occurring solution to a recurring prob-
lem that will typically negatively impact code quality. Code smells are
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considered to be symptoms of anti-patterns and occur at source code
level [14].

10. Antipatterns are defined as patterns that appear obvious but are in-
effective or far from optimal in practice, representing worst practices
about how to structure and design an ontology [15].

11. Anti-patterns are “poor” solutions to recurring design and implemen-
tation problems [10].

12. Developers often introduce bad solutions, anti-patterns, to recurring
design problems in their systems and these anti-patterns lead to nega-
tive effects on code quality [7].

13. Linguistic antipatterns in software systems are recurring poor practices
in the naming, documentation, and choice of identifiers in the imple-
mentation of an entity, thus possibly impairing program understanding
[1].

14. Design smells are structures in the design that indicate violation of fun-
damental design principles and negatively impact design quality [18].

15. Code smells are indicators of deeper design problems that may cause
difficulties in the evolution of a software system [20].

16. Performance Antipatterns define bad practices that induce performance
problems, and their solutions [2].

17. Antipatterns are typically a commonly used set of design and coding
constructs which might appear intuitive initially, but eventually may
be detrimental to one or more aspects of the system [17].

18. Bad design practices at the code level are known as bad smells in the
literature [8].

19. Code smells — microstructures in the program —- have been used to
reveal surface indications of a design problem [3].

20. Configuration smells are the characteristics of a configuration program
or script that violate the recommended best practices and potentially
affect the programs quality in a negative way [16].
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[11] Moha, N., Guéhéneuc, Y., Duchien, L., Meur, A. L., 2010. DECOR: A
method for the specification and detection of code and design smells.
IEEE Trans. Software Eng. 36 (1), 20–36.
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