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Abstract 

Many broadacre farmers have a time series of crop yield monitor data for their paddocks which are 
often augmented with additional spatial data such as gamma radiometrics surveys or ECa (apparent 
soil electrical conductivity) from an electro-magnetic induction survey (EMI). In addition there are now 
readily available national and global datasets which can be used to represent the crop-growing 
environment. Rather than analysing one paddock at a time, there is an opportunity to explore the 
value of combining data over multiple paddocks and years into one dataset. Using these datasets in 
conjunction with machine learning approaches allows predictive models of crop yield to be built. In 
this study we explored this approach with a particular emphasis on the forecasting ability of the 
models based on pre- and mid-season information from predictor variables. Several large farms in 
Western Australia were used as a case study. Yield from wheat, barley and canola crops from 3 
different seasons that covered ~15,000 hectares in each year were used. The yield data was 
processed to a 10 m grid, and for each observation we built an associated space-time cube of 
predictors. This consisted of grower collected data such as EM and gamma radiometrics surveys, and 
nationally available data such as MODIS NDVI, and rainfall. Random Forest models were used to 
predict crop yield of wheat, barley and canola using the space-time cube. Three models were created 
based on pre-sowing, mid-season and late-season conditions to explore the changes in the predictive 
ability of the model as more within-season information became available. These time points also 
coincide with points in the season when a management decision is made, such as the application of 
fertiliser. The models were evaluated using cross-validation based on paddocks and years and this 
was assessed at the spatial resolution of the paddock. The models performed better as the season 
progressed, largely because more information about within-season data became available (e.g. 
rainfall). Cross-validated results showed the models predicted yield very accurately, with an RMSE of 
0.36 to 0.42 t/ha, and an LCCC of 0.89 to 0.92 at the paddock resolution. The more years of yield 
data that were available for a paddock, the better the predictions were. The generic nature of this 
method makes it possible to apply to other agricultural systems where yield monitor data is available. 
A data-driven approach to predicting crop yield as an alternative to using mechanistic models has 
several advantages. Future work should explore integration of more data sources into the models and 
focus on using the models to inform management decisions such as fertiliser applications.    

 

Background 

Agricultural and environmental data is becoming increasingly available at finer spatial and temporal 
resolutions and at declining costs. While this data is abundant and potentially very useful, it is often in 
different formats and located in a variety of repositories, which makes it difficult to utilise. Every crop 
can essentially be considered as an experiment, where the yield is a function of the interaction 
between a suite of variables that vary in space and time. Many growers have a time series of crop 
yield monitor data for their paddocks which are generally augmented with additional data such as EM 
and gamma radiometrics surveys. In addition there are now freely and readily available national and 
global datasets which can be used to represent the crop-growing environment. Rather than analysing 
one paddock at a time, there is an opportunity to explore the value of combining this data over 
multiple paddocks and years into one dataset. Machine learning techniques are well-equipped to deal 
with large datasets with many variables, and they provide the opportunity to create predictive models 
of crop yield using this multitude of data. In this study we used grower-collected and nationally 
available data in combination with Random Forest models (Breiman 2001) to create predictive yield 
models of wheat, barley and canola at 3 vital time points in the growing season. This study particularly 
focused on the forecasting ability of the models based on pre- and mid-season information from 
predictors.  
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Methods 

Datasets 
An assortment of spatial and temporal grower-collected and nationally-available environmental and 
agricultural data was collated into a space-time cube (STC). The data consisted of yield monitor data, 
soil information, geo-physical data, and remotely sensed information, of varying spatial and temporal 
resolutions (Table 1). This study focused on a case study of several large farms in Western Australia. 
Yield from wheat, barley and canola crops from 3 different seasons that covered ~15,000 hectares in 
each year were used. In addition to this, the study area had been surveyed with EMI and gamma 
radiometric instruments to 10 m resolution. A STC can essentially be described as a large dataset 
where each row in the dataset possesses; spatial coordinates (easting + northing), time (year), yield, 
and a large string of associated covariates that relate to yield (predictor variables). Each row 
represents a spatial entity for a particular time point. Some spatial locations in the dataset possessed 
several years of yield data, while others only had one. Despite the varying spatial resolutions of the 
variables, they were all snapped to a common 10 m grid without changing their native spatial 
resolution (Table 1).  

 

Table 1. Data sources used in the space-time cube to create predictive yield models 

Data type Model input Resolution Source of data 

Yield 

 

Yield monitor data 10 m Grower 

Silo weighed- field averaged yields Field/paddock Grower 

Soil 

 

Soil maps - clay  10 m Grower & Project 

Soil maps - sand 10 m Grower & Project 

Geo-physical data EM surveys  10 m Grower 

Gamma surveys 10 m Grower 

Remote sensed data MODIS NDVI 250 m (8 days) National 

Climate data 

 

Received rainfall 5000 m (daily) National 

Forecasted rainfall 5000 m (daily) National 

 

Yield monitor data at 10 m resolution was corrected and standardised using measured paddock 
average silo weight, as it is known that different yield monitors can vary in their calibrations. Maps of 
soil sand and clay content at 10 m resolution were created using soil test results collected by growers. 
These sand and clay maps were creating using Random Forest models with spatial coordinates, EM 
and radiometric surveys used as covariates. Within-season MODIS - NDVI measurements were 
included in the model and collected in the middle of July and September. Total rainfall received for 
each year for Jan 1st–Mar 31st, Apr1st–June 30th, Jul 1st–Aug 31st was also used as predictor 
variables. In addition, the forecast rainfall was used, which is the probability of exceeding the median 
rainfall for the ensuing three months. The dates for NDVI and aggregation of the rainfall were chosen 
to coincide with different important points in the winter crop season, e.g. sowing (April), mid-season N-
fertiliser top-dressing allocation (July), and anthesis (September).   

Modelling 
Random Forests (a machine learning approach) were used in conjunction with this STC to create 
predictive models of crop yield. Rather than creating individual models for wheat, barley and canola, 
one model was created and crop type was included as a predictor variable. Three models were 
created based on pre-sowing, mid-season and late-season conditions to explore the changes in the 
predictive ability of the model as more within-season information became available. These time points 
also coincide with points in the season when a management decision is made, such as the application 
of fertiliser. The models were built at a 10 m resolution, and then predicted at 100 m. This was then 
aggregated up to the paddock-scale, and the prediction quality was then assessed at the paddock-
scale spatial resolution. The model was evaluated using cross-validation based on paddocks and 
years. The paddock-year-out cross validation involved creating a model without one seasons worth of 
yield data for a particular paddock and then using that model to predict the yield for that paddock for 
the missing year. The paddock-out cross validation was similar, but involved leaving all prior yield out 
for that particular paddock to create the model, and then predicting on that paddock for a missing 
year.  
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Results 

The models performed better as the season progressed, with the September model possessing the 
lowest root mean squared error (RMSE), and the highest Lin’s concordance correlation coefficient 
(LCCC). At the paddock-resolution the models had a RMSE of ~0.36-0.42 t/ha for the paddock-year-
out cross validation (Table 2; Fig. 1). The paddock-year-out cross validation always provided much 
better results compared to the paddock-out approach, which suggests the importance of prior yield 
information in model predictions (Table 2). This is supported by Fig. 2, which shows that as more 
seasons of prior data were available for an individual paddock, the predictions improved dramatically.   

 

Table 2. Cross-validated results of crop yield predictions at the paddock resolution 

Time point April (sowing) July (top-dressing) September (anthesis) 

 RMSE (t/ha) LCCC RMSE (t/ha) LCCC RMSE (t/ha) LCCC 

Paddock-out CV 0.64 0.19 0.63 0.20 0.62 0.27 

Paddock-year-out CV 0.42 0.89 0.39 0.91 0.36 0.92 

 

 

 

Figure 1. Plot of observed and predicted yield 
for July model for all paddocks using paddock-
year-out cross validation approach  
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a) zero years b)   one year 3)   two years 

 

Figure 2. Cross validated results for paddocks that contained a) zero, b) one, c) two years of prior yield 
data  

 

Within-season predictor variables proved to be very important covariates in the models. As an 
example, the most important predictors in the July model were; received rainfall, forecast rainfall, and 
within-season NDVI (Fig. 3). The soil and geo-physical data were less important predictors, however, 
many of these variables were highly correlated with each other, which may mask their combined 
significance. It could be assumed the importance of these types of predictors would increase if some 
were removed.  

 

Figure 3. Predictor variable importance graph from July model 
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Discussion 

Overall, the predictive crop yield models presented in this study performed well during cross-validation 
and had high predictive power (RMSE = 0.36 to 0.42 t/ha, and LCCC = 0.89 to 0.92). It was shown 
that prior yield data for predicting in a paddock resulted in much better models (Fig. 2). This is logical, 
as the model would have a better understanding of expected yield, and this suggests that a larger 
time-series of yield data for paddocks would greatly improve the prediction accuracy. Yield monitoring 
at harvest in the grains industry has been present in Australia agriculture for about two decades, and 
there is a great opportunity to maximally benefit from this available information to predict crop yields 
by using big-data approaches. The size of the dataset and how this affects predictions needs to be 
further explored. This needs to be done in terms of an expansion of temporal data (more seasons of 
yield), and an expansion of spatial data (more paddocks/farms). In this study we have successfully 
predicted yield for a collection of large farms, but this does not provide insight into whether or not this 
would work at a smaller spatial extent – e.g. for a single farm. The possibility of data sharing among 
growers is an option; however, this presents some challenges and limitations. It may be ideal to have 
one model for a region, or it may be better for individual farms to have a specific model, and this ideal 
area that the model covers should be further evaluated. Regardless, the results in this study show 
that a greater time-series of paddock yield would be extremely beneficial in improving yield 
predictions.   

Within-season predictor variables proved to be very valuable in the models. The models improved in 
quality as the season progressed, and this is likely due to an increased amount of within-season 
predictor variables being used in these models. Integrating more of these within-season data sources 
into the model should be considered. This may include remotely sensed data from UAVs (Unmanned 
Aerial Vehicles), soil moisture products, degree days and Landsat data at 30 m resolution. Further 
work should consider the quality of the models under data-poor (only national datasets available) and 
data-rich scenarios (grower collected data available). This could identify the value proposition for 
growers when deciding on the type of data collect, as well as the best spatial and temporal resolution.  

Currently, most approaches to predicting crop yield are through the use of mechanistic/simulation 
models, such as APSIM (Agricultural Production Systems sIMulator) (Keating et al. 2003). The 
disadvantages of mechanistic models are that they generally require numerous inputs and there are 
many assumptions made. The advantage of our empirical approach is that real, on-farm data is used 
to drive predictions, allowing fewer assumptions to be made. Predictive models of the upcoming 
season’s crop yield are extremely useful, particularly when the predictions are at fine spatial 
resolutions and a high accuracy. There are opportunities to use this information to identify yield gaps, 
decide on futures contracts and market speculation, and to inform decisions on precision agricultural 
management practices. In particular, the incorporation of management inputs with these models is a 
promising avenue for future research, for example fertiliser application, gypsum/lime application or 
seeding rates.  

 

Conclusion 

In this study, we have presented a data-driven approach to predicting wheat, barley, and canola crop 
yield as an alternative to approaches that use mechanistic models. The approach presented was a 
success and its generic nature makes it possible to apply it to many other agricultural systems where 
yield monitor data is available. Future work should explore integration of more data sources, 
particularly within-season measurements (UAV, soil moisture products etc.) into the model. In 
addition, focus should be placed on using the predictive model to inform management decisions such 
as fertiliser applications.  
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