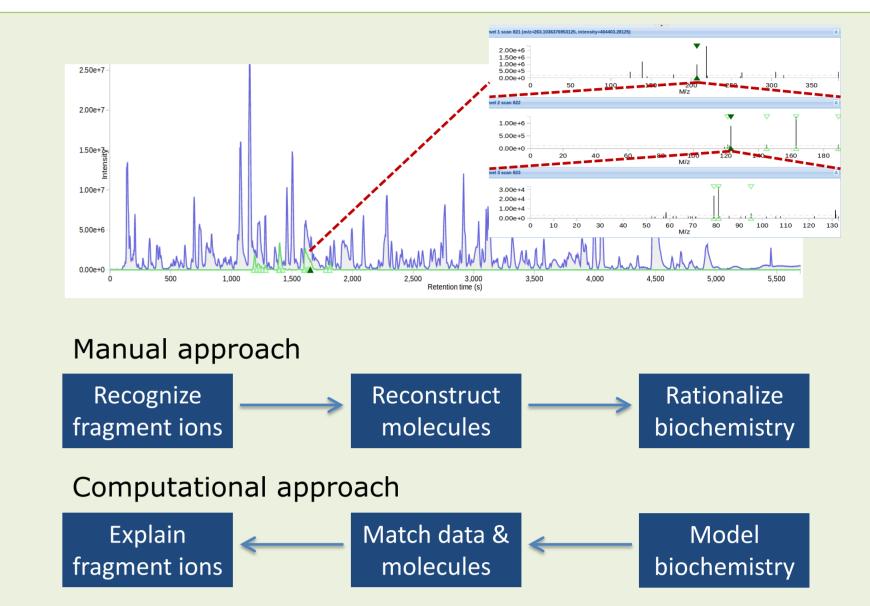
brought to you by CORE

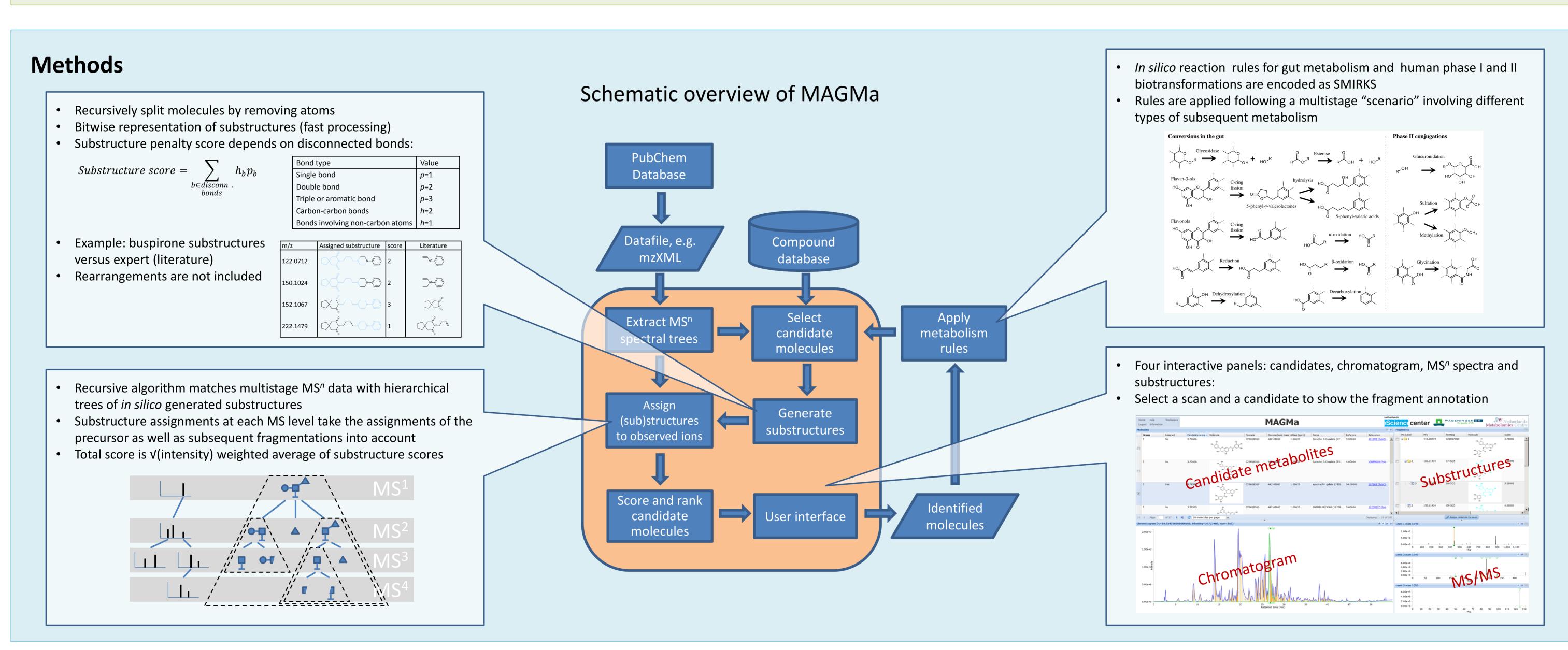
provided by ZENODO

WAGENINGEN UNIVERSITY

WAGENINGENUR

Automatic metabolite annotation in complex LC-MS^(n ≥ 2) data using MAGMa


<u>Lars Ridder</u>*, Justin J.J. van der Hooft, Stefan Verhoeven, Ric C. H. de Vos, Raoul J. Bino, Jacques Vervoort *Laboratory of Biochemistry, Wageningen University, The Netherlands (lars.ridder@wur.nl)


Problem

• The manual annotation of unknown compounds in complex LC-MSⁿ datasets is time-consuming and requires specific knowledge of the detected compound classes and their fragmentation patterns in the mass spectrometer.

Objective: develop algorithms and tools (MAGMa) to

- automatically interpret multistage MS^n spectral trees based on substructures of candidate molecules
- systematically process untargeted LC-MSⁿ datasets for comprehensive compound annotation
- predict candidate molecules not present in chemical databases

Evaluation of candidate ranking

ranking statistics

MS/MS of 100 drugs, ramp 10-50 eV

- On average 248 candidates per dataset

selected spectra

3rd quartile

merged spectra

3rd quartile

median

			rank	rank	rank	rank
MAGMa, <i>NBD</i> = 2			4	35	4	17
MAGMa, <i>NBD</i> = 3			3	17.5	3	11
MAGMa, <i>NBD</i> = 4			3	14.5	3	9
Hill et al. b			4 ^a	17.5 a		
MetFrag ^a			·	27.10	4.5 a	11.75 ^a
	C Bioin	form	l <u></u>	b Hill et al.	Anal. Chem 2008 , 80	
Won et an Elwa		, , , , , ,			7a e.r.e.m 2000 , e.	,, 337 1
CASMI	#	Com	pound		# candidates	rank
2013	1	Feruloyl tyramine			1084ª	1
	2	Feruloyl putrescine			631 ^a	3
	3	N2-Acetyl glutaminyl leucinamide			370	17
	4	Dihydrochalcone			825	78
	5	Isoprothiolane			350	2
	6	Phosphatidyl-6-acetyl-glucose			7	1
	7	Cinnamtannin A3			17	1
	8	Prodelphinidin C2			1	1
	9	Chlorpyrifos			113	1
	10	VAL-HIS-LEU-THR-PRO-VAL-GLU-LYS			20	1
	11	Demethoxycurcumin			906 ^{a,b}	6
	11	Demethoxycurcumin (tautomer 1)			906 ^{a,b}	4
didates were by refscore > 5. GMa results	12	Baicalein			813 ^b	271
	13	EST; Aloxistatin			207	42
	14	Tetrahydroalstonine			1583ª	5
ited retrospec-	15	2-(Perfluorooctyl)ethanol			720 ^b	2
		1				

Application: urinary metabolites of compounds in green tea PubChem candidates LC-MSⁿ MAGMa Predict candidate metabolites MAGMa MAGMa T1 knowns: median rank 3.5 26 new assignments 77% not in PubChem

Conclusions

16 Ofloxacin

- MAGMa successfully prioritizes correct candidate molecules based on (multistage) MSⁿ spectral data, and automatically assigns relevant substructures to multiple levels of MS fragments.
- Application to untargeted LC-MS n profile of green tea assisted putative identification of new compounds.
- The combination with in silico biotransformation lead to annotation of novel urinary metabolites.
- MAGMa makes chemical interpretation of LC-MSⁿ data more systematic and faster.

References

- Van der Hooft et al. *Anal. Chem.* **2011,** *83*, 409
- Ridder et al. Rapid Commun. Mass Spectrom. **2012**, 26, 2461.
- Van der Hooft et al. *Anal. Chem.* **2012,** *84*, 7263
- Ridder et al. *Anal. Chem.* **2013,** *85,* 6033.
- Ridder et al. *Anal. Chem.* **2014**, **DOI:** 10.1021/ac403875b