
Definitions of a Software Smell

Presented by Tushar Sharma and Diomidis Spinellis

Department of Management Science and Technology
Athens University of Economics and Business

{tushar,dds}@aueb.gr

Abstract

Many authors have defined smells from their perspective. This document
attempts to provide a consolidated list of such definitions.

1. Definitions

1. Smells are certain structures in the code that suggest (sometimes they
scream for) the possibility of refactoring [5].

2. Code smells are a metaphor to describe patterns that are generally
associated with bad design and bad programming practices [19].

3. Code smells are indicators or symptoms of the possible presence of
design smells [12].

4. Code smells are implementation structures that negatively affect sys-
tem lifecycle properties, such as understandability, testability, extensi-
bility, and reusability; that is, code smells ultimately result in main-
tainability problems [6].

5. A “bad smell” describes a situation where there are hints that suggest
there can be a design problem [13].

6. We define design defects as solutions to recurring problems that gen-
erate negative consequences on the quality of object-oriented systems
[11].

7. Antipatterns are “poor” solutions to recurring implementation and de-
sign problems that impede the maintenance and evolution of programs
[9].

8. Anti-patterns are bad solutions to recurring design problems [4].

9. An anti-pattern is a commonly occurring solution to a recurring prob-
lem that will typically negatively impact code quality. Code smells are

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ZENODO

https://core.ac.uk/display/144871806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


considered to be symptoms of anti-patterns and occur at source code
level [14].

10. Antipatterns are defined as patterns that appear obvious but are in-
effective or far from optimal in practice, representing worst practices
about how to structure and design an ontology [15].

11. Anti-patterns are “poor” solutions to recurring design and implemen-
tation problems [10].

12. Developers often introduce bad solutions, anti-patterns, to recurring
design problems in their systems and these anti-patterns lead to nega-
tive effects on code quality [7].

13. Linguistic antipatterns in software systems are recurring poor practices
in the naming, documentation, and choice of identifiers in the imple-
mentation of an entity, thus possibly impairing program understanding
[1].

14. Design smells are structures in the design that indicate violation of fun-
damental design principles and negatively impact design quality [18].

15. Code smells are indicators of deeper design problems that may cause
difficulties in the evolution of a software system [20].

16. Performance Antipatterns define bad practices that induce performance
problems, and their solutions [2].

17. Antipatterns are typically a commonly used set of design and coding
constructs which might appear intuitive initially, but eventually may
be detrimental to one or more aspects of the system [17].

18. Bad design practices at the code level are known as bad smells in the
literature [8].

19. Code smells — microstructures in the program —- have been used to
reveal surface indications of a design problem [3].

20. Configuration smells are the characteristics of a configuration program
or script that violate the recommended best practices and potentially
affect the programs quality in a negative way [16].

References

[1] Arnaoudova, V., Di Penta, M., Antoniol, G., Guéhéneuc, Y.-G., Mar.
2013. A New Family of Software Anti-patterns: Linguistic Anti-patterns.
In: CSMR ’13: Proceedings of the 2013 17th European Conference on
Software Maintenance and Reengineering. IEEE Computer Society, pp.
187–196.

2



[2] Cortellessa, V., Di Marco, A., Trubiani, C., Feb. 2014. An approach
for modeling and detecting software performance antipatterns based on
first-order logics. Software and Systems Modeling (SoSyM) 13 (1), 391–
432.

[3] da Silva Sousa, L., May 2016. Spotting design problems with smell ag-
glomerations. In: ICSE ’16: Proceedings of the 38th International Con-
ference on Software Engineering Companion. Pontifical Catholic Univer-
sity of Rio de Janeiro, ACM, pp. 863–866.

[4] Fourati, R., Bouassida, N., Abdallah, H. B., 2011. A Metric-Based Ap-
proach for Anti-pattern Detection in UML Designs. In: Computer and
Information Science 2011. Springer Berlin Heidelberg, pp. 17–33.

[5] Fowler, M., 1999. Refactoring: Improving the Design of Existing Pro-
grams, 1st Edition. Addison-Wesley Professional.

[6] Garcia, J., Popescu, D., Edwards, G., Medvidovic, N., 2009. Toward a
catalogue of architectural bad smells. In: Proceedings of the 5th Inter-
national Conference on the Quality of Software Architectures: Archi-
tectures for Adaptive Software Systems. QoSA ’09. Springer-Verlag, pp.
146–162.

[7] Jaafar, F., Guéhéneuc, Y.-G., Hamel, S., Khomh, F., 2013. Mining the
relationship between anti-patterns dependencies and fault-proneness. In:
Proceedings - Working Conference on Reverse Engineering, WCRE.
Ecole Polytechnique de Montreal, Montreal, Canada, IEEE, pp. 351–
360.

[8] Khan, Y. A., El-Attar, M., 2016. Using model transformation to refactor
use case models based on antipatterns. Information Systems Frontiers
18 (1), 171–204.

[9] Khomh, F., Vaucher, S., Guéhéneuc, Y.-G., Sahraoui, H., 2011. BD-
TEX: A GQM-based Bayesian approach for the detection of antipat-
terns. In: Journal of Systems and Software. Ecole Polytechnique de
Montreal, Montreal, Canada, pp. 559–572.

[10] Maiga, A., Ali, N., Bhattacharya, N., Sabané, A., Guéhéneuc, Y.-G.,
Antoniol, G., Aı̈meur, E., Sep. 2012. Support vector machines for anti-
pattern detection. In: ASE 2012: Proceedings of the 27th IEEE/ACM

3



International Conference on Automated Software Engineering. Polytech-
nic School of Montreal, ACM, pp. 278–281.

[11] Moha, N., Guéhéneuc, Y., Duchien, L., Meur, A. L., 2010. DECOR: A
method for the specification and detection of code and design smells.
IEEE Trans. Software Eng. 36 (1), 20–36.

[12] Moha, N., Guéhéneuc, Y.-G., 2007. Decor: a tool for the detection of de-
sign defects. In: ASE ’07: Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering. University
of Montreal, ACM, pp. 527–528.

[13] Pérez, J., Crespo, Y., 2009. Perspectives on automated correction of
bad smells. In: the joint international and annual ERCIM workshops.
Universidad de Valladolid, Valladolid, Spain, ACM Press, pp. 99–108.

[14] Peters, R., Zaidman, A., 2012. Evaluating the lifespan of code smells
using software repository mining. In: Proceedings of the 2012 16th Eu-
ropean Conference on Software Maintenance and Reengineering. CSMR
’12. IEEE Computer Society, pp. 411–416.

[15] Roussey, C., Corcho, O., Svab-Zamazal, O., Scharffe, F., Bernard, S.,
Nov. 2012. SPARQL-DL queries for antipattern detection. In: WOP’12:
Proceedings of the 3rd International Conference on Ontology Patterns -
Volume 929. Cemagref, CEUR-WS.org, pp. 85–96.

[16] Sharma, T., Fragkoulis, M., Spinellis, D., 2016. Does your configuration
code smell? In: Proceedings of the 13th International Workshop on
Mining Software Repositories. MSR’16. pp. 189–200.

[17] Sharma, V. S., Anwer, S., Jan. 2014. Performance antipatterns: Detec-
tion and evaluation of their effects in the cloud. In: Proceedings - 2014
IEEE International Conference on Services Computing, SCC 2014. Ac-
centure Services Pvt Ltd., India, Bangalore, India, IEEE, pp. 758–765.

[18] Suryanarayana, G., Samarthyam, G., Sharma, T., 2014. Refactoring for
Software Design Smells: Managing Technical Debt, 1st Edition. Morgan
Kaufmann.

4



[19] van Emden, E., Moonen, L., Oct 2012. Assuring software quality by
code smell detection. In: 2012 19th Working Conference on Reverse
Engineering.

[20] Yamashita, A., 2014. Assessing the capability of code smells to explain
maintenance problems: an empirical study combining quantitative and
qualitative data. Empirical Software Engineering 19 (4), 1111–1143.

5


