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Abstract: 

The group-III nitrides have been acknowledged as notable materials for researchers in recent times 

because of their extra ordinary properties and applications. The fundamental property of these materials is their 

wide and direct band gap, which can also be tailored by doping. A common characteristic of these device 

structures is the applicability of their ternary alloys. Despite of the broad range of the ternary alloys of these 

group-III nitrides only some have been discussed. So in this study, zone centre phonon mode behavior of the 

ternary alloy InxGa1-xN in both phases (cubic and wurtzite phase) has been studied and with the use of de 

Launey angular force constant model. The various optical phonon modes at zone centre have been calculated for 

both phases of InxGa1-xN. The content of Ga and in alloy is in the range 0<x<1. The one mode behavior has been 

found for both phases of the alloy and it is found that for InxGa1-xN continuous decreases in magnitude of 

phonon frequency with the increase in the content of In which is due to the fact that frequency varies inversely 

proportional to the mass, as content of In increases mass of alloy increases. 

Introduction: 

The group III nitrides (AlN, BN, GaN and InN) are considered as third generation semiconductors after 

first generation of semiconductor elements like Si and Ge and second generation semiconductor compounds InP 

and GaAs [1]. The possible applications of these materials are in light emitting diodes (LEDs) and laser diodes 

(LDs). The power of LEDs and LDs based on other semiconductors like II-VI materials decrease for emitted 

wavelength in blue region. Also life time for green LDs is only one hour while 100 hours for green LEDs. This 

prevents the commercialization of these semiconductors. On the other hand group III nitrides are the hot spots 

for the researchers in such applications [2]. The main interaction of these materials is due to their broad direct 

band gap, which can also be diverse according to the requirement. By alloying with suitable composition band 

gap can be varied from band gap of InN 0.7-0.9 eV to gand gap of GaN 6.3 eV (3,4), which will cover light 

emitting region from infra-red, visible and UV region. By using alloy of GaN doped with suitable composition 

of in can be used for manufacturing LEDs and electronic devices according to use [9]. GaN based 

semiconductor materials have large thermal conductivity, higher electron drift velocity, resistance to high 

voltage, useful at an elevated temperature. By changing the composition of the dopant the lattice constant and 

molecular weight changes, which change the refractive index, binding energy and electron mobility [5]. Higher 

melting point of Group-III nitrides make it useful materials for high power and high temperature microelectronic 

[6]. Apart from the other applications these nitrides have some other interesting properties like easy cleavage of 

cubic structure, conductive substrates and possibility of high doping level [7]. Due to such important application 

and properties these materials can meet the demands of the next generation of electronic equipment like small 

size, work in extreme conditions, high frequency, high efficiency and high power [1]. There are few studies of 

these nitrides on basis of Raman spectroscopy and by molecular beam epitaxy [8]. A. L K Teles [9] studied the 

The electronic, structural, and thermodynamic properties of cubic (zinc blende) group-III nitride ternary InxGa 

1−x N and quaternary AlxInyGa(1−x−y)N alloys by combining first-principles total energy calculations and cluster 

expansion methods. But there is clear lack of knowledge of fundamental properties such as phonon frequency 

and its dependence on alloy composition of these materials important for material characterization. Therefore in 

the present study, we have presnted the zone centre phonon mode behavior of GaN doped with In with varying 

composition 0<x<1 for its both phases by using the de launey angular force constant model. The zone centre 

phonon frequency is studied and results found are in excellent agreement with existing experimental and 

theoretical results. 

Methodology: 

The creation of mixed crystal with special proportion of two undoped crystals results in a fresh set of 

crystal with physical properties which are in-between pure end members depending upon the composition of 

pure crystals. The properties may change in different manner with variation of composition. In some mixed 

crystals properties changes monotonically linearly as a function of composition while in some cases the 

properties may vary non-linearly (may be slightly non linearly or highly non-linear manner). In some cases, 

properties are different from the properties of parent crystals at all and these properties are unique to mixed 

crystals only. 
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In this study with the use of de Launey angular force constant model we have calculated the phonon 

frequency at zone centre of the In doped both phases of GaN with composition in range 0 to 1. In this study two 

parts of the interatomic interactions are taken into consideration: Central interaction (ion-ion radial interaction), 

which act along the straight  line joining the centers of two nearest neighbors and angular force which depends 

upon the angle between the line joining the moving atoms makes with the line joining their mean position. As 

Interatomic interactions are short range, so interatomic interactions are considered for nearest and next to 

nearest neighbors. We shall let α1 and α’1 signify the force constant linked with central force and angular force 

of the nearest neighbor, while α2 and α’2 denote the force constant associated with central and angular force next 

nearest neighbors. In DAF model with the use of coordinates and direction cosines of the neighbors, in the 

equation of motion given below 
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Where So and Si are the displacements of the reference atom and ith atom and  

̂ is the unit vector along the line joining the reference atom to the ith atom. By using above equation a 

dynamical matrix of 6x6 and 12x12 is formed for cubic phase and wurtzite phase respectively and is given by 

the solution of characteristic equation 

[d(k) - m𝜔2I] = 0 

Where D(k) is (6x6) and (12x12) dynamical matrix in case of cubic and wurtzite phase respectively and I is unit 

vector. The (6x6) dynamical matrix is expanded, at center of the zone to get relation between some vibrational 

frequencies, measured elastic constants and force constants. The relations thus obtained are as given 
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Here m is the mass of InxGa1-x (xMY+(1-x)MIn)and M being mass of N. a is the lattice parameter and C11, C12 

and C44 are the elastic constants. By using experimental values of the zone centre frequency [13] and elastic 

constants as given in [14,15] the force constant has been calculated and are given in table I. 

The obtained dynamical matrix of (12 x 12) is solved at zone centre results in the formulation of the relation 

between four unknown force constants and experimental value of frequency. The following relations between 

force constants and some important vibrational frequencies are obtained. 
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Here m1 and m2 are the mass of InxGa1-x (xMY+(1-x)MIn) and N atom respectively. By using the experimental 

values of the zone centre frequencies, m1 and m2 as the input parameter the above equations are solved to 

calculate force constants at zone centre of the binaries. Vegard’s law is used to calculate the force constants for 

ternary alloys and mass of constituent atoms (P and Q) for any ternary alloy PxQ1-x N are obtained by using 

Vegard’s law as given below. 

𝛼𝑃𝑥𝑄(1−𝑥)𝑁
 = 𝑥𝛼𝑃𝑁+ (1 − 𝑥)𝛼𝑄𝑁  

𝑚𝑃𝑥𝑄(1−𝑥)
 = 𝑥𝑚𝑃+ (1 − 𝑥)𝑚𝑄  

Where  𝑚𝑃  and  𝑚𝑄  are the masses of P (P = Al, Ga, In) and Q (Q = Al, Ga, In) and 𝛼𝑃𝑁  and 𝛼𝑄𝑁 . The 

calculated force constants are given in table II. 
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Table 1: Force constants for ternary alloyInxGa1-xN 

 

 

 

 

 

 

 

 

 

Table 2: Force constants for wurtzite ternary alloy InxGa1-xN 

Alloy 
Composition 

(x) 

Force Constant (10
4
 dyne cm

-1
) Mass InxGa1-x 

(10
-24

gm) 𝛼1 𝛼1
′  𝛼2 𝛼2

′  

InxGa1-xN 

0.0 10.5253 2.8951 0.0933 0.2703 116.39 

0.2 1026008 2.65586 0.05014 0.25638 131.462 

0.4 9.994716 2.41662 0.0698 0.24462 146.534 

0.6 9.729424 2.17738 0.03618 0.22854 161.606 

0.8 9.464132 1.93814 -0.0793 0.21462 176.678 

1 9.1992 1.6989 -.1225 0.2007 191.75 

Results and Discussions: 

 
Figure 1: Phonon mode behavior of ternary AlxGa1-xN 

 
Figure 2: One mode behavior of wurtzite ternary alloy InxGa1-xN 
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Composition (x) in 

alloy  InxGa1-xN 

Force Constant (10
4
 dyne cm

-1
) 

𝛼1 𝛼1
′  𝛼2 𝛼2

′  Mass 

0.0 14.06 0.98 1.95 0.15 116.39 

0.2 13.49 0.99 1.87 0.13 131.462 

0.4 12.92 1.01 1.74 0.09 146.534 

0.6 12.35 1.01 1.71 0.08 161.606 

0.8 11.78 1.02 1.63 0.06 176.678 

1 11.22 1.04 1.55 0.04 191.75 
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It is clear from table I and II that as the dopant concentration increases the mass of mixture InxGa1-x 

increases and force constants decreases. The larger magnitude of force constants indicates the stronger inter 

atomic interaction and vice versa. It is clear from figure I for cubic phase that as the concentration of dopant (In) 

increases mass increases hence force constants decreases results in lowering the zone centre frequency. From 

figure II InxGa1-xN as the concentration of dopant (In) increases the magnitude of the zone centre optical phonon 

frequencies (A1(TO), E1(TO) and E2(high)) decreases which is in harmony with the fact that the stronger 

interaction results in greater value of the optical phonon frequency and vice versa. It is observed for both phases 

of ternary alloys that the optical phonon frequencies show linear variation with the concentration of dopant from 

one end member to other. This shows that this alloys exhibit one mode behavior right through the whole range 

of concentration.  
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