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Abstract 1 

Translocation, the intentional movement of living organisms from one area to another 2 

is increasingly being used as a conservation tool to overcome barriers to dispersal. A 3 

dichotomy exists for conservation-oriented translocations: on one hand there are those 4 

that release plants or animals into known historic ranges, on the other hand there are 5 

releases outside historic distributions. Misuse of or attempts to redefine established 6 

terms, and a proliferation of variants of new terms such as assisted colonization, 7 

confuse and hamper communication. The aim of this opinion paper is to describe and 8 

define a conservation translocation spectrum, from species re-introductions through to 9 

assisted colonization, and beyond, and in so doing provide a standard framework and 10 

terminology for discussing translocation options. I suggest that we are moving along 11 

this spectrum, away from the dictates of historical species distribution records, 12 

towards the inclusion of more risky interventions that will be required to respond to 13 

habitat shifts due to anthropogenic impacts. To some extent rapid climate change 14 

changes everything, including how we should view introductions versus 15 

reintroductions. We need seriously to consider adding other approaches to our 16 

conservation toolbox. Assisted colonization will start us along this path, 17 

acknowledging as it does the accelerated rate of habitat change and the problems of 18 

attempting to preserve dynamic systems. The next step along the conservation 19 

translocation spectrum may be for reintroduction biology and restoration ecology to 20 

more comprehensively join forces on carefully selected projects to use species 21 

introductions to create novel ecosystems through active ecological community 22 

construction. 23 

 24 

 25 
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Introduction 1 

The extent of habitat loss, fragmentation and change, coupled with the decline and 2 

loss of species from parts of their range due to over-exploitation and other human-3 

induced pressures, means that restoration of viable free-ranging populations can 4 

seldom be achieved by reliance on natural recruitment and dispersal alone. 5 

Increasingly translocation, the intentional movement of living organisms from one 6 

area to another (IUCN 1987), is used to overcome barriers to dispersal. Humans have 7 

moved wild species around for millennia, for a wide variety of reasons. Here I’m 8 

concerned only with translocations that have the principal objective of population 9 

conservation, thus excluding other, often common types of translocations that have 10 

other primary motivations, such as the release of rehabilitated or problem animals, or 11 

for recreational or commercial purposes. 12 

 An apparently simple dichotomy exists for conservation-oriented 13 

translocations: on one hand there are those that release plants or animals into their 14 

known historic ranges, on the other hand there are releases outside historic 15 

distributions. At one end of a translocation spectrum (Table 1) there are re-16 

introductions, at the other end are forms of conservation introduction (IUCN 1998), 17 

including assisted colonization (Hoegh-Guldberg et al. 2008). 18 

 Misuse of or attempts to redefine established terms and a proliferation of new 19 

terms have the potential to confuse and hamper communication. The aim of this essay 20 

is to define a conservation translocation spectrum, from species re-introductions, 21 

through to assisted colonization, and beyond, and in so doing provide a standard 22 

framework and terminology for discussing translocation options. 23 

 I will make the case that we are moving along this spectrum, away from the 24 

almost sole reliance on the rigid and often flawed dictates of historical species 25 
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distribution records, towards the inclusion, where appropriate, of more aggressive and 1 

risky interventions that will be required to respond to habitat shifts due to 2 

anthropogenic impacts. To some extent rapid climate change changes everything, 3 

including how we should view introductions versus reintroductions. 4 

 5 

 6 

Population Restorations 7 

I use the overarching term population restoration to encompass translocations that 8 

seek to re-establish viable populations within the known distribution range of a 9 

species, i.e. to restore a self-sustaining population, either through re-introduction, or 10 

re-stocking. 11 

 12 

Re-introduction involves the release of an organism into an area that was once part 13 

of its range but from which it has been extirpated (IUCN 1987; Table 1). The World 14 

Conservation Union (IUCN) Guidelines for Re-introductions (IUCN 1998) place 15 

emphasis on the identification of release sites within the historic range of the species 16 

and acknowledge a need to ensure that previous causes of decline have been 17 

addressed. The implicit assumption is that because extirpation has taken place within 18 

historic times, then re-introduction will focus on sites within the range of a species, 19 

known or inferred within relatively recent timeframes. To some extent the 20 

requirement of recent (here taken to be within the last few hundreds of years) range 21 

occupation is a safeguard against habitat change. However, information from even 22 

pre-historic reference points is increasingly of interest for the identification and 23 

characterization of restoration targets (Jackson & Hobbs 2009).  24 
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Three things weaken the deceptively simple premise that historical range is a 1 

reliable guide to future habitat suitability: unreliable historical records, arbitrary 2 

reference points, and accelerating habitat change. Historical records of species 3 

presence have inherent shortcomings (Ponder et al. 2001). Records may be absent for 4 

a given location because that species may have been there but never seen, or even 5 

seen but never recorded. Species distribution maps are based on occurrence records, 6 

despite all their problems (summary in Frey 2006). Uncertainty may arise where there 7 

are errors of species identifications, and where specific locations of confirmed 8 

sightings have not been adequately recorded, or with specimen mislabelling or even 9 

fraudulent records (Boessenkool et al. 2010; Dalton 2005). Sampling is often uneven 10 

(Maddock & Du Plessis 1999) and distribution maps may be more reflective of which 11 

areas are most visited by observers, rather than which areas are preferred species 12 

habitat. 13 

 The use of documented species distributions to determine release sites in 14 

reintroductions necessitates the acceptance of arbitrary reference points and implicitly 15 

assumes static distributions and stable environmental conditions. Reintroduction 16 

biologists must ask the question: restore to what? The answer to which will vary 17 

regionally. In New World countries of Oceania, and the Americas, historical 18 

restoration targets are often related to some state that existed immediately prior to 19 

major Western human influence (Jackson & Hobbs 2009). In Europe however, with a 20 

much longer history of human occupation, restoration goals may be tied to pre-21 

industrial eras and to address relatively recent species declines. Setting targets is a 22 

challenge that is being debated also by restoration ecologists who recognise the 23 

inherent problems in trying to replicate some arbitrary condition in the past 24 

(Temperton 2007), including a lack of accurate historical records (Hobbs 2007), the 25 
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dynamic nature of ecological systems (Choi et al. 2008), and the occurrence of 1 

irreversible losses or change (Hobbs & Harris 2001, Jackson & Hobbs 2009). 2 

 Whereas the IUCN guidelines emphasise the need to address the causes of 3 

previous declines (IUCN 1998), it is a harder task to ensure that other changes have 4 

not occurred to once suitable habitat. For example, although reintroduction is 5 

increasingly being recommended as a conservation a strategy for endangered plants 6 

(Maunder 1992), few attempts have resulted in the establishment of viable 7 

populations (Allen 1994), in part due to the challenges of matching source and 8 

recovery sites (Lawrence & Kaye 2009), particularly where there has been loss of 9 

target communities within a species historic range (Possley et al. 2009). The Arabian 10 

ostrich (Struthio camelus syriacus), which was hunted to extinction by the 1950s, but 11 

was probably doomed to disappear from south central Arabia because of long-term 12 

climate change – hunting may have just hastened the end (Seddon and Soorae 1999). 13 

Thus the former presence of ostriches in the southern Arabian desert, the Rub Al 14 

Khali, and the creation of large no-hunting protected areas there (Seddon 2000), are 15 

unable to ensure the successful establishment of new ostrich (S. c. camelus) 16 

populations in now hyper-arid dune lands. 17 

 18 

Re-stocking (IUCN 1987), also termed re-enforcement and supplementation 19 

(IUCN 1998), augmentation (Maguire & Servheen 1992), or, in reference to plant 20 

translocations, enhancement (Allen 1994), entails the release of individuals into an 21 

existing population of conspecifics (Table 1). Animal re-stocking aims to boost total 22 

and effective population size, and avoid critically low population size thresholds with 23 

their attendant risks of genetic or demographic collapse due to stochastic effects. 24 

Translocation of plants for re-stocking is similarly used to overcome barriers to 25 
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natural dispersal from other free-ranging populations, to speed up population growth, 1 

or to enhance genetic diversity and avoid inbreeding depression (Allen 1994; Falk et 2 

al. 1996). 3 

 Unlike re-introductions, in re-stocking some of the uncertainty over habitat 4 

suitability is removed, but not all. The existence of conspecifics does not guarantee 5 

habitat suitability (Schlaepfer et al. 2002). Changes in habitat may reduce population 6 

viability by increasing mortality and/or reducing fecundity. Reintroductions should 7 

not attempt to re-establish populations in areas where local extinctions were due to 8 

local declines in habitat quality (Armstrong & Seddon 2008). In contrast however, 9 

there may be situations where re-stocking can be used to supplement existing but 10 

temporarily non-viable populations in poor quality habitat where reproduction cannot 11 

currently compensate for local mortality (e.g. van Heezik et al. 2009). Without a clear 12 

long-term strategy for mitigating limiting factors and/or sustaining intensive 13 

management, this would literally be pouring new animals down the sink (sensu 14 

Pulliam 1988). 15 

 16 

Conservation Introductions 17 

Any mediated movement of organisms outside their native range is a species 18 

introduction (IUCN 1987). If the intent for such releases is the establishment of a new 19 

population explicitly for conservation, then it is termed a benign or conservation 20 

introduction (IUCN 1998), and the usual concerns over habitat suitability will apply. 21 

 Existing guidelines recognise only one justification for conservation 22 

introductions: “when there is no remaining area left within a species’ historic range” 23 

(IUCN 1998: 3). This focus sought to counter a proliferation of ill-conceived 24 

translocations that were effectively species introductions under the guise of 25 
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conservation management (Stanley Price & Soorae 2003). There are two further 1 

rationales for conservation introductions: ecological replacement, and assisted 2 

colonization 3 

 4 

Ecological replacement is the release of a species outside its historic range in order 5 

to fill an ecological niche left vacant by the extinction of a native species. Extinction 6 

removes the option of reintroduction and may mean the loss of critical ecological 7 

functions. One option is therefore to restore lost function through the establishment of 8 

an ecologically similar species (Atkinson 2001). The most parsimonious approach is 9 

the release of a closely related taxon, ideally a subspecific substitution (Seddon and 10 

Soorae 1999), but other functionally equivalent forms may be possible replacements. 11 

For example, Aldabran giant tortoises (Aldabrachelys sp.) have been used to restore 12 

selective grazing and seed dispersal functions once performed by the now extinct 13 

giant Cylindraspis tortoises on islands in the Indian Ocean (Griffiths et al. 2010). 14 

 The concept of assisted colonization has stimulated recent debate, and has 15 

also spawned some confusing terminology, e.g. assisted migration (McLachlan et al. 16 

2007), and managed relocation (Richardson et al. 2009). The term migration more 17 

commonly refers to seasonal round trip movements (Hunter 2007) and does not 18 

capture the critical feature of moving organisms outside their range, while relocation 19 

is simply a synonym for translocation. I prefer the term assisted colonization, as it 20 

captures the key feature that species are deliberately being moved to areas outside 21 

their known historic ranges in order to establish new population for conservation 22 

targets.  Recent interest in this form of conservation introduction has been driven by 23 

the predicted impacts on species distributions due to rapid climate change. The 24 

relative newness of this specific threat has given the impression that this type of 25 
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translocation is something new – this is not the case. The best definition of assisted 1 

colonization is that of Ricciardi & Simberlof (2009 a): “translocation of a species to 2 

favourable habitat beyond their native range to protect them from human induced 3 

threats, such as climate change” (Table 1). So while climate change may loom as 4 

perhaps the most significant future threat (King 2004), assisted colonization could be 5 

and has been used to mitigate a variety of threats, including agricultural expansion 6 

and urbanization (Ricketts & Imhoff 2003), and the threats posed by (other) 7 

deliberately introduced species (Vitousek et al. 1997). 8 

 The current debate around assisted colonization focuses on uncertainty and the 9 

risk posed by introduced species (Mueller & Hellmann 2008; Ricciardi & Simberlof 10 

2009 a, b; Sax et al. 2009; Seddon et al. 2009; Vitt et al. 2009). Some commentators 11 

confuse the concept of assisted colonization with translocations in general, claiming 12 

that the “idea of manually relocating species is decidedly controversial” (Marris 13 

2008), and “notions of deliberately moving species are regarded with suspicion” 14 

(Hoegh-Guldberg et al. 2008), or that the detractors of assisted colonization are 15 

attempting to “prohibit intentional translocation of species for conservation purposes” 16 

(Schlaepfer et al. 2009). Clearly however, the deliberate moving of species is neither 17 

new nor controversial, and even releases outside known species distribution ranges 18 

are already positioned on the translocation spectrum. Far from being a “strategy that 19 

flies in the face of conventional conservation approaches” (Hoegh-Guldberg 2008) 20 

assisted colonization is a well-established (if recently named) conservation tool in 21 

some parts of the world. In New Zealand, extinction threats to endemic birds, 22 

herptiles and invertebrates posed by introduced mammalian predators have been 23 

addressed through translocations to predator-free offshore islands (Saunders & Norton 24 

2001) that may not be historically documented parts of the species range. These 25 
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translocations are effectively assisted colonizations, resulting in viable new 1 

populations in new areas (Atkinson 2001). The urgency of having to save critically 2 

endangered endemics has meant that New Zealand conservation managers have had 3 

fewer qualms about the dictates of historical distributions. Similarly for plant release 4 

sites, there may be a choice between known versus potential (suitable but previously 5 

unoccupied) habitat and, in the face of global climate change, selection of potential 6 

habitat may be necessary to ensure population persistence (Fiedler & Laven 1996). 7 

 8 

Beyond Assisted Colonization 9 

Traditionally ecological restoration has sought to return an ecosystem to some pre-10 

disturbance state (Hobbs and Cramer 2008), but restoration ecologists have attempted 11 

to chart new directions to overcome perceived problems due to the setting of 12 

restoration goals that are subjective, arbitrary, unsustainable and impractical (Davis 13 

2000; Digglelen et al. 2001; Holl et al. 2003; Halle 2007; Montalvo et al. 1997). 14 

Commentators have proposed new directions that do not seek to create exact replicas 15 

of the past (Temperton 2007), but rather acknowledge the dynamic nature of 16 

ecosystems subject to both natural spatial and temporal variation and human-induced 17 

change (Hobbs 2007; Hobbs & Cramer 2008; Jackson & Hobbs 2009). There is 18 

recognition that global climate change in particular, reduces the usefulness of 19 

historical ecosystem conditions as restoration reference points (Harris et al. 2006). 20 

Instead of using historical reference points, restoration ecologists are being urged to 21 

manage for ecosystem function and to focus on establishing the desired characteristics 22 

for a resilient system (Harris et al. 2006) to enable persistence in future environments 23 

(Choi 2007). 24 
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Restoration ecologists have recognised that anthropogenic drivers of 1 

environmental change may result in the development of emerging ecosystems; 2 

defined as “an ecosystem whose species composition and relative abundance have not 3 

previously occurred within a given biome” (Milton 2003). Also termed “novel 4 

ecosystems” (Chapin & Starfield 1997), or “no-analog communities” (Jackson & 5 

Hobbs 2009), these new assemblages of species have challenged the prevailing 6 

paradigm that by managing human impacts it is possible to return nature to some 7 

stable, pristine state (Hobbs & Cramer 2008). Rather than attempting to force changed 8 

ecosystems back to some, likely unsustainable or unattainable, pre-existing 9 

conditions, the development of novel ecosystems could be guided to maximise 10 

benefits (Hobbs et al. 2006) and to promote ecosystems that are feasible and resilient 11 

(Seastedt et al. 2008). Radically, this may include the active creation of “novel 12 

systems using species not native to the region” (Hobbs & Harris 2001), to maximise 13 

genetic, species and functional diversity (Seastedt et al. 2008), thus shifting from 14 

“historic” to  “futuristic restoration” (Choi 2004), and the creation of “designer” 15 

(Temperton 2007) or “engineered” ecosystems (Jackson & Hobbs 2009), in which 16 

ecosystem function has been rehabilitated for future environments (Choi et al. 2008). 17 

The application of engineering principles to ecosystem management was first mooted 18 

in the 1960s by Howard Odem (Mitsch & Jorgensen 2003), entailing the use of 19 

engineering processes in natural or constructed natural systems to solve 20 

environmental problems, even to the extent of community engineering involving the 21 

design of new sets of species for specific purposes (Kangas 2004). Ecological 22 

engineering, defined as the “design, construction, operation and management of 23 

landscape and aquatic structures and associated plant and animal communities to 24 

benefit humanity and nature” (Barrett 1999), has grown into a discipline of its own, 25 
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with restoration ecology considered by some to be a sub-discipline (Kangas 2004). Of 1 

relevance for reintroduction biologists is the controversial notion of introducing 2 

species as part of the development of new types of sustainable ecosystem that have 3 

both human and ecological values (Mitsch & Jorgensen 2004). I suggest that 4 

reintroduction biologists need to consider the possibility of adopting an ecological 5 

engineering perspective to use conservation translocations as a means to introduce 6 

species into suitable habitat outside their historic distribution range in order to 7 

contribute to the construction of new ecological communities. This community 8 

construction (Table 1) would serve both species conservation objectives and 9 

ecosystem restoration goals in the face of climate-driven habitat change. This need 10 

not require the translocation of entire ecological communities, rather the focus could 11 

be on relatively few keystone species and ecosystem engineers, acknowledging the 12 

self-design capability of ecosystems.  Mitsch & Jorgensen (2004) suggested that 13 

because a natural system “manipulates its physical and chemical environment” and is 14 

“ultimately designing a system that is ideally suited to the environment that is 15 

superimposed on it”, then the self-design capability of an ecosystem “allows nature to 16 

do some of the engineering”. Perhaps the most provocative recent proposal for 17 

ecological engineering to create a novel ecosystem is that of “Pleistocene re-wilding” 18 

(Donlan et al. 2006), whereby the multitude of ecological functions once performed 19 

by now-extinct North American megafauna, could be replaced through the 20 

translocation of a suite of ecological replacements, some of which may be threatened 21 

by habitat loss or change. Although considered extreme (Rubenstein et al. 2006; Caro 22 

2007)), the notion of Pleistocene re-wilding has stimulated a re-think of the future of 23 

restoration strategies. 24 
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 In parallel with restoration ecology, the emerging discipline of reintroduction 1 

biology has been grappling with similar issues (Seddon et al. 2007 a), including 2 

developing its scientific underpinnings (Seddon et al. 2007 b) and seeking unifying 3 

research directions (Armstrong & Seddon 2008). To some extent a focus on the rigid 4 

requirements of reintroduction that insists on historically documented species 5 

distributions to serve as a target has created more angst than it should. IUCN re-6 

introduction guidelines attempt to prevent ill-conceived releases, but have been 7 

interpreted as rules that may limit the ability of conservation managers to undertake 8 

innovative interventions (e.g. Shah 2003). 9 

With increasing human-induced ecosystem change, we now need seriously to 10 

consider adding other approaches to our conservation toolbox. Assisted colonization 11 

will start us along this path, acknowledging as it does the accelerated rate of habitat 12 

change and the problems of attempting to preserve dynamic systems. The next step 13 

along the translocation spectrum will be for reintroduction biology and restoration 14 

ecology to more comprehensively join forces on carefully selected community 15 

construction projects to create novel resilient ecosystems. 16 

 17 

Implications for Practice 18 

• Historic distribution records will always provide a good starting point for 19 

identifying translocation release sites, but global climate change and the dynamic 20 

nature of ecosystems means that historical species ranges have only limited use. 21 

Other, even prehistoric reference points, and species-specific habitat suitability 22 

assessments should be considered. 23 

• Single-species conservation actions in the core of historic range will remain 24 

the backbone of many conservation efforts, but increasingly we need to adopt an 25 
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ecosystem focus and consider the translocation of suites of species to restore key 1 

ecological functions. Ecological functions once performed by now extinct taxa can be 2 

restored through the introduction of ecological replacements, which may themselves 3 

be threatened in their native range. 4 

• Reintroduction biologists and restoration ecologists should join forces in 5 

selected projects to create novel ecosystems, including, where appropriate, ecological 6 

community construction via conservation introductions, to serve both single-species 7 

conservation and ecosystem management objectives. 8 

 9 

 10 
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