The Pristine Survey

C. Allende Prieto (Instituto de Astrofisica de Canarias) and the Pristine Collaboration

Metal-poor stars

Primordial nucleosynthesis: H, He, Li

Spallation in the ISM: B, Be

Nucleosynthesis in stars (and supernovae): all metals

- First metal-poor stars recognized early, in the 1950's (Chamberlain & Aller 1951)
- **Big picture complete with the B**²**FH (1957) paper**
- Metal-poor stars then used to study the formation of the Galaxy
- UV excess used as a proxy for metallicity and used in the ESL model of formation (Eggen, Sandage & Linden-Bell 1962)

Large-scale search for metal-poor stars using Schmidt telescopes and objective prism observations: HK survey of Beers, Preston & Shectman (1985)

Medium-resolution follow-up observations to follow for about a decade

Hamburg-ESO survey (HES; Christlieb et al. 2002) used to select candidates, which brings the first stars at [Fe/H]<-5

SDSS enters the scene, with 1e6 spectra to date, from which several stars at -6<[Fe/H]<4 have been identified (e.g. Placco et al. 2015; Allende Prieto et al. 2015; Aguado et al. 2016, 2017) Vast [C/Fe] enhacements are usual, but there are exceptions - see Caffau et al. (2014) which sets the record for non-carbon enhanced metal-poor stars at [Fe/H] \sim -5

Narrow-band photometric surveys: Skymapper (1.35m at Side Spring), Pristine (3.6m CFHT at Mauna Kea) and J-PLUS (0.8m at Javalambre)

The iron-poor record holder sits at [Fe/H]<7 (Keller et al. 2014) identified from the follow-up of Skymapper candidates

Pristine

٨	watermark.pdf — TLA_large	- + ×
2587 (1 of 18)		167,89% 💙 🔳 🔳
Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY		Land Register of the Second Register of the S
MNRAS 471 , 2587–2604 (2017) Advance Access publication 2017 May 5		doi:10.1093/mnras/stx1068

The Pristine survey – I. Mining the Galaxy for the most metal-poor stars

Else Starkenburg,¹* Nicolas Martin,^{2,3} Kris Youakim,¹ David S. Aguado,^{4,5} Carlos Allende Prieto,^{4,5} Anke Arentsen,¹ Edouard J. Bernard,⁶ Piercarlo Bonifacio,⁷ Elisabetta Caffau,⁷ Raymond G. Carlberg,⁸ Patrick Côté,⁹ Morgan Fouesneau,³ Patrick François,^{7,10} Oliver Franke,^{1,11} Jonay I. González Hernández,^{4,5} Stephen D. J. Gwyn,⁹ Vanessa Hill,⁶ Rodrigo A. Ibata,² Pascale Jablonka,^{7,12} Nicolas Longeard,² Alan W. McConnachie,⁹ Julio F. Navarro,¹³ Rubén Sánchez-Janssen,^{9,14} Eline Tolstoy¹⁵ and Kim A. Venn¹³

Affiliations are listed at the end of the paper

Accepted 2017 April 28. Received 2017 April 28; in original form 2017 January 24

callende@fit: ~/work/... 📔 callende@fit: ~/work/... 🖳 watermark.pdf — TLA... 📴 allende teruel.odp - Li...

Pristine

0.2

Wavelength (A)

Wavelength (A)

0.0

Calibration

Pristine footprint overlaps with SDSS ugriz imaging

100-200s exposures reaching down to g~ 21 mag

Relative calibration of the photometry

[Fe/H] scale tied to SEGUE

Pristine [Fe/H] estimates

- Good sensitivity down to [Fe/H]~ -3 or -3.5
- Spectroscopic follow-up based on the 2.5m INT and the 4.2m WHT
- **Over 50 nights already executed**
- Reduction pipeline based on IRAF (K. Youachim)

Analysis pipeline based on FERRE (D. Aguado)

Pristine Ca H&K

Pristine follow-up

Efficiency

- ~80% at [Fe/H]<-2
- ~20% at [FE/H]<-3
- Already have some stars at [Fe/H]<-4
- Follow-up will go on and piggy-back on the WEAVE surveys

J-PLUS

Smaller telescope but

- wider area: 8500 deg² (idr201709 ~ 500 deg²)
- 12 passbands (including several narrow-band ones)

Smaller telescope but

- wider area

many colors (including several narrow-band ones)

Smaller telescope but

- wider area

many colors (including several narrow-band ones)

J-PLUS

Based on ATLAS9 model atmospheres (Meszaros et al. 2012) and the ASSET spectral synthesis code (Koesterke 2009)

Convolved stellar spectra, inject noise and attempt to recover the stellar parameters using FERRE (Allende Prieto et al. 2006)

The search optimizes the agreement between model and observed colors using the Boender-Timmer-Rinnoy Kan global algorithm, interpolating in a precomputed grid held in memory

E(B-V) known from the Schlegel et al. 1998 maps

J-Plus simulations

Very good results at high s/n (=80)

16

J-Plus simulations

Which degrade significantly at S/N~10

17

Rms scatter between the spectroscopic and photometric parameters (g<18):

150 K for Teff, 0.5 dex for [Fe/H]

Spectroscopic follow-up of metal-poor candidates

ISIS on the 4.2-m WHT

Short exposures (S/N~10-30) to check the photometric metallicities for a few targets

Targets identified a week ago, spectra taken immediately by D. Aguado

	ISIS		JPlus	
	Teff	[Fe/H]	Teff	[Fe/]
A108.82201D38.6826	5245	-2.05	5247	-2.44
A109.81562D38.4683	6009	-2.0	6377	-2.51
A110.22458D39.1538	5299	-2.0	4995	-2.5
A115.74627D41.6721	5236	-2.09	5055	-2.4

Spectroscopic follow-up of metal-poor candidates

ISIS on the 4.2-m WHT

Conclusions

Photometric narrow-band searches for extremely metal-poor stars work

- Pristine is targeting 3000 deg² using MegaCam on the 3.6m CFHT
- Pristine has a narrower passband than Skymapper, 10 nm-wide. J-Plus's J395 filter has a similar width
- (Significant) Spectroscopic follow-up required, but a few stars at [Fe/H]<-4 have already been found
- J-PLUS is in good shape to carry out similar work, and EDR data already allows for a clean separation between thick disk and halo stars