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Abstract—Dynamic load models are necessary for accurate 

monitoring and control of the system during various events as 

well as for better understanding the behavior and the 

characteristics of the system. In this paper, a realistic approach 

of load modelling using real time estimated states is studied. Since 

Phasor Measurement Units (PMUs) are not installed yet at every 

bus, a linear state estimator is used to provide the state of the 

buses without PMUs. The overall impact of the real time 

estimated states and the inaccurate load model parameters are 

studied on the IEEE 39-bus dynamic test system. In addition, the 

realistic approach of load modelling is enhanced by using various 

load types while errors that affect the estimated states, such as 

line parameter errors and measurement gross errors are also 

considered. Furthermore, a sensitivity analysis with inaccurate 

load model parameters is performed to show their effect on the 

results of load modelling.  

Index Terms—Dynamic load model, linear state estimation, real 

time monitoring.  

I. INTRODUCTION  

Power systems are experiencing unprecedented changes in 
structure and topology. Environmental, economical, and 
political reasons have increased the system utilization, while 
utilities tend to operate systems closer to their limits [1]. In this 
sense, simulations and analysis have become more demanding 
and the models need to be more accurate than in the past in 
order to accurately monitor and control the system. Although a 
lot of studies have been performed for accurate modelling of 
the system components, such as generators, transformers, and 
lines, less effort has been given for modelling the loads. The 
need for accurate load models has been well recognized after 
the events in Sweden in 1983, Tokyo in 1987, and Western 
North America in 1996 [2] - [5]. Further, in many cases system 
operators realized that some events could not be reconstructed 
in post mortem simulations with the currently used load models 
[4]. It is therefore important to always have a detailed and 
realistic picture of the system’s operation in order to take the 
appropriate actions when needed.  

 The percentage of electronic devices and motors in the grid 
is rising, affecting the composition, characteristics, and the 
behavior of loads. These changes have accented the need for 

load modelling as they affect more the power system stability. 
The significance of accurate load models, especially for 
predicting the operation of the protection devices, was shown 
in [6]. However, many load models are developed based on 
measurements [7], [8]. But once the load model is developed, it 
is important to study how the data given to the models affect 
the results. In [9] the authors apply different load models in 
order to examine the actual load to be shed. In [10] 
pseudomeasurements from load models are used for analyzing 
bad data in distribution state estimation. The impact of load 
modelling in distribution state estimation is studied in [11] 
where the authors developed a state estimation algorithm 
enhanced by the composite load model. 

 In general, loads are one of the most difficult components 
to model as it is not sufficient to use a single model in the whole 
system. This is because the load characteristics and behavior 
depends on the load composition that changes during the day 
and on the location of the load. As most of the time the model 
is an aggregation of loads, it is not possible to have enough data 
to know the exact composition that is also changing in time 
[12]. It is therefore more suitable to use different load models 
in the system depending on the location and the time that they 
are used.  

A load model is defined as the mathematical representation 
of the active and reactive power with inputs of voltage and/or 
frequency. An error in the output of the model in comparison to 
the actual demand may come either from the use of an 
inappropriate model, inaccurate parameters for the current load 
composition or even a deviation of the available input values in 
relation to the actual ones. It is also important to ensure that the 
model used is chosen carefully so that all the details that need 
to be analyzed, are captured satisfactorily. As the requirements 
have increased and the behavior of the loads has become more 
complex, it is important to be able to capture as much as 
possible, the detailed behavior of loads during an event. For 
such cases the use of a dynamic load model is needed in which 
the measurements (voltage and frequency) from PMUs can be 
utilized as inputs. Although the deployment of PMUs is 
continuously increased, the installation of PMUs at every bus 
of the system is not feasible yet. This is mainly due to the high 
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cost of these measurement devices, and the advanced 
communication and measuring infrastructure needed for 
installing a PMU in the substation. For this reason, there was a 
lot of research activity in the past years to determine the optimal 
PMU locations for rendering the power system observable [13].  

In a PMU-observable system, a linear state estimator can be 
used for providing the power systems states in quasi real time. 
In general, the state estimator provides the power system states 
(i.e., voltage magnitude and angle of all the buses) in 
consecutive time intervals. Although the conventional state 
estimator is intended to capture the static behavior of the power 
system (due to the low reporting rate of the conventional 
measurements), a PMU-based state estimator can be used for 
capturing the dynamic behavior of the power system during a 
contingency [14]. In this sense, the estimated states (voltage 
magnitude) from a linear state estimator can be used as inputs 
to the dynamic load model for capturing the real and reactive 
power changes during an event.  

In this paper, the use of the estimated states provided from 
a linear state estimator in load modelling is examined. An 
Exponential Dynamic Load Model (EDLM) takes as inputs the 
estimated states for calculating the changes of active and 
reactive power in each bus of the system. The effect of 
inaccurate load model parameters, the measurements gross 
error and the line parameter error on the output results of the 
models is also studied.  

The paper is organized as follows. Section II focuses on 
load modelling and the EDLM that is used in this study, 
whereas, Section III explains the theory behind the linear state 
estimation. The study cases and the results are shown in Section 
IV while Section V presents the conclusions.  

II. LOAD MODELLING 

There are various load models that can be used depending 
on the requirements of the utilities; however, all the models 
should present minimum deviation between the calculated and 
the real values of loads. The models may be developed as 
component based or measurement based [12]. The component 
based approach needs data of the load composition in order to 
model the aggregate load, whereas the measurement based 
needs data that are collected during a disturbance. The load 
models can be classified into static and dynamic, where static 
load models cannot capture the dynamic behavior of the load 
during an event whereas dynamic load models are especially 
needed for stability studies.  

In this work, the dynamic load modelling will be 
considered. The most frequent used dynamic load models are 
the composite and the exponential model. The composite model 
is a combination of a static and a dynamic load. For the static 
part the ZIP or the exponential model is used and for the 
dynamic part an induction motor model is used. The composite 
model is usually used when induction motors are the dominant 
component whereas the exponential recovery dynamic load 
model is a mathematical function and it is usually used when 
the load recovers slowly. Other dynamic load models with 
higher complexity are also available but it is more difficult to 
accurately estimate their parameters [12].  

A.  Exponential Dynamic Load Model (EDLM) 

In this study we are using the EDLM as it is widely used 
and is capable of effectively representing loads. Based on this 
model the active power can be expressed as, 
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where 𝑃𝑜 is the active power consumption before voltage 
change, 𝑉𝑜 is the voltage before disturbance, 𝑉 is the measured 
voltage, 𝑃𝑟  is the active power recovery, 𝑃𝑙  is the total active 
power response, 𝑇𝑝 is the active load recovery time constant, 𝑎𝑠 

is the steady state active load voltage dependence and 𝑎𝑡 is the 
transient active load voltage dependence. The electrical 
quantities are in per unit, 𝑇𝑝 is in seconds and the parameters 𝑎𝑠 

and 𝑎𝑡 are dimensionless. It should be noted that similar 
equations are also valid for reactive power [15].  

In the case of this paper the voltage (𝑉) at each time step, 
the voltage before the disturbance (𝑉𝑜) and the active and 
reactive consumption before the voltage change (𝑃𝑜, 𝑄𝑜) are 
taken from the linear state estimation results. 

The equations show a nonlinear dependence of voltage for 
active and reactive power. The nonlinearities produce 
variations of power for large voltage changes. In Fig. 1 the load 
model behavior for a simple voltage drop is presented.  

 

 

For a voltage drop of ΔU from Uo, the active power drops 
instantaneously, but starts recovering exponentially. The load 
may not totally recover to its initial value depending on the 
parameters used. If 𝑎𝑠 is 0 then the load is fully restored after 
the event otherwise it is partially restored. The 𝑎𝑡 parameter is 
used to show the load behavior during the event. The 𝑎𝑡 values 
of 0, 1, and 2 correspond to a constant power, constant current 
and constant impedance load respectively. The 𝑇𝑝 parameter 

shows the time needed for the load to reach 63% of its final 
value [16]. 

III. LINEAR STATE ESTIMATOR 

The linear state estimator that is used in this paper is 
formulated in a Weighted Least Squares (WLS) formulation 
using the following measurement model [17], 

 
Fig. 1. Load response under ΔU step, from Uo level [16] 
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where z is the measurement vector, h(x) is the vector containing 
the equations that relate the measurements to the system states, 
x is the state vector containing the power system states and e is 
the Gaussian noise in the measurements.  

Based on the WLS formulation, the state vector can be 
determined by minimizing the function J(x) as, 

1min  ( ) [ ] [ ],
x

x z h(x) R z h(x)
TJ       (4) 

where R is the measurement error covariance matrix. 

In the case of a linear state estimator, the measurements that 
are provided by the PMUs and used in the estimator are the 
voltage phasors of the buses where the PMUs are installed as 
well as the phasors of the currents that flow through the 
transmission lines emanating from the PMU bus (assuming 
enough PMU measuring channels). In order to have a linear 
relationship between the power system states and the PMU 
measurements, the voltage and current phasors are transformed 
from polar to rectangular form and the measurements can be 
expressed as, 
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where Vr, Vi, Ir, Ii are the real and imaginary parts of the bus 

voltage phasors and the line current phasors, respectively, 

when they are expressed in rectangular form. 

Due to the linear relationship between the states and the 
measurements, the states provided by the linear state estimator 
can be estimated non-iteratively as, 
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It should be noted that using the estimated states the real and 
reactive power injection of each bus (which is actually the load 
of the bus (active and reactive power) in case of no other 
attached element on the bus) can be calculated as, 
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Vi,, θi the voltage magnitude and phase angle at bus i, Gij+jBij 

is the ijth element of the bus admittance matrix, and i is the 

set of buses directly connected to bus i. 

 

IV. CASE STUDIES 

The case studies that are presented in this paper investigate 
the impact of using real time estimated states in the EDLM 
dynamic load model for calculating the actual power in the 
system during an event. Three case studies will be investigated 
in order to enhance the realistic approach of the study: (1) 
sensitivity analysis for erroneous load model parameters (2) 
dynamic load model considering gross errors in PMU 

measurements (3) sensitivity analysis for erroneous line 
parameters. The case studies are performed on the IEEE 39-bus 
dynamic test system [18] that is implemented in the DigSilent 
software. It should be noted that 16 PMUs are installed in the 
system and the estimated states provided by the linear state 
estimator are used. The location of the installed PMUs are 
shown in Table I. The PMUs were placed in such a way to have 
a full observable system by PMUs while 3 more PMUs in buses 
3, 8, and 16 are added to enhance the measurement redundancy.  

 

Further, the simulated PMU measurements that are used in 
the linear state estimator are subjected to Gaussian noise added 
to the real PMU measurements due to the instrument 
transformers and the measurement device [19] as, 
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where ,V
VTu ,V
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
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are the voltage and current 

transformer standard uncertainties associated to the magnitude 

and the phase of the respective quantity. 
V
PMUu , V
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

,
I
PMUu ,

 I
PMUu


are the standard uncertainties of the PMUs associated to 

the magnitude and the phase of the voltage and current 
respectively. The instrument transformer and the PMU standard 
uncertainties in (9)-(12) are calculated as,  
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where ,V
VTe   , , IV

CTVT
I
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are the instrument transformers 

maximum magnitude and angle errors defined by the 
manufacturer and are shown in Table II (assuming a 0.5 

accuracy class transformers); ,V
PMUe   , , IV

PMUPMU
I
PMU eee


are the 

PMU maximum magnitude and angle errors as shown in Table 

III [20];  measV and   measI are the voltage and current 

magnitudes. 
It should be noted that in this paper it is implicitly assumed 

that the measurement errors lie with a 95% probability in the 
interval bounded by the maximum errors defined in the 
manufacturers’ data (Table II and Table III). Since the 
distribution of the measurement errors is assumed to be normal, 
the choice of this particular coverage probability leads to having 
the measurement errors lie between -1.96u to +1.96u. 
Therefore, in this case the coverage factor of the measurement 
error distributions is equal to 1.96 and the standard uncertainties 
for each measurement type can be calculated by dividing the 
maximum measurement error by 1.96 as in (13)-(16). 

Table I. Locations of PMUs 

Bus number 

2, 3, 6, 8, 9, 10, 13, 14, 16, 17, 19, 22, 23, 25, 29, 34 

 



 

 

Moreover, the PMU measurements that are used in the 
linear state estimator are weighted by using the combined 
measurement uncertainty of each PMU measurement which can 
be calculated as,  
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The EDLM (implemented in Matlab) uses the voltage 
magnitude (V) at each time step (provided by the linear state 
estimator) and the voltage magnitude (V0) and the active and 
reactive power (P0, Q0) before the occurrence of the fault again 
taken from the state estimation results. 

The Mean Absolute Error (MAE) is used as a metric of 
comparison between the actual active/reactive power and the 
calculated power either from the equations (7) and (8) or from 
the EDLM. The MAE is calculated as,  
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where f is the computed active/reactive power in each case, y is 
the actual measurement and n is the number of time steps. It 
should be noted that the simulation duration was 20 s and the 
active power for each load was calculated every 0.02 s (time 
step) as the execution rate of the linear state estimator. The total 
MAE is an aggregation of all the individual MAEs (MAE for 
each load in the IEEE 39-bus system) for each case study.  

A. Case study 1: Sensitivity analysis for erroneous load 

model parameters 

In case study 1, a sensitivity analysis is performed for 
erroneous load model parameters. The sensitivity analysis of 
the error in the load parameters is significant since it will show 
how the results are changing with inaccurate load model 
parameters and how much error is acceptable in such 
simulations. In addition, in this case, multiple load models 
where used in the system in order to enhance the realistic 
approach of the case study. In reality not all loads of a power 
system have the same behavior and characteristics so they are 
represented with different parameters. Three sets of load model 
parameters are used as shown in Table IV. 

 

In this case study, the generator G6 that is connected on bus 
35 is disconnected from the system at t=2 s. A comparison 
between the actual active and reactive power of the system 
(taken from DigSilent) and the calculated active and reactive 
power is presented using: (a) equation (7) and (8), (b) EDLM 
with inaccurate parameters with a range of parameter error [-
50%, 50%] and (c) EDLM with accurate parameters. The total 
MAEs for case 1 are tabulated in Table V.  

 

As it is shown in Table II for a parameter error larger than -
30% and 30% the EDLM model gives worst results than the 
power injection calculations (case (a)). In this sense, through 
this sensitivity analysis it is indicated how important it is to use 
a load model with accurate parameters but also the importance 
to frequently update the parameters used in a power system. 
Since load characteristics are changing during the year but are 
also changing during the day, parameter errors in the load 
models are usually expected. However, based on the sensitivity 
analysis, it is important to try to keep this error as small as 
possible to have accurate results. This is underlined in the case 
that EDLM has exact parameters where the MAE is 
considerably smaller than the respective one of case (a).  

B. Case study 2: Dynamic load model considering gross 

errors in PMU measurements 

In case study 2, the effect of PMU measurement gross errors 
on the dynamic load modelling is considered. In general, gross 
errors of measurements are due to telemetry failure, drift or bias 
of the measurement device, and in case of PMUs due to loss of 
GPS signal. In this case study, the same load parameters as 
shown in Table IV are used. The generator G6 is disconnected 
at t=2 s as in case study 1, but the effect of adding a gross error 
of 5%, 10% and 15% on the measurements (both in voltage and 
current magnitude) taken from PMUs connected on buses 2, 14 
and 34 is studied. A comparison between the actual active and 
reactive power of the system (taken from DigSilent) and the 
calculated active and reactive power using: (a) equations (7) 

Table II. Maximum errors-0.5 accuracy class instrument transformers 

Voltage transformers Current transformers 

Percentage 

of voltage 

magnitude 
error 

Phase 
displacement 

(degrees) 

± Percentage of 

current error at 

percentage of rated 

current 

± Phase displacement 

at percentage of rated 

current (degrees) 

±0.5 ±0.333 
1 5 20 100 120 1 5 20 100 120 

- 1.5 0.75 0.5 0.5 - 1.5 0.75 0.5 0.5 

 

Table III. Measurement devices maximum errors 

Voltage magnitude 

(%) 

Current magnitude 

(%) 

Phase angle 

(degrees) 

±0.02 ±0.03 ±0.54 

 

Table IV. Assigned load model parameters of case study 1 

Loads 𝒂𝒔 𝒂𝒕 𝑻𝒑 𝒃𝒔 𝒃𝒕 𝑻𝒒 
3, 21, 23, 24, 25 -0.32 1.65 70 -0.48 2.22 78 

4, 7, 15, 16, 18, 
27, 31 

0.44 4.02 1.78 4.9 148.7 55.5 

8, 12, 20, 26, 
28, 29, 39 

0.79 4.84 4.6 5.03 363.8 73 

 

Table V. Summarized results of case study 1 

Case Studies 
Total MAE 

P  
(MW) 

Q 
(MVAr) 

(a) 
Real and reactive power 
injection calculation using (7) 
and (8) vs Actual measurements 

42.857 72.988 

(b) 

EDLM with 
parameter error vs 
Actual 
measurements 

-50 % 53.564 38.608 

-40 % 43.086 31.915 

-30 % 32.703 25.311 

-20 % 22.646 18.821 

-10 % 13.481 12.590 

10 % 14.004 9.565 

20 % 23.994 12.991 

30 % 34.410 17.942 

40 % 44.875 23.849 

50 % 55.334 29.983 

(c) 
EDLM with exact parameters vs 
Actual measurements 

8.378 8.692 

 



and (8) and (b) EDLM with accurate parameters is presented. 
The summarized results are tabulated in Table VI.  

 

As noticed from the results, the erroneous measurements 
captured by the three PMUs have a negative impact on the 
calculation of the active and reactive power using equations (7) 
and (8). Even a 5% gross error has significantly increased the 
total MAE of the active power. The use of the EDLM model is 
able to reduce slightly the MAE. However, this diminution is 
not significant and the error is still large. This large MAE is 
mainly due to the high dependence of EDLM on the accuracy 
of the 𝑃𝑜 and 𝑄𝑜 provided by the linear state estimator. To 
reduce the effect of the inaccurate 𝑃𝑜 and 𝑄𝑜 provided by the 
linear state estimator ((7) and (8)) to the EDLM, conventional 
real and reactive power injection measurements may be used 
for 𝑃𝑜 and 𝑄𝑜. The results with a 15% gross error using the 
EDLM with exact parameters and (a) 𝑃𝑜 and 𝑄𝑜 calculated by 
(7) and (8) using the results from the state estimation and (b) 𝑃𝑜 
and 𝑄𝑜 from conventional measurements is presented in Table 
VII. 

 

As shown in Table VII in subcase b) the MAE of the EDLM 
model is much smaller meaning that the active and reactive 
power are close to the actual. As a result, in case that there is a 
doubt for the accuracy of the PMU measurements it is better to 
use the EDLM model in combination with the conventional real 
and reactive power injection measurements (if they are 
available).  

C. Case study 3: Sensitivity analysis for erroneous line 

parameters 

In case study 3, except from the measurement noise that is 
already considered in all cases, the uncertainty of the line 
parameter errors is also considered. The uncertainty of the line 
parameter errors has been added to lines 3-4, 4-5, 7-8, 8-9, 15-
16, 16-21, 20-34 and 25-26. A range of errors up to 30% is 
examined. In addition, static loads have also been added to the 
power system resulting with four load types in the system as 
shown in Table VIII. 

 

In this case a load increase occurs at t=2 s. The active power 
of loads 15, 20 and 39 increases by 30% and their reactive 
power by 20%, whereas the active power of loads 8 and 16 
increases by 20% and their reactive power by 10%. A 
comparison between the actual measurements and (a) the active 
and reactive power injection calculation using (7) and (8) and 
(b) the EDLM with exact parameters is shown in Table IX for 
10%, 20%, and 30% line parameter errors.  

 

As the results indicate, the line parameter error may 
significantly increase the error calculation of the active and 
reactive power. Even in some cases where the error is large, the 
use of the EDLM may not always improve the result but is still 
comparable to (a). As the line parameter error gets larger, the 
total MAE also increases. In order to reduce the effect of the 
inaccurate 𝑃𝑜 and 𝑄𝑜 on the EDLM the use of conventional 
power injection measurements is also studied in this case. The 
results for a 30% line parameter error is shown in Table X. 

 

In case (b) when 𝑃𝑜 and 𝑄𝑜 for EDLM are taken from 
conventional measurements the MAE is significantly reduced. 
It is important to use the conventional measurements when the 
line parameter errors may be inaccurate. This will ensure that 
the active and reactive power calculation using the EDLM is 
close to the actual values.  

V. CONCLUSIONS  

This paper presents a realistic approach for load modelling, 
by using real estimated states in a dynamic load model. Multiple 
load types (with different parameters) are added to the system 
as in reality not all the loads have the same behavior and 

Table VI. Summarized results of case study 2 

 

Gross 

Error 

Case Studies 

(a) Real and reactive 

power injection 
calculation using (7) 

and (8) vs Actual 

measurements 

(b) EDLM with 

exact 
parameters vs 

Actual 

measurements 

T
o

ta
l 

M
A

E
 P 

(MW) 

0% 42.857 8.378 

5% 155.240 128.447 

10% 293.500 251.111 

15% 430.770 360.756 

Q 

(MVAr) 

0% 72.988 8.692 

5% 142.671 93.042 

10% 237.983 176.565 

15% 327.487 255.136 

 

Table VII. Summarized results of case study 2 for 15% gross error 

considering conventional measurements 

Case Studies Total MAE 

EDLM with exact parameters 

vs Actual measurements 

P 

(MW) 

Q 

(MVAr) 

(a) 
𝑃𝑜, 𝑄𝑜 from equations (7) 
and (8) 

360.756 255.136 

(b) 
𝑃𝑜, 𝑄𝑜 from conventional 
measurements 

69.056 52.832 

 

Table VIII. Assigned load model parameters of case study 3 

Loads 𝒂𝒔 𝒂𝒕 𝑻𝒑 𝒃𝒔 𝒃𝒕 𝑻𝒒 
1,10,11,12,13 -0.32 1.65 70 -0.48 2.22 78 

2,3,8,15,18 0.44 4.02 1.78 4.9 148.7 55.5 

4,5,9,14,16,17,19 0.79 4.84 4.6 5.03 363.8 73 

4,6,7,9,19  static 

 

Table IX. Summarized results of case study 3 

 

Line 

Parameter 

Error 

Case Studies 

(a) Real and 
reactive power 

injection 

calculation using 
(7) and (8) vs 

Actual 

measurements 

(b) EDLM 

with exact 

parameters vs 
Actual 

measurements 

T
o

ta
l 

M
A

E
 P 

(MW) 

0% 32.093 4.534 

10% 84.170 78.438 

20% 149.566 151.964 

30% 214.553 225.723 

Q 

(MVAr) 

0% 61.711 6.293 

10% 86.933 40.606 

20% 126.503 80.392 

30% 159.414 127.426 

 

Table X. Summarized results of case study 3 for a 30% line parameter 

error considering conventional measurements 

Case Studies Total MAE 

EDLM with exact parameters 

vs Actual measurements 

P 

(MW) 

Q 

(MVAr) 

(a) 
𝑃𝑜, 𝑄𝑜 from equations (7) 

and (8) 
225.723 127.426 

(b) 
𝑃𝑜, 𝑄𝑜 from conventional 

measurements 
50.265 14.051 

 



characteristics. In addition, except from the measurement noise 
that is considered in all cases, (1) erroneous load model 
parameters, (2) PMU measurement gross errors and (3) line 
parameter errors are also considered. All these are likely to be 
present in a real system so it is interesting to examine the effect 
of these factors on the accuracy of the calculated results as well 
as how the error between the calculated and the actual active 
and reactive power can be reduced. A sensitivity analysis is 
performed for each case to study the impact of the examined 
factors on the results. The sensitivity analysis of the error in the 
load parameters is significant since it shows how the results are 
changing with inaccurate load model parameters and how much 
error is acceptable in such simulations. As shown in the results, 
when no load modelling is used, the error is considerable while 
in the cases that the load models are used for computing the 
active and reactive power the total MAE decreases (even with 
error in the parameters). When the PMU measurements gross 
errors are considered, it is shown that the results may be much 
more inaccurate. Similar results are derived when the 
inaccurate line parameters are considered. The MAE may 
become large for both power injection calculations and EDLM 
when the line parameter error is also large. However in both 
case study 2 and case study 3 when using the EDLM in 
combination with conventional power injection measurements 
for 𝑃𝑜 and 𝑄𝑜, MAE is significantly reduced meaning that the 
active and reactive power are close to the actual. As a result, in 
case that PMU measurements contain gross errors or the line 
parameters are erroneous it is more secure to use conventional 
measurements for 𝑃𝑜 and 𝑄𝑜. In conclusion, it is important to 
minimize as much as possible the errors in the system, 
recognize erroneous measurements and have accurate load 
model parameters that must change during different periods and 
be frequently updated. It should be noted that the estimated 
states could also be used to obtain the EDLM parameters but 
their inaccuracy will be propagated to the parameters.  

The results show the importance of using an accurate load 
model for the system simulations in order to have an accurate 
visualization of the power system operating condition in case 
of a contingency. In particular, considering that during an event 
a certain amount of load should be shed by the operator, in case 
of the power injection calculation the large MAE indicates that 
a large amount of load may be unnecessarily shed by operators 
(leaving a lot of customers without electricity). On the other 
hand, the correct load model may prevent the inconveniences 
and loss of revenue resulting from the unexpected loss of power 
for the customers. 
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