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• Interdisciplinary Training Network in Multi-Actuated Ground Vehicles

• Total Contribution: 3 833 413,2 €

• Participants

ESR 13: Manuel Acosta

Ph.D. “ADAS function development based on direct wheel force estimation.”

ITEAM Project
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1. Introduction

• Highly Skilled Autonomous Vehicles: “Development of 

autonomous vehicles capable of performing safely at the limit of 

adhesion”.
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We dominate asphalt: 

-ESC is the best solution.

-Minimize the body-slip for 

maximum vehicle controllability.

Loose surfaces…? 

-Tire friction characteristics change. 

-“Aggressive” manoeuvres are 

required to maintain the vehicle 

stability (e.g. drift control) 
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• Achieving maximum lateral acceleration in loose surfaces

Asphalt (Peak force occurs at low slip angles) Gravel (Peak force occurs at high slip angles)

𝛽

autosport.com.ruYoutube.com
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Friction-slip shape changes

• Tyre model-less approaches

Increased modelling complexity

Alternatives?

• Data-based approaches

1. Introduction

5



Automotive Virtual Sensing

• Three-axis tyre forces

• Road properties

Expert driving skills

• Drift control + Path following

• Yaw moment tracking
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Virtual Tyre Force sensors

Agile Autonomous Vehicles
State estimation

State feedback

Control

1. Introduction
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2. Vehicle State Estimation

• 2.1. Virtual Tyre Force Sensors (Lateral Forces):

– Tyre modelling: Data-based approach (Neural Networks).

– Planar dynamics modelling: Kalman Filtering (UKF, EKF). 
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• Training Datasets: Step Steer Manoeuvres

• Inputs to NN: Axle wheel slip, Longitudinal 

acceleration.

• Advantages: 

• Tyre model-less approach. 

• Accurate estimation of lateral velocity 

in non-constant speed manoeuvres 
(e.g. braking in a turn).

[2]
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2. Vehicle State Estimation

• 2.1. Virtual Tyre Force Sensors (Longitudinal Forces):

– Tyre modelling: Stochastic, Adaptive Random-Walk approach.

– Wheel rotating dynamics modelling: Linear Kalman Filter
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• Concept: Adjust the process covariance 

matrix according to the longitudinal transient 

content. (RPM’s, Brake pedal position)

• Advantages:

• Wheel speed differentiation is avoided.

• Tyre model-less. 

[2]
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2. Vehicle State Estimation

• 2.1. Virtual Tyre Force Sensors (Vertical Forces):

– Weight Transfer Model: Elastic and Geometric Weight Transfer (WT).

– Road disturbances: Wheel dynamic Loads.   
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• Objectives: Individual vertical tyre force 

estimation considering road disturbances.

• Advantages: 

• Delay (front-rear axles) and timing 

(kinematic WT, damping WT, Springs 

WT) is considered.

• Avoid complex suspension kinematics 

modelling using a data-based 
approach. (e.g. roll centre migration) 
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2. Vehicle State Estimation

• 2.1. Virtual Tyre Force Sensors (Integration / Three-axis sensor)

– Integration: Modular structure.
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• Objectives: Avoid the complexity of tuning a 

single state estimator of large dimensions. 

Use sensors available in commercial 

vehicles.

• Advantages: 

• Improved longitudinal “true” velocity 

estimation. Use of longitudinal tyre 

forces instead of integrating the 

longitudinal acceleration.

[2]
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2. Vehicle State Estimation

• 2.2. Road identification (Grip potential):

– Methodology: Lateral slip-based approach.

– Road friction properties: Neural Networks trained at different grip coefficients. 
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• Objectives: Propose an alternative to 

nonlinear regression methods. Reduce the 

lateral excitation threshold.

• Advantages: 

• Analytical friction model is not 

required.

• Simple linear interpolation algorithm 

combined with Recursive Least 

Squares.

[3]
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2. Vehicle State Estimation

• 2.2. Road identification (Grip potential):

– Simulations in IPG Car Maker. Tyre model: MF 6.1 205_65 / R16

– Next steps  Try to apply a similar methodology in loose surfaces.

ADAC Lane Change in low mu (𝝁 = 𝟎. 𝟓) Circle mu-jump transitions
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[3]
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2. Vehicle State Estimation

• 2.2. Road identification (Grade and bank angle):

– Chassis orientation angles: Kinematic-based (Euler angle rate integration), 

steady-state (Recursive Least Squares) models.

– Signal Fusion: Gain scheduling using a Fuzzy Logic Controller.  
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• Objectives: Must be suitable for transient 

and steady-state situations. Use sensors 

available in commercial vehicles. 

• Advantages: 

• GPS not required. 

• Robust against kinematic drift (RLS 

provides absolute measurements). 

[4]
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2. Vehicle State Estimation

• 2.2. Road identification (Grade and bank angle):

– Simulations in IPG Car Maker. Axle lateral forces in Nordschleife Track.
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[4]
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3. Agile Manoeuvring

• 3.1. Yaw Moment Tracking:

– Operating with large body-slips: High yaw moments are required to change 

the vehicle attitude fast. 
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Asphalt Gravel

Operation over the full 

handling region (MMD) 

is necessary.

Operation over the full 

handling region (MMD) 

is necessary.

𝛽
𝛽 𝛽
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3. Agile Manoeuvring
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• High agility regions

– How to achieve high agility regions?

– A combination of sideslip + steering 

input is required.

– Is this intuitive / easy to perform? No!! 

autonomous action  Finite State 

Machine

• Sideslip + Steering input

– Step input: Maximum yaw moment 

given by the front axle lateral force.

– Sideslip + step input: Max. yaw 

moment generated by rear and front axle 

forces.

Step input Sideslip + step input
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3. Agile Manoeuvring

• 3.2. Rally Driver Modelling

– Regular “racing line” driver models: Try to minimize the heading error.

– Rally “drift” driver model: Path following and drift control must be carried out 

simultaneously.
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• Concept: Alternate between a regular driver 

model and a rally driver model depending on 

the road characteristics.

• Low body-slip driving at high speed. 

(Straight line)

• High body-slip control for reduced radii. 

(Maximum lateral acceleration)   

[6]
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3. Agile Manoeuvring

• 3.2. Rally Driver Modelling

– Drift control + Path following: Proportional curvature correction of the drift 

equilibrium solutions. Adaptive LQR control. 
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• Concept: “Correct” the drift equilibrium 

solutions in an upper-level layer to minimize 

the lateral deviation error.

• Use an Adaptive LQR to control the vehicle 

around the operating points dictated by the 

upper-level layer.   

[6]
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3. Agile Manoeuvring

• 3.2. Rally Driver Modelling:

– Drift control + Path following: Agile and Step Transitions. Change the vehicle 

attitude with minimum lateral deviation.
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• A set of trajectories is computed offline.

• The transition is executed when the area 

between the predicted trajectory and the 

reference path is minimum.    

• Objective for next steps: Integration of yaw 

moment tracking and motion planning for 

minimum lateral deviation.

[6]
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3. Agile Manoeuvring

• 3.2. Rally Driver Modelling:

– Drift control + Path Following: Simulation case on arbitrary path (arc, clothoid, 

and straight line segments) using a Single Track vehicle model.
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[6]
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• Co-Pilot Concept:

– ADAS system: Lateral collision avoidance on loose surfaces. 
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3. Agile Manoeuvring

• Concept: Perform an aggressive drift 

manoeuvre to maximize the lateral 

acceleration.  

• Step transition (high yaw moment) is 

required to build up a large body-slip.

• The system stabilise the vehicle around the 

operating body-slip with drift control.

[6]
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• Co-Pilot Concept:

– ADAS system: Simulation scenario. Vehicle approaching a turn at excessive 

speed in gravel. 
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3. Agile Manoeuvring

• Large deviation with a racing line driver 

model (ADAS OFF). Can be seen as a 

conventional stability system that seeks to 

minimize the body-slip.

• Deviation is minimized when the ADAS 

system is active. The lateral acceleration is 

maximized and the vehicle follows the path 

at high speed.  

[6]
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4. Conclusions 

• Non-conventional approaches to vehicle stability (agile 

manoeuvring) might be beneficial in loose surfaces.

• Accurate vehicle state estimation is fundamental to implement these 

solutions. 

• Virtual Sensing is required in order to offer affordable and robust 

alternatives to Wheel Force Transducers or SmartTyre concepts. 

Future Directions

• Integration of vehicle state estimation and drift control.
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