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Abstract 

Properties such as soil apparent electric conductivity (ECa), topography and other site-related data 
(e.g. canopy reflectance from aerial images) vary across field. The agronomic effects of such 
variability can sometimes be seen in the spatial variations of crop yield on that field. However, yield 
maps do not always represent the natural boundaries based on site characteristics. Identification of 
these boundaries as “management zones” (MZ) can be beneficial in crop management and improving 
crop input use efficiency. A simple methodology is required to delineate such zones. This research 
presents an effective methodology to delineate MZ in an irrigated and a non-irrigated (rain-fed) arable 
maize field in New Zealand. Elevation data for the sites were acquired from Google Earth images and 
a soil survey. Soil ECa was collected from a soil survey with an electromagnetic device. Yield values 
(t/ha) were obtained from combine harvesters equipped with yield monitor and Global Positioning 
System (GPS), over the course of four years for the irrigated site, and two years for the non-irrigated 
site. The yield data was quality controlled using a filtering system to remove outliers and technically 
non-plausible data. The data sources were combined in Geographic Information Systems (GIS) and 
three MZ were delineated for each field through standard clustering methods. The maize yields were 
aggregated per derived MZ to compare yields between different MZ-classes. The results showed that 
there was some consistency in yields related to the MZ, derived without yield data. In both the non-
irrigated and irrigated fields, the lowest yield consistently occurred in the same class each year, 
however, the MZ-class with the highest yield varied year to year. The results show that it is possible 
for the studied type of fields to delineate ‘natural’ clusters or zones of site properties that can be used 
as MZ-classes as they represent different yield levels. The required inputs are freely available and 
easily obtained data.   

 

Background 

Site properties of the arable fields vary, affecting the crop performance and crop input use efficiency. 
When the extent of variability is identified, crop performance and crop input use efficiency can be 
improved through managing the field by localised conditions (Gotway Crawford et al., 1997). This is 
known as site specific crop management (SSCM). For SSCM, derivation of sub-field regions of similar 
quantitative characteristics (i.e. topography, yield, soil nutrients, elevation, etc.) is necessary. Sub-
field regions delineated by boundaries also known as “management zones” (MZ). Areas with the 
same MZ-class often have similar production potential (Fridgen et al., 2004). As the MZ represent 
varying potential yield levels having derived MZ allows crop inputs to be adjusted to the yield 
dependent crop demands through variable rate application of fertiliser or water (Zhang et al., 2010). 

Typically, various types of spatial data have been used to delineate MZ. These include grid soil 
surveys, digital elevation data, aerial photographs, soil apparent electrical conductivity (ECa), soil 
physical properties, topography (Fridgen et al., 2004), and crop yield data (Blackmore et al., 2003).  

Yield maps generated during harvesting are increasingly available to farmers and are a useful tool in 
SSCM. These maps can be used alone or in combination with other spatial data for quantifying spatial 
variability. Patterns shown in the yield maps reflect the combined effects of spatial variables (e.g. soil  
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properties, topographical attributes, weather, diseases) and management practices (e.g. fertiliser 
application) (Souza et al., 2016). However, within-field spatial patterns of yields represented in yield 
maps have been found to lack consistency year to year, likely due to the influence of complex 
interactions between factors such as rain-fall distribution, soil type, and soil water holding capacity 
(Blackmore et al., 2003). Alone, yield maps may have limited value for delineating MZ to use in 
SSCM.  

There are many procedures and Geographic Information Systems (GIS) packages developed to 
analyse geo-spatial data, but adaptation of SSCM is not common among end users. The low 
popularity may be due to the complexity of the methods, requirement of specific skills to operate the 
software (Fridgen et al., 2004), and unavailability of geo-referenced data. Therefore, objective of this 
paper is to develop simple methods to derive ‘natural’ clusters or zones of site properties using readily 
available geo-data sources including ECa maps, elevation maps, and satellite images (e.g. Google 
Earth) for farmers.  

 

Methods 

Data collection 
The data for the study was obtained from two separate fields in Cambridge, Hamilton (-37.941026°, 
175.484264°) and Bulls, Palmerston North (-40.227790°, 175.292542°), North Island, New Zealand. 
The field in Cambridge is 18.93 ha of flat terrain. The field is not irrigated and relies entirely on rain for 
water inputs. The field rotates between maize, either grain or silage, and grazed pasture. The soil is 
classified as a well-drained loam over sandy loam Typic Orthic Allophanic soil (Hewitt, 2010). The 
field in Bulls is irrigated with a centre pivot-irrigator, which extends to cover the 57.05 ha area. The 
terrain is sloped in a North to South direction. Bulls field had a crop rotation of maize crop and several 
other crops such as pasture, barley, and peas, and the field was sown with mixture of crops in some 
years. The soil is classified as a poorly drained Typic Orthic Gley silty loam soil (Hewitt, 2010). At the 
time of the yield measurements presented in this paper, both sites were growing maize.  

Maize grain at 20% moisture was harvested with a John Deere combine equipped with an AgLeader 
yield monitor and an AgLeader differential global positioning system (GPS) receiver at the Cambridge 
field in 2013 and 2014. At Bulls field, a CLASS combine equipped with a Trimble yield monitor and a 
GPS receiver was used when harvesting maize grain at 14% mositure.  

Soil ECa data from 0 to 125 cm depth, and elevation data for the Cambridge field were acquired 
through an electromagnetic soil survey conducted with a Trimble real time kinematic (RTK) GPS 
(Trimble Navigation Ltd., Sunnyvale, California, USA) enabled Geonics EM38 (Geonics Ltd., 
Mississauga, Ontario, Canada) soil survey in 2014. A similar soil survey was carried out at Bulls field 
in 2011.  

Satellite images available for the Cambridge and the Bulls field were retrieved from Google Earth Pro 
(v. 7.1.7.2602, Google Inc., California, USA) historic imagery archive. Images available on 30/07/2013 
and 23/10/2015 for the Bulls field were used to extract the elevation data for the analysis. In addition, 
other images available in the archive for the Cambridge field (10/01/2008, 09/07/2010, 05/02/2013, 
11/03/2013, 28/05/2013, 02/09/2013, 21/07/2014, 20/07/2015, and 11/02/2016) and for the Bulls field 
(08/09/2004, 28/02/2005, 04/03/2007, 05/05/2010, 27/03/2013, 10/04/2013, 04/04/2014, and 
19/02/2015) were referred to observe any field variability (e.g. water channels, infrastructure of the 
fields, cropping systems, etc.) shown in the images.  

Data Analysis 
Yield monitor data obtained during the harvest was imported into ArcMap, ArcGIS Desktop 10.5 
(Environmental Systems Research Institute, Redlands, CA, USA), and the data was screened for 
erroneous yield values using methods adopted from Kleinjan et al. (2002) and Ping and Dobermann 
(2005). This involved first detecting frequency distribution outliers for distance travelled, grain flow, 
and grain moisture based on the global means and standard deviations (SD). The SD value was 
decided from 1, 1.5, 2, 2.5 or 3 SD for each variable according to the histogram distribution of data, 
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compared to its mean value (large range – higher SD). Then the values lying outside the mean ± 
selected SD (e.g. 1, 1.5, 2, 2.5, or 3) range were discarded. In the next step, dry matter (DM) maize 
grain yield data was filtered for cutting swath width and all data that was less than a defined cutting 
width of the combine was deleted. Then, DM maize grain yields were filtered for their defined lower 
and upper yield limits. The lower yield limit selected was 0.5 t/ha. The upper yield limit was decided 
based on the maximal yields recorded for the maize grain crop in the harvested year for the region of 
the selected fields. Finally, yield data recorded at double-planting rows, headland turns, and traffic 
areas which remained unfiltered were cleaned manually as required.  

Soil ECa and elevation data was filtered for erroneous data by setting the lower and higher threshold 
values according to the histogram distributions of global mean and SD values. The data lying outside 
the mean ± 2.5 SD or 3 SD were eliminated before the data sets were manually cleaned for erroneous 
data. 

Cleaned ECa and elevation data were interpolated in to a common grid of 1 m x 1 m using block 
kriging in VESPER (Variogram Estimation and Spatial Prediction with ERror) software (Australian 
Centre for Precision Agriculture, University of Sydney, Sydney, Australia). Interpolated data was 
normalised by dividing the point data value by the global mean (Fridgen et al., 2004). These 
normalised data were used to derive three clusters for combined variables of elevation and ECa in 
Management Zone Analyst (v. 1.0.0) (MZA) software (Agricultural Research Service, USDA, USA). 
Outputs from MZA were imported into ArcGIS to develop the MZ maps for the Cambridge and Bulls 
field. Derived MZ maps were classified into three MZ-classes (Classes A, B and C) for practical 
purposes. Quality controlled maize yield data were overlayed on field MZ maps and the yield data 
lying in each class were extracted to calculate yield averages per class. Recurring differences in the 
average yield values of the MZ-classes validate the relevance of the derived MZ representing groups 
of yield variability. A 5 m buffer area from each boundary of the classes in the map was allocated 
when extracting yield data.  

There were four years (2005, 2007, 2009 and 2011) and two years (2013 and 2014) of yield data for 
Bulls and Cambridge field, respectively, available for the analysis. Extracted yield data from separate 
classes for each year are presented as means with error bars as SD.   

Summary statistics are presented by year, and include the mean, SD of the mean, median, minimum, 
maximum, number of samples and skewness. Data analysis was competed in R Studio (v. 0.99.887). 
A one-way ANOVA with a Fischer’s LSD was completed to detect differences (P ≤ 0.05) between the 
means from years, and to compare means from MZ-classes from the same year. The ANOVA used 
Type I sum of squares to account for the unbalanced sample sizes. The LSD was completed using 
the R package “agricolae”. 

 

Results 

Data Quality Control Using Filtering 
For Cambridge field, 28.4% and 27.1% of the original yield data were removed from 2013 and 2014, 
respectively, after filtering. The percentages of original yield data removal after filtering for the Bulls 
field were 37.0% (2005), 8.3% (2007), 15.2% (2009) and 17.9% (2011) (Table 1). There were large 
differences between minimum and maximum DM maize grain yields of the raw data recorded in 2013 
and 2014 in Cambridge field. Filtering did not result in large changes to the statistical characteristics 
such as mean, median, SD and skewness of the yield data sets (Table 1).  

Yield Classes Based on MZ Map 
Irrigated, Bulls field (2005-2011) 
Mean DM maize grain yields at 14% moisture from 2005 to 2011 increased over time, and on 
average, were highest in 2011. During the previous years, the lowest detected yields ranged from 6.8 
to 8.6 t ha-1, and reached maximums ranging from ≈14 to ≈22.4 t ha-1 (Table 1).  
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There were significant differences between classes during each of the years measured (Table 2). In 
all years measured except 2007, mean dry matter yields differed between each of the three classes 
(Fig. 1). Class B had the lowest average yields during all four years. Classes A and C had similar 
yields in all years, except in 2007. In 2007, mean dry matter maize yield in Class C was significantly 
higher than in Classes A and B.  

Non-irrigated, Cambridge field (2013-2014) 
Mean DM maize grain yields at 20% moisture were lowest in 2013 (Table 1). For the data from 
Cambridge field, there were significant differences between classes from both 2013 and 2014. The 
lowest yield was derived from Class A in both years while Class B recorded medium yield and Class 
C recorded the highest yield (Fig. 2).  

Table 1. The summary statistics for each year before and after the data was filtered. SD represents the 
standard deviation, count represents the number sample, skew represents the skewness, and cleaned 
data % is the percentage of data removed during filtering from the initial dataset. The “after filtering” data 
was used for analyses.     

 Field Year Min Max Mean Median SD Count Skew 
Cleaned 
data % 

Before 
filtering 

Bulls 2005 6.813 14.081 10.576 10.688 1.180 32074 -0.095  

 2007 8.281 13.832 11.022 11.265 0.941 56230 -0.258  

 2009 8.553 16.503 12.954 13.140 1.170 6138 -0.159  

 
 2011 7.856 22.437 15.430 15.576 2.358 18473 -0.062  

 

Cambridg
e 

2013 0.000 90.733 8.318 9.326 7.383 22094 -0.137  

 
 2014 0.000 87.548 8.701 10.281 5.655 22564 -0.279  

After 
filtering 

Bulls 2005 6.813 14.081 10.584 10.702 1.129 20212 -0.105 36.98 

 2007 8.281 13.832 11.268 11.315 0.879 51546 -0.054 8.33 

 2009 8.616 16.503 13.084 13.183 0.970 5305 -0.102 15.20 

 
 2011 7.993 22.423 15.702 15.922 2.360 15167 -0.093 17.90 

 

Cambridg
e 

2013 0.521 19.932 10.194 10.673 2.938 15811 -0.163 28.44 

 
 2014 0.500 19.874 11.328 12.069 3.546 16453 -0.209 27.08 

 

 
Table 2. The mean and standard deviation for all grids from each year, along with a P value and degrees 
of freedom obtained from the ANOVA. 

Location Year Mean 
Standard 
deviation 

Degrees of 
freedom 

P value 

Bulls (irrigated)    

 2005 10.583 1.133 17885 2.96 x10-11 

 2007 14.395 2.940 54769 2.20 x10-16 

 2009 13.083 0.956 4647 1.02 x10-07 

 2011 15.754 2.301 12956 0.008305 

Cambridge (non-irrigated)    

 2013 10.299 2.800 11311 2.20 x10-16 

 2014 11.295 3.519 11808 2.20 x10-16 
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Figure 1. Means (± SD) of DM from irrigated maize grain 
yield  
(t ha-1) in Bulls field comparing each ’Class’. The Class 
represents with-in field management zone from the MZ 
map and ‘n’ represents the number of yield points 
harvested.  
i) 2005 (Class A, n=4057; Class B, n=1992; Class C, 
n=11838), ii) 2007 (Class A, n=9971; Class B, n=5124; Class 
C, n=39676), iii) 2009 (Class A, n=2923; Class B, n=597; 
Class C, n=1129), and iv) 2011 (Class A, n=3118; Class B, 
n=2103; Class C, n=7737).  Means that share the same 
letter are not significantly different (P ≤ 0.05). 

 

Figure 2. Means (± SD) of DM from non-irrigated maize 
grain yield (t ha-1) in the Cambridge field comparing each 
’Class’. The Class represents with-in field management 
zone from the MZ map and ‘n’ represents the number of 
yield points harvested. i) 2013 (Class A, n=2781; Class B, 
n=5221;  
Class C, n=3311), and ii) 2014 (Class A, n=2812;  
Class B, n=5529; Class C, n=3469). Means that share the 
same letter are not significantly different (P ≤ 0.05). 
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Discussion 

Evaluation of Data Quality Control and Filtering Methods 
Yield data collected by the combine yield monitors inevitably contains systematic and random 
erroneous data. Cleaning of data is required to remove the erroneous data. This is necessary for 
statistical comparisons of yield data with other data layers in a decision support system (Kleinjan et 
al., 2002) and for precise interpretation of yield patterns in SSCM (Ping and Dobermann, 2003). The 
approach used in the current paper did not change the frequency distribution of cleaned yield data, 
which was only slightly negatively skewed from normal. Standard methods developed to filter error 
yield data are not able to capture all the erroneous data (Ping and Dobermann, 2005), so continued 
development of improved filtering methods is required to avoid manual cleaning. 

The percentage of yield data removed from each year is within the range reported by others in similar 
conditions and plant types, however, the use of different filtering methods will result in the removal of 
different amounts of data due the different algorithms they employ. Filtering algorithms used by 
Simbahan et al. (2004) removed 13 to 20 % of erroneous data in irrigated and rain-fed maize whereas 
Ping and Dobermann (2005) removed 16.4% of the original data in an irrigated maize system. 
Removal of erroneous yield data has been noted to be up to 50% depending on the data and filtering 
approach used (Sudduth and Drummond, 2007).  

Evaluation of Managements Zone Delineation based on Filtering and Data Choice 
In most cases, there was little absolute difference in the mean crop yields between MZ-classes from 
the irrigated maize fields measured in Bulls (Fig. 1). The low variability of the yield of this field is 
confirmed by the low variability of optical reflectance of the crop canopy, as visually assessed on 
aerial images of these crops (Google Earth). However, the differences detected between those yields 
per MZ were statically significant supported by the high number of samples (yield points). The greater 
absolute differences in the mean yields between the classes during both 2013 and 2014 reflect the 
natural, rain-fed conditions of the system in Cambridge field (Fig. 2). Better yield consistency with 
irrigation is due to reduced plant stress with water application to the crops when rain is insufficient 
also on the lower yielding MZ (Trost et al., 2013). Under the assumption that all classes in the rain-fed 
Cambridge field received roughly the same amount of water during a precipitation event, the small in-
field differences observed between the classes (Fig. 2) must be attributed to other factors.  

In most instances, MZ created by jointly clustering soil ECa and elevation were able to represent 
grouped yield variability. Properties that influence soil water storage and root growth, including 
landscape features like slope and aspect, or soil texture, will influence within field variability in crop 
yields (Kitchen et al., 1999). Higher ECa values have previously been associated with foot-slope or 
alluvial areas, where excess water from runoff can accumulate (Fraisse et al., 1999). In non-saline 
soils, ECa correlates well with organic matter (Jaynes et al., 1994) and cation exchange capacity 
(McBride et al., 1990), both of which effect nutrient and water-holding capacity in soil, and therefore 
influence crop yield (Jaynes et al., 1995). Electrical conductivity may be a suitable surrogate for other 
soil chemical properties that are not as easily measured, and provide a way to distinguish within field 
differences associated with root-zone suitability for crops and yield (Kitchen et al., 1999). Others have 
noted that MZ maps created based on the soil physical properties and topographic attributes such as 
soil ECa, and elevation are effective in predicting crop production potential within the field (Fridgen et 
al., 2004). Future studies may focus on further evidence of suitability of the non-yield based MZ 
delineation efforts presented in this paper, e.g. on further sites and with more site variables (e.g. 
patterns of canopy reflectance in aerial imagery). 

 

Conclusion 

The method in this paper used easily accessible and free data sources to derive MZ maps to be used 
in SSCM. Potential MZ derived using a combined clustering of soil ECa and elevation data were 
validated with recorded yield data. The benefits of the data used in this study (topography and soil 
ECa) are that the data is easily obtained without collecting yield maps with yield monitors over a few 
years. Soil ECa surveys are available as an affordable service to consultants and farmers. Geo- 
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referenced elevation data can be obtained through soil surveys or free data sources (i.e. council 
websites, free aerial images, etc). As not every farmer has access to yield monitoring (Zhang et al., 
2010), adoption of the method presented in this paper allows to create MZ that represent growth 
conditions and thus varying yield potentials. Also farmers that start using precision agriculture 
technologies could easily create MZ without first collecting yield maps over a few seasons. The 
suggested method for delineating MZ works better in non-irrigated cropping systems than irrigated 
systems as the rain fed situation lead to stronger with-in field yield variations.  
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