
Large-scale Offloading in the Internet of Things
Huber Flores, Xiang Su,

Vassilis Kostakos
University of Oulu

firstname.lastname@oulu.fi

Aaron Yi Ding
Technical University of Munich

aaron.ding@tum.de

Petteri Nurmi, Sasu Tarkoma
University of Helsinki

firstname.lastname@helsinki.fi

Pan Hui
HKUST

panhui@cse.ust.hk

Yong Li
Tsinghua University

liyong07@tsinghua.edu.cn

Abstract—Large-scale deployments of IoT devices are subject
to energy and performance issues. Fortunately, offloading is a
promising technique to enhance those aspects. However, several
problems still remain open regarding cloud deployment and
provisioning. In this paper, we address the problem of provi-
sioning offloading as a service in large-scale IoT deployments.
We design and develop an AutoScaler, an essential component
for our offloading architecture to handle offloading workload. In
addition, we also develop an offloading simulator to generate
dynamic offloading workload of multiple devices. With this
toolkit, we study the effect of task acceleration in different
cloud servers and analyze the capacity of several cloud servers
to handle multiple concurrent requests. We conduct multiple
experiments in a real testbed to evaluate the system and present
our experiences and lessons learned. From the results, we find
that the AutoScaler component introduces a very small overhead
of ≈150 milliseconds in the total response time of a request, which
is a fair price to pay to empower the offloading architectures
with multi-tenancy ability and dynamic horizontal scaling for
IoT scenarios.

Index Terms—Edge Computing; Mobile Cloud Computing;

I. INTRODUCTION

The Internet of Things (IoT) [1] is a computing paradigm
that envisions a future where any low-power device, e.g.,
smartphone, smartwatch, sensors, etc., is connected to the
Internet. The diversity of the devices, especially related to their
computational power and battery, raises complex challenges
on how to best utilize and run applications on the devices.
Offloading is one of the key techniques for improving the
resource usage (e.g., CPU, battery, storage) of low-powered
devices. In offloading, a device outsources the processing of
a task to a more powerful machine. To determine whether
offloading is beneficial, the device needs to weigh during
runtime the effort of executing an application locally and
compare that to the potential benefits of offloading it. The
cost of outsourcing the task is calculated by taking into
consideration multiple parameters of the system [2], e.g.,
network latency, data transfer size, remote server capabilities,
etc. The potential of the technique lies in the ability of aiding
the low power devices with their processing [3].

While previous research has addressed offloading in mobile
environments [4], currently the scaling of offloading into
large-scale IoT scenarios is understudied. Indeed, existing IoT
deployments are based on an ad-hoc approaches that cannot be
easily scaled or migrated to new environments. Furthermore,
there is a lack of standard platform that can be used for low-
power devices (Arduino and Android being most popular)
which hampers the development of offloading support into the
IoT domain. Moreover, most offloading architecture rely on
so-called neutral or heterogeneous execution models (see next

section), which do not support flexible code execution both
offline and online. IoT environments characterized by large
heterogeneity among the devices and uncertain connectivity
are better suited for homogeneous execution models that
allow transparent migration of computations between client
devices and cloud. Enabling support for homogeneous models,
however, requires instrumentation of the client devices, which
makes them difficult to scale compared with other architec-
tures. Especially difficult is to ensure horizontal scaling, i.e.,
support for varying amounts of traffic from a large volume of
client devices.

While offloading has been shown to be feasible on mobile
technologies, there are still several fundamental challenges
regarding cloud deployment and provisioning in real-world
environments. The present paper addresses one key challenge
in this process, the scaling of offloading support to large-scale
IoT environments. Previous research has proposed designating
one server per each device [5]. Such an approach is unrealistic
and inefficient considering the potentially vast amount of
devices that can operate in IoT environments. Thus, alter-
native solutions are required. Motivated by service-oriented
architectures, and in particular the Amazon Autoscale, we
design and develop an offloading architecture that integrates
an AutoScaler mechanism. The AutoScaler operates as an
interface between tasks arriving for offloading and compu-
tational resources available within the cloud by scheduling
tasks amongs the different cloud computing resources. We
also build an offloading simulator, which can emulate the
offloading patterns of multiple devices (offloading workload).
Since the adoption of Android for IoT devices is on the rise,
we design and develop our system based on Android system.
We show the feasibility of this approach by building a Dalvik-
x86 surrogate and performing benchmark experiments through
a real testbed in Amazon EC2, we study the capacity that an
offloading architecture has to handle offloading workload in
different scenarios. We find that our AutoScaler introduces a
small overhead in the total response time of an offloading
request, but this is negligible compared to the benefits of
having an offloading architecture with multi-tenancy ability
and dynamic horizontal scaling.

The rest of the paper is organized as follows. We introduce
the background about offloading in Section II. We then present
the design of our proposed offloading architecture, which
integrates our proposed AutoScaler component in Section III.
In Section IV, we evaluate the benefits obtained by leveraging
the AutoScaler component in a real testbed. In the light of
the results, we discuss the lessons learned and experiences in
which we highlight new directions for the design of future

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144870747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

offloading architectures supported by cloud computing in
Section V and conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we introduce the fundamentals of the of-
floading approach and cloud provisioning.

A. Offloading

Offloading is a technique that enables a low power device,
e.g., smartphone, wearable, to outsource the processing of a
task, e.g., code, service, job, etc., to a device with higher capa-
bilities and resources [3], [5], [6]. A task is opportunistically
outsourced from a device when in the presence of network
connectivity the device can reach the server at low latency
rates of transfer. However, offloading is not always beneficial
if the computational requirements are small compared to
communication costs (especially latency) and devices should
only offload when the benefits of offloading are significant
compared to cost of running the task on the device. The
ultimate goal of the technique is to reduce the overall amount
of processing of the device to extend battery life [7].

Multiple offloading models can be implemented in practice
as shown in Figure 1. We classify the models into three groups.
Firstly, (a) an homogeneous model, where the the Runtime
Environment (RE) of the device and the server are the same
and the code of the task is present in both locations. In this
model, the device does not depend on the cloud to execute
the task as it can execute the code when there is no network
connectivity. Naturally, when the device is connected to the
network and the context is suitable to offload [3], instead the
mobile can rely on its server counterpart to execute the task.
One key aspect of this model is the same RE in the device
and server that is necessary to encapsulate the application state
(AS) of the device, such that AS can be transferred in the
network and reconstructed in the cloud in order to execute
the task. Secondly, (b) an heterogeneous model, where both,
the device and cloud have different RE. Therefore, both have
a different implementation of the task. In this model, the
device also is independent of a server counterpart. However,
the device (typically) has a simpler implementation of the task
compared to the server, i.e., the device can execute the task
without network connectivity but result is not necessarily as
good. Moreover, in this model, only the input parameters of
the code are transferred in the communication. Thirdly, (c) a
neutral model, where the RE is not relevant when outsourcing
a task. The code of the task is uniquely located in the server,
but it can be called from a device. This means that the device
cannot provide independent functionality when there is no
network connectivity. Our work uses a homogeneous model
as it provides different code granulaties which aids to reduce
data transfer, e.g., Method, Thread, Class, etc.

B. Computational Provisioning

Cloud computing is a computing paradigm where scal-
able resources are provided on demand "as a service (aaS)"
over the Internet to users who need not have knowledge

Fig. 1: Implementation models of offloading in practice.

of, expertise in, or control over the cloud infrastructure that
supports them [8]. Cloud provisioning can occur at different
levels, where each level enables the user to interact with the
service at a certain granularity. The most common levels are
the infrastructure level (IaaS), platform level (PaaS) and the
software level (SaaS).

Computational provisioning for smart devices takes place
at infrastructure level through instances, which are physical
or virtualized servers associated to a specific type of re-
source [4]. An instance follows an utility computing model,
where consumers pay on the basis of their usage and type
preferences. The cost of the instance is proportional to its
type. The type of the instance is important as it determines
the acceleration in which a task is executed, which affects the
overall response time of the offloading request [9]. Moreover,
the type of the instance also defines its capacity to handle mul-
tiple offloading requests at once. Speeding up code execution
certainly depends on how code is written. However, higher
types of instances can process a task faster than lower ones
as higher types can rely on larger memory span and higher
parallelization in multiple processors.

Horizontal scaling is essential for large-scale offloading
scenarios as it enables cloud provisioning as a service to
support multi tenacity [8], [10], [11]. Besides research that
focuses on scaling up server to parallelize the code of com-
putational requests (i.e, vertical scaling) [12], we have not
found architectures that can scale horizontally to account
for different traffic volumes and varying number of clients.
This clearly can be seen as current frameworks do not take
into consideration the utility computing features of the cloud,
which is translated into server selection based on provisioning
cost [13]. In this paper we further expand the traditional cloud
offloading model to include an AutoScaler component that acts
as a load balancer for different computational resources.

III. LARGE-SCALE OFFLOADING FOR IOT
Usually an offloading system consists of two parts, a mobile

client and a server in the cloud. Such a model, however,
is not well suited for large-scale offloading, such as those
encountered in IoT environemnts, as it does not allow efficient
utilization and distribution of resources on the cloud end.
To address this challenge, in this section we present the
design and development of a novel offloading architecture.

The key novelty of our work is the integration of a Autoscaler
component, which as a gateway for offloading requests from
the clients and as a load balancer for computing resources
contributing to the cloud.

A. System overview

An overview of the system is presented in Figure 2a.
The system consists of three parts, back-end, front-end, and
load simulator. The back-end contains the servers that act
as surrogates. Each surrogate can be dynamically added or
removed (scale out). The front-end receives the incoming
requests and distributes them among the available surrogates.
The load simulator generates multiple offloading requests. As
shown in Figure 2b, each component has the same runtime
environment and the means for task reconstruction, which
includes APK files and compiled dependencies as JAR files.
We develop our system based on Android. The rest of the
section describes each component of our system1.

B. Implementation details

1) Back-end: Each surrogate of the back-end is a cus-
tomized Dalvik-x862. Dalvik is the virtual machine of Android
to execute dalvik bytecode. Dalvik-x86 is built by download-
ing and compiling the source code of Android Open Source
Project (AOSP) over the instance to target a x86 server
architecture, and removing the Applications and Application
Framework layers from the Android software architecture.

Our Dalvik-x86 is lighter when compared with other sur-
rogates used by other works, e.g., Android-x86. We reduced
the storage size required by our Dalvik-x86 surrogate in 40%.
Moreover, it does not activate any default processes from the
OS, e.g., Zygote, GUI Manager, etc, which are not needed
by the surrogate. The surrogate creates a dalvikvm process
in the host machine per each offloading request that needs
to be handled. The advantage of this approach is that when
an offloading request fails or gets stuck, it is possible to
troubleshoot the request by process id without restarting or
stopping the system.

Dalvik-x86 implements an executable script wrapper at the
core of libraries that boot the compiler. The wrapper provides
an interface to push APK files into the virtual machine, such
that the code inside of the APK can be executed. When the
server initiates, the available APK files (in a OS folder) are
pushed into the Dalvik-x86 as a process waiting for a request.
Each APK file can be instantiated multiple times and on
different ports. Thus, when a request to execute code reaches
the server, it is forwarded to any port that is listening.

When compared with the complete virtualization of the
mobile platform, the main benefit of our light design is that
the surrogate is released from the limitations imposed by the
mobile operating system, such as activating multiple instances
of the same application, or executing multiple applications
concurrently. The surrogate is stored as an image in the
cloud, and thus, the underlying resources can be dynamically

1https://github.com/mobile-cloud-computing/ScalingMobileCodeOffloading
2Released as public in Ireland region of Amazon EC2 as ami-ac8813df

allocated on demand to increase the throughput of the system.
This means that the server can increase the resources to handle
multiple Dalvik processes simultaneously (scale out) or to
speed up the execution of code (scale up).

2) AutoScaler (Front-end): The Autoscaler implements a
round robin scheduler to distribute the load among the avail-
able servers in the back-end. The AutoScaler contains a back-
end descriptor in JSON format, which contains per each server,
the information about where the apk files are located and the
available ports for offloading. The descriptor (Listing 1) is
updated when a server is added or removed. The descriptor
is loaded during runtime using GSON. The AutoScaler is
also able to allocate servers in the cloud via ec2-amitools of
Amazon. For simplicity, the allocation of servers is triggered
when the response time of the offloading workload surpasses
a pre-defined threshold.

Listing 1 Example of back-end descriptor in JSON format
{

"Chess_app": {
"Surrogate: 54.73.45.xxx": {

"ports": [
"6001",
"6002",
...
"600N"

],
"location": [

"/home/ubuntu/android-x86/"
]

}... others
},
"Nqueens_app": {

"Surrogate: 172.16.32.xxx": {
"ports": [

"5001",
...
"500N"

],
"location": [

"/home/ubuntu/dalvik-86/"
]

}... others
}

}

3) Simulator: To generate different loads of devices of-
floading to cloud, we have developed a simulator that creates
workload in two different operational modes, 1) concurrent
and 2) inter-arrival rate. The simulator is implemented using
Java reflection, which allows it to capture the details of
code invocation during runtime, e.g., name of the method,
parameters, etc, and to define customized parameters in the
request, e.g., type of acceleration. In the concurrent mode,
based on an input parameter n, the simulator creates n con-
current threads. Each of the thread offloads a task loaded
from a pool of available algorithms. Our simulator is equipped
with a minimax algorithm, which can be used within a chess
game application. The algorithm analyzes how the chess pieces
are located in the board, such that it can enumerate all the
possible moves and determine the best move to be executed.
Each thread depicts a device offloading a task to a remote
server. This mode is utilized to benchmark the instances of
the cloud. In an inter-arrival rate mode, the simulator takes as
parameter the number of devices (workload), the inter-arrival
time between the last and the next request that reaches the
system and the time that the workload is active or in other
words, the time of the experiment. This mode is utilized to
produce synthetic workload to the system.

(a) (b)

Fig. 2: Large-scale offloading system, (a) System overview, (b) Component overview

IV. EVALUATION AND RESULTS

To evaluate our system, we deployed the server side
and the AutoScaler in Amazon cloud (Ireland region /
eu-west-1). As cloud servers, we selected general pur-
pose instances (m1.small, m1.medium, m1.large, m3.medium,
m3.large, m3.xlarge, m3.2xlarge) and an optimized memory
instance (m2.4xlarge). We used these instances as they can
be launched on demand indefinitely. Other higher capabilities
instances, e.g., c3.8xlarge, require explicit request to the
provider to be launched multiple times by a single account.

A. Performance

Setup and methodology: — Since our system introduces the
AutoScaler component in the architecture. We explore first
how this new component influences the response time of an
offloading request. Thus, the goal of the experiment is to
demonstrate the response time of an offloading request that
uses our system.
Results, experiences, and lessons learned: — Timestamps are
taken across the system as the request is processed in each of
its components. Figure 3a models the response time Tresponse

of an offloading request. The response time consists of the
time that takes to connect from the device to the front-end
Tm−f , the time that takes to route from the front-end to a
particular surrogate Tf−b, the execution time of the code in
the surrogate Tcloud, the time that takes to send the result from
the surrogate to the front-end Tb−f , and finally, the time that
takes to send the result back from the front-end to the device
Tf−m. We assume that Tm−f = Tf−m and Tf−b = Tb−f are
equal as the same communication channel remains open both
ways until the operation finishes. In this context, we define
T1 = Tm−f+Tf−m and T2 = Tf−b+Tb−f . Thus, the response
time Tresponse = T1 + T2 + Tcloud.

Figure 3b shows the timestamps taken across the system. We
can observe that the extra time introduced by the front-end is
≈ 150 milliseconds and the total communication time T1+T2

is less than a second. Naturally, higher latency from mobile
to front-end can influence the communication time and vice-
versa, which impacts T1. T2 is less likely to change drastically
as the latency depicts the internal cloud communication, which
is wired between servers in the same private network. Finally,
the diagram shows that Tcloud is the dominant operation that

impacts the total response time. From Figure 3b, we can
observe that the total time of the code invocation in the cloud
can be decreased by adjusting the tradeoff between utilization
price and computational capabilities of the surrogate server.
In specific, Figure 3c shows the execution of a minimax algo-
rithm in different instance types. The input of the algorithm
is fixed to a specific state of the chessboard. For comparison
purposes, we also measure the execution effort of the same
algorithm on multiple devices. The execution of the algorithm
in other devices is ≈ 16 seconds for i9250 (Samsung Nexus),
≈ 14 for i9300 (Samsung Galaxy S3) and ≈ 29 seconds for
SWR50 (Sony SmartWatch 3).

B. Scalability

Setup and methodology: — The capabilities of a system
for handling multi-tenancy are crucial in an environment that
follows an utility computing model. Previous work about
offloading have proposed a one instance per mobile archi-
tecture [5], which is unrealistic in practice. The goal of this
experiment is to verify the capabilities of our system to handle
multiple active devices. As a result, we analyze the effect
of handling multiple offloading requests in different instance
types. We also measure the capacity of the AutoScaler to
distribute requests among the surrogates in the back-end.

Figure 4a illustrates the experimental setup, where R1 to
Rn requests reach the AutoScaler in order to be distributed
to the back-end based on instance type. To benchmark all the
surrogate types, we utilize our offloading simulator described
in Section III-B3. The simulator uses the minimax algorithm
to create the load of requests. The input of the algorithm is
fixed with the same specific state of the chessboard that yields
the results shown in Figure 3c.
Results, experiences, and lessons learned: — The capacity
of the AutoScaler is measured in terms of processing time of
the request, which depicts the time taken by the AutoScaler to
decide the surrogate to route the request. Since the AutoScaler
receives and distributes the incoming load of requests, it is
important to know the maximum capacity of the AutoScaler
before it turns into a bottleneck for the system. Usually, the
front-end is provided free of charge by the cloud vendor, e.g.,
Amazon autoscale. In our experimental setup, we assume that
the AutoScaler is a m3.xlarge instance. Figure 4b shows the

(a)

 0

 500

 1000

 1500

 2000

Tresponse T1 T2 Tcloud

T
im

e
[i

n
 m

il
li

se
co

n
d
s]

(b)

 1

 15

 45

SW
R
50

i9300

i9250

m
1.sm

all

m
1.m

edium

m
1.large

m
3.m

edium

m
3.large

m
3.xlarge

m
3.2xlarge

m
2.4xlarge

E
x

ec
u

ti
o

n
 t

im
e

[i
n

 s
ec

o
n

d
s] Processing-time

Communication-latency

(c)

Fig. 3: (a) Timestamps taken across the system in each of its components, (b) Actual times to handle the request in each
component, (b) Acceleration of a task based on instance types.

(a)

 50
 100
 150
 200
 250
 300

 0 50 100 150 200 250[i
n
 m

il
li

se
co

n
d
s]

[in units]

Surrogates = 1

 50
 100
 150
 200
 250
 300

 0 50 100 150 200 250[i
n
 m

il
li

se
co

n
d
s]

[in units]

Surrogates = 2

 50
 100
 150
 200
 250
 300

 0 50 100 150 200 250[i
n
 m

il
li

se
co

n
d
s]

[in units]

Surrogates = 3

 50
 100
 150
 200
 250
 300

 0 50 100 150 200 250[i
n
 m

il
li

se
co

n
d
s]

[in units]

Surrogates = 4

 50
 100
 150
 200
 250
 300

 0 50 100 150 200 250[i
n
 m

il
li

se
co

n
d
s]

[in units]

Surrogates = 5

 50
 100
 150
 200
 250
 300

 0 50 100 150 200 250[i
n
 m

il
li

se
co

n
d
s]

[in units]

Surrogates = 6

 50
 100
 150
 200
 250
 300

 0 50 100 150 200 250[i
n
 m

il
li

se
co

n
d
s]

[in units]

Surrogates = 7

(b)

 1

 10

 100

 2 4 6 8 10 14 20

R
es

p
o

n
se

 t
im

e
[i

n
 s

ec
o

n
d

s]

Number of concurrent mobile users

m3-medium
m3-large

m3-xlarge
m3-2xlarge
m2-4xlarge

(c)

Fig. 4: (a) Load of incoming offloading requests, (b) Extra overhead introduced by the AutoScaler to route the requests among
the multiple servers (1 to 7) in the back-end, (b) Number of active devices that are concurrently handled by an instance type.

number of requests that the AutoScaler can handle when facing
a load of 250 requests with an interarrival rate of three seconds.
The interarrival rate is the time between creating one and
the next request. From the result, we can observe that the
processing time to distribute requests remain in average ≈150
milliseconds even as the load increases.

On the other hand, unlike the AutoScaler, instances in the
back-end face higher CPU utilization caused by the processing
of the task. Offloading requests suffer from non-determinist
execution of code, which means that the processing time of
the request can vary abruptly based on different parameters,
e.g., input variability in the code. Thus, the requests cannot be
easily characterized. We conduct two different experiments to
measure the capabilities of the server to respond to multiple
requests. In the first experiment, we generate requests concur-
rently to a specific instance, and in the second, we generate
requests based on an interarrival rate of three seconds. We also
scale out gradually the servers in the second experiment to
demonstrate horizontal scaling from 1 to 7, which means that
servers are added on demand dynamically to the back-end. We
used as surrogates m3.2xlarge instances, because they are the
most powerful servers we can get without requesting explicitly
to the cloud provider.

Results of the first experiment are shown in Figure 4c,
which presents the number of concurrent requests that can
be offloaded to a specific instance. From the results, we can

observe that the response time of a request increases as the
number of users/CPU utilization augment. As a result, each
instance type has a maximum capacity to handle requests.
For example, from the diagram, we notice that a m3.xlarge
instance can handle up to six active requests while keeping
the total response time of the request below the actual time
required by the device to process the same operation. In
principle, the instance should be able to handle more requests.
However, the acceleration of tasks could fail in certain cases.
For example, when a m3.xlarge instance handles around 20
active devices, the processing time of the request increases up
to 17 seconds. Fortunately as shown in the figure, a higher
capability instance like m2.4xlarge can easily cope with such
capacity demand and response time requirements.

Results of the second experiment are shown in Figure 5.
Interestingly, the response time of the requests drops up to
15 seconds and remains at that level even when adding more
servers. Initially, we thought that the AutoScaler could become
a bottleneck. However, after a close inspection (Referring to
Figure 4b), we realize that the processing time of a request
increases as a server receives the requests at different points in
time. This means that unlike concurrent requests, the response
time of those requests that reach the system in long interarrival
are processed slowly by the server. This suggests that to
achieve short response time when handling multiple requests,
all the requests that reach the system must be scheduled by

the AutoScaler to be processed at once. Offloading requests
that contain code that can be parallelized can benefit from
this characteristic, such that a request is parallelized within
the same server instead of splitting it into multiple servers.

 14

 14.5

 15

 15.5

 16

 16.5

 17

 0 50 100 150 200 250

R
es

p
o

n
se

 t
im

e
[i

n
 s

ec
o

n
d

s]

Number of requests

(a) 1 surrogate

 14
 14.5

 15
 15.5

 16
 16.5

 17

 0 50 100 150 200 250

[i
n

 s
ec

o
n

d
s]

[in units]

Surrogates = 2

 14
 14.5

 15
 15.5

 16
 16.5

 17

 0 50 100 150 200 250

[i
n

 s
ec

o
n

d
s]

[in units]

Surrogates = 3

 14
 14.5

 15
 15.5

 16
 16.5

 17

 0 50 100 150 200 250

[i
n

 s
ec

o
n

d
s]

[in units]

Surrogates = 4

 14
 14.5

 15
 15.5

 16
 16.5

 17

 0 50 100 150 200 250

[i
n

 s
ec

o
n

d
s]

[in units]

Surrogates = 5

 14
 14.5

 15
 15.5

 16
 16.5

 17

 0 50 100 150 200 250

[i
n

 s
ec

o
n

d
s]

[in units]

Surrogates = 6

 14
 14.5

 15
 15.5

 16
 16.5

 17

 0 50 100 150 200 250

[i
n

 s
ec

o
n

d
s]

[in units]

Surrogates = 7

(b) 2 to 7 surrogates

Fig. 5: Response time of the requests when scaling horizon-
tally

V. DISCUSSION

Based on the results of our experimental testbed, we present
in this section the benefits, drawbacks and lessons learned for
scaling an offloading architecture.

A. Offloading in practice

Many mobile games implement resource intensive tasks
in smartphone devices, e.g., image processing. Our research
relies on a minimax algorithm where the execution is in
seconds. While it is arguable that our use case is not realistic
in practice as a smartphone requires the execution of tasks in
milliseconds, we can extrapolate several similar use cases to
an IoT environment.

• Let us consider a microcontroller, e.g., Arduino, which
analysis air samples to estimate pollution. Multiple sam-
ples can be taken to calculate an average pollution
estimation, which requires long processing. Instead, the
device could send the samples to the cloud, which will
perform the processing faster.

• By relying on a near infrared sensor, devices can scan
organic objects to detect its composition. Multiple ap-
plications are envision with this sensor embedded in a
smartphone, e.g., healthy diet app. By offloading the data
scanned by the sensor, the analysis time is improved.

As the IoT devices such as wearables are getting equipped
with more sophisticated sensors, e.g., air pollution sensor, near
infrared sensor, etc., we envision the need of processing tasks
that need long execution time in order to ensure accuracy.

B. Optimal resource allocation

Offloading architectures that scale (as a service) require
capacity planning policies to determine the right amount of
back-end servers, which are required to handle a particular
load of devices [14]. Moreover, since the acceleration of a task
depends on the type of the instance, the optimization should
be oriented to minimize provisioning costs while maximizing
the capacity of the system to handle requests. Definitively,
capacity is constrained by the response time of the request,

which cannot be longer than the processing time in the low-
power device. We leave the study of cost for our future work
as it requires a deep analysis of cloud provisioning.

VI. CONCLUSIONS

Offloading is a key technique in augmenting the com-
putational capabilities of IoT devices with elastic cloud re-
sources. In this paper, we investigated the effect of large-scale
offloading for IoT. We introduced a offloading architecture
an AutoScaler and component that can efficiently distribute
the load of requests among the available surrogates in the
back-end. We also developed an offloading simulator that
can facilitate the generation of different offloading workloads.
We presented the results of the evaluation along with the
experiences and lessons learned from developing and using
the framework in a real deployment and testbed. Finally, we
released our system in GitHub along with the Dalvik-x86 in
Amazon EC2.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[2] H. Flores and S. Srirama, “Mobile code offloading: should it be a
local decision or global inference?” in Proceeding of the 11th annual
international conference on Mobile systems, applications, and services
(MobiSys 2013). ACM, pp. 539–540.

[3] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya, “Mobile
code offloading: From concept to practice and beyond,” Communica-
tions, IEEE, no. 4, 2015.

[4] H. Flores and S. Srirama, “Adaptive code offloading for mobile cloud
applications: Exploiting fuzzy sets and evidence-based learning,” in Pro-
ceeding of the 4th ACM MobiSys workshop on Mobile cloud computing
and services, 2013, pp. 9–16.

[5] P. Bahl, R. Y. Han, L. E. Li, and M. Satyanarayanan, “Advancing the
state of mobile cloud computing,” in Proceedings of the third ACM
workshop on Mobile cloud computing and services, 2012, pp. 21–28.

[6] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010, pp. 49–62.

[7] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-
I. Yang, “The case for cyber foraging,” in Proceedings of the 10th
workshop on ACM SIGOPS European workshop, 2002, pp. 87–92.

[8] H. Flores and S. N. Srirama, “Mobile cloud middleware,” Journal of
Systems and Software, vol. 92, pp. 82–94, 2014.

[9] F. A. Silva, G. Zaicaner, E. Quesado, M. Dornelas, B. Silva, and
P. Maciel, “Benchmark applications used in mobile cloud computing
research: a systematic mapping study,” The Journal of Supercomputing,
vol. 72, no. 4, pp. 1431–1452, 2016.

[10] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling
applications in the cloud,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 1, pp. 45–52, 2011.

[11] M. Mazzucco and M. Dumas, “Achieving performance and availability
guarantees with spot instances,” in IEEE 13th International Conference
on High Performance Computing and Communications (HPCC), 2011.

[12] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: enabling interactive perception applications on mobile
devices,” in Proceedings of the 9th international conference on Mobile
systems, applications, and services. ACM, 2011, pp. 43–56.

[13] Y. W. Ahn, A. M. Cheng, J. Baek, M. Jo, and H.-H. Chen, “An auto-
scaling mechanism for virtual resources to support mobile, pervasive,
real-time healthcare applications in cloud computing,” IEEE Network,
vol. 27, no. 5, pp. 62–68, 2013.

[14] M. Mazzucco, D. Dyachuk, and R. Deters, “Maximizing cloud
providers’ revenues via energy aware allocation policies,” in IEEE 3rd
International Conference on Cloud Computing (CLOUD), 2010.

