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Abstract

Recently it was discovered that a transient activation of transcription factor NF-κB can give cells 

properties essential for invasiveness and cancer initiating potential. In contrast, most oncogenes to 

date were characterized on the basis of mutations or by their constitutive overexpression. Study of 

NF-κB actually leads to a far more dynamic perspective on cancer: tumors caused by diverse 

oncogenes apparently evolve into cancer after loss of feedback regulation for NF-κB. This event 

alters the cellular phenotype and the expression of hormonal mediators, modifying signals 

between diverse cell types in a tissue. The result is a disruption of stem cell hierarchy in the tissue, 

and pervasive changes in the microenvironment and immune response to the malignant cells.
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1. Introduction

The role of transcription factor Nuclear Factor kappa B (“NF-κB”) in cell physiology has 

been reviewed extensively, and excellent articles describe mutations on genes that encode 

for NF-κB regulators in lymphoid malignancy [1]. Such mutations are relatively rare in solid 

tumors [2]. Lineages that give rise to solid tumors normally restrict their growth to generate 

solid tissue – this restriction can be overcome by NF-κB in carcinogenesis [3]. However, in 

recent years, study models for adenocarcinoma show oncogenes acting through NF-κB to 

cause cancer [1,4,5]. We selected a few of these models to present key changes in cell 

signaling to highlight the common theme. Lastly, we use leukemia as a model for metabolic 

homeostasis. Cell lineages giving rise to leukemia differ from adenocarcinoma in that they 

possess a natural capacity to initiate rapid clonal growth and migration.

NF-κB is a dimer of proteins with Rel homology domain at the N-terminus (e.g. RelA/p65, 

RelB, NF-κB1/p50, NF-κB2/p52), which forms a complex the Ikappa B protein (IκB) that 
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restricts NF-κB from entering the nucleus (Table 1). IκB can be inducibly or constitutively 

degraded, depending on the signaling context [1]. In many cell types a dimer of RelA with 

p50 regulates NF-κB target genes, including other Rel domain proteins. We focus on RelA 

as a paradigm for NF-κB effects in study systems discussed here unless otherwise specified.

NF-κB activation can proceed through the canonical pathway, or the noncanonical pathway 

[6]. In canonical signaling, IκB protein restricts the Rel dimer. The protein kinase complex 

IKK, which interacts with a variety of proteins (Supporting Table S1) can phosphorylate 

IκB; after phosphorylation, the proteasome degrades IκB [7,8], enabling a rapid nuclear 

entry of Rel proteins, where, depending upon their posttranslational modifications, they 

activate or repress specific groups of target genes [9]. “Noncanonical” signaling takes place 

when the restricting protein is p100. p100 processing gives rise to the protein p52, which 

forms a dimer with RelB [6]. During cell stress, other proteins, such as tumor suppressor 

p53, can restrict RelA from entering the mitochondria [10]. Multiple proteins thereby ensure 

a tight regulation of NF-κB activity. Under conditions of high expression of the RelA 

protein, or mutations of enzymes that modify RelA function, some cell types escape 

feedback regulation of NF-κB activity, as we discuss in section 5.2. We focus on proteins 

that show why feedback control of NF-κB activity is critical in shaping the 

microenvironment in malignancy, including cell phenotypes, immune response, and material 

exchange within a niche.

2. NF-κB subunit RelA is modified to control multiple signal transduction 

pathways

NF-κB regulates cell differentiation and its inflammatory responses [1]. What makes NF-κB 

unique is the fact that it is activated in response to diverse changes in the host tissue, and has 

the capacity to alter the state of the host tissue and of multiple components of the immune 

system profoundly. Signals that modulate RelA (Fig. 1A) activity affect stability, tertiary 

structure, and specific combination of charged and hydrophobic residues exposed on RelA, 

and determine: 1. whether RelA associates specifically with nuclear, mitochondrial, or 

cytoplasmic proteins; 2. the gene promoters or enhancers RelA associates, modulating 

transcriptional activity.

RelA interacts with a number of key regulatory proteins, such as nuclear hormone receptors, 

either by direct physical association, or through competition for coactivators and 

corepressors [11]. In this way steroid hormones and inflammatory cytokines regulate one 

another. Several growth factors, or cytokines, binding to their transmembrane receptors, as 

well as cell stress, elicit intracellular signal cascades that activate distinct Rel proteins, 

depending on the cell type [12,13]. Recipient cells, in turn, respond by integrating those 

signals and expressing adhesion molecules, enzymes, and mediators that coordinate cellular 

function within their microenvironment [13,14].

Metabolism and oxidant stress can impact RelA transcriptional activity [12,14]. As an 

example, in human pancreatic ductal adenocarcinoma cells, abnormally high enzymatic 

activities of the hexosamine biosynthetic pathway modify RelA and upstream kinases IKKα 

and IKKβ; inducing RelA phosphorylation on serine 536, nuclear translocation, NF-κB 
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transcriptional activity, target gene expression, and thereby facilitating anchorage-

independent growth [15].

In contrast RelA can also turn into an activator of apoptosis, by phosphorylation on 

Threonine 505, which can be induced by cisplatin in susceptible cells [16]. Depending, 

therefore, on the cellular assortment of proteins that interact with RelA, its activation can 

either kill or reprogram the cell. In contrast to non-malignant cells, where regulation of the 

activity of Rel-modifying enzymes makes cell survival depend on tissue integrity, in a 

cancer cell enzymes that modify RelA operate according to mechanisms overriding tissue-

imposed control (Fig 1B). This uncouples cell survival from tissue integrity and normal 

function (Fig 1C).

It is very important to note that RelA controls expression of genes encoding several of 

its’own regulators, including the inhibitor IκBα and activating kinases IKKα and IKKβ [17] 

As these kinases interact with diverse signal mediators (Supplementary Table S1), many 

effects of transiently induced RelA on regulation of cell physiology may escape attention. In 

contrast, it is already known that synthesis of non-canonical pathway proteins RelB and p52, 

is controlled by canonical signaling [18]. Hence, aberrant function of the canonical pathway 

can have indirect effects on cellular function downstream of the non-canonical pathway, 

with a severe impact on tissue integrity.

3. Interactions between diverse cell types shape tissue function through 

NF-κB

RelA on one hand mediates the expression of many inflammatory genes, and on the other it 

can activate survival genes in both normal and cancer cells [19]. A central theme in RelA 

activity is that it opposes growth restrictions on the cell [20], and prepares the cell for 

developmental change.

Almost any type of cell stress or inflammatory mediator can induce NF-κB activity [14]. 

Infection, injury, or toxic organ damage, can cause cell death: reactive oxygen species 

(ROS), and varied sources of genotoxic and metabolic stress can be elevated above the 

threshold that a cell tolerates [21]. Under cytotoxic conditions, certain cell types are needed 

for survival of the organism. In this case NF-κB, by increasing expression of several cohorts 

of metabolic enzymes and key hormones, can balance stress signals, and thereby protects 

essential cells [11,14,22,23]. NF-κB target genes consequently include cytokines, adhesion 

molecules, and specialized functional units of immune cells, as well as antiapoptotic 

proteins like Bcl-2 and Bfl-1, [13,24-26]. Cytokines and adhesion molecules mediate 

communication between an individual cell and its surrounding tissue, as well as the rest of 

the organism. Which are their effects on tissue?

Inflammation lasts from the phase of initiation to the phase of resolution, with restoration of 

normal function [27]. It activates changes in numerous cell types in the microenvironment: 

complementary groups of leukocytes, epithelial, mesenchymal, and endothelial cells interact 

through adhesion molecules and cytokines, to sequentially activate the processes of immune 

cell recruitment, extravasation (passing through blood vessel walls into tissues), tissue 
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infiltration, ROS release, induction of antioxidant systems, cell reprogramming and 

transdifferentiation, matrix component deposition, and immune system suppression (Fig. 

2A) [28-30]. Therefore, to protect host tissue, activity of NF-κB is tightly regulated:

a) Certain cell types that function in immune response need to persist as long as the 

response lasts. For example, innate immune response will ideally last for a 

restricted time in order to protect the host tissue [31]. The lymphocytes that 

facilitate adaptive immunity, however, need to live on and retain essential 

properties: they undergo lasting changes in their chromosomes. NF-κB target 

genes like Bfl-1 help such cells survive, essentially protecting cells with 

genomic rearrangements - a property shared with cancer cells [13,32].

b) Cells necessary to fill in developing or damaged tissues, are either formed by 

mesenchymal cells, adult tissue stem cells, or by reversal of differentiation of 

cells that form local tissue [33]. Cytokines can increase the pool of available cell 

precursors, both through differentiation of stem cells [34], and by 

reprogramming of tissue resident cells [35]. Other cells, instead of forming 

replacement units, are induced to supply essential molecules to the stem cells, 

forming “feeder” niches [36,37].

Through these processes NF-κB -dependent genes coordinate interaction between tissues, 

with drastic effects on cell function. This cross-talk is disrupted in cancer (Fig 1C): in a 

normal cell, enzymes that mediate activation of NF-κB are regulated according to the role of 

the cell in development and inflammation by inducing signal pathways that lead to 

resolution of the initial trigger [27]. In contrast, in tumor cells, under certain conditions, NF-

κB mediates propagation of cell clones that have lost a key feedback inhibiting mechanism 

(Fig 2B); the result is cancer [14,15,38]. Malignant cells may respond to a lethal stimulus 

through a signal pathway that is disproportionately activated (Fig 1B), and has a critical 

influence on downstream enzymes [14,22], as we discuss in section (6).

4. Control of NF-κB impacts cell differentiation

RelA is rather stable and abundant in most cell types [1,10]. Its main natural inhibitor, IκBα, 

on the contrary, is susceptible to proteolysis by proteasome, lysosome, or calpain, and may 

differ greatly between different cell types, different states of growth, and diverse signals 

[7,8]. Within tumors, both proteasome and calpain activity can be increased [39]. As RelA 

activation is downstream of receptor-initiated signals, and subject to amplification cascades, 

its activity can become independent from cell surface receptors (Fig. 3) [1,11].

Interference of RelA with cellular factors linked to differentiation is critical for its role in 

epithelial neoplasia. Components of mechanisms that guide differentiation and migration of 

epithelial lineage cells are disrupted in neoplastic development of many solid tumors 

[33,34]. Estrogen-regulated pathways via the estrogen receptor (ER) are often involved in 

breast cancer, and androgen via the androgen receptor (AR) in prostate cancer [11,40]. RelA 

plays an interesting role in each of these processes: it may enhance ER or AR - mediated 

signal pathways that activate cell growth and proliferation, while inhibiting potently the ER- 

or AR- mediated signals that lead to cell differentiation [11,23].
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Additionally, embryonal stem cells regulate STAT3 (signal transducer and activator of 

transcription 3), Nanog, and noncanonical NF-κB signaling in balance with canonical 

signaling to maintain pluripotency [18, 41-43], which implies that loss of control for 

canonical signaling in neoplasia could give rise to a subpopulation of malignant cells with 

properties overlapping stem cells.

In innate immune system cells, including microglial cells of the central nervous system, 

RelA nuclear translocation is inducible (as in most mammalian cells), and leads to 

inflammation; because IκBα gene expression is induced by RelA, innate immune responses 

are normally self-limiting (reversible [29,35]).

Cells that mediate adaptive immunity tend to increase basal levels of NF-κB activity. 

Rapidly induced RelA activates c-Rel gene expression, facilitating survival of activated B- 

and T-lymphocytes [13], while cells that function in memory storage for the immune 

system, maintain a balanced level of Rel activity [1,13,44]. Similarly, during dendritic cell 

maturation, rapidly activated dimers (e.g., p50/RelA) bound to a subset of target promoters 

are gradually replaced by slowly activated dimers (e.g., p52/RelB); this prolongs expression 

of specific NF-κB target subsets in dendritic cells [45]. Consequently, regulation of cytokine 

expression by dendritic cells, reflected in the proportions between secreted cytokines IL10, 

IL23, and IL-12, depends on the cell maturation stage [46]. Tumors that express 

cyclooxygenase (COX)-2, and secrete its’ product prostaglandin E2, inhibit RelB activity in 

dendritic cells; result is increased IL-10, decreased IL-12 expression, and impaired antigen 

presentation by the dendritic cells [47]. At the molecular level dendritic cell maturation and 

function in antitumor immunity, including T-cell priming, are impaired by induction of the 

transcription factor STAT3 [48].

In the organism, however, the ability to limit RelA activity is important to prevent chronic 

inflammation and myeloid malignancy: knockout of the miR-146a gene (a Rel target and 

feedback regulator) in C57BL/6 mice, led to increased transcription of NF-κB-regulated 

genes, and development of myeloid malignancies with high content of nuclear RelA. This is 

an example of loss of feedback control on RelA [49].

5. Constitutive NF-κB activity and feedback changes affect cancer

In diverse types of cancer, constitutive NF-κB activity enables a malignant cell to survive 

oncogene activation, tumor suppressors, radiation, drug treatments, extensive genetic 

alterations and the surveillance of both innate and adaptive immune cells [19,50,51]. As an 

example of biochemical challenge, oxidant stress can impact several distinct stages of NF-

κB dependent signals, inducing different subsets of genes in different cell types. Depending 

on the cellular assortment of coregulators, NF-κB can mediate either positive or negative 

feedback to oxidant stress causing the propagation or termination of inflammatory cascades 

[29]. The cell exposed to oxidant stress may survive or die, depending on the 

posttranslational modifications of Rel proteins and the rest of the cellular proteome that 

interacts with them, resulting in the expression of different sets of target genes [9,19]. The 

gene products themselves interact with the cell's genome and proteome, and thereby 

modulate further: gene expression, DNA repair, cell cycle control, mitochondrial function, 
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vesicle transport and contents, oxidant-neutralizing enzymes, salvage metabolism, and 

competition with surrounding cells for nutrients and tissue space. Consequently, the ability 

of the organism to kill this cell by inducing biochemical stress is diminished (Figs 2B, 3B).

In a tissue, through disrupted regulation of NF-κB activity and ensuing cytokine expression, 

tumors may perpetuate inflammation by concomitant expression of factors that in normal 

cells are expressed inducibly [24], and by blending features that belong to cells of different 

types [52,53], and different stages of maturation (Fig. 3B) [1,12,54]. Increased levels of 

inflammatory mediators that activate cell movement across tissues facilitate cancer cell 

passage through organs, and ultimately, metastasis [39,55].

5.1. Sequential expression of inflammatory mediators is altered in cancer

The function of NF-κB -dependent hormonal mediators in orchestrating interaction between 

innate and adaptive immunity with host tissue is pivotal in cancer development. Through 

these mediators cancer cells shape their microenvironment, which is shown by their effects 

on cell differentiation and phenotypic adjustments, changes in material turnover, and cross-

talk with a range of immune cell types. We limit discussion of this subject on the 

interactions between a few selected feedback regulators of NF-κB that control key aspects of 

its' impact on host tissue, which provides the targets for design of subtype-specific 

intervention strategies. As we discuss in detail below, loss of NF-κB control in malignant 

cells changes expression of inflammatory mediators. Result is that signals for tissue 

regeneration can coexist with propagation of inflammation, even though in a normal tissue, 

regeneration signals suppress inflammation. This affects multiple cell types and is essential 

feature of cancer. In particular, characterization of protein families of transcription factors 

NF-κB, AP-1 (activating protein-1) and STAT3, which have gene targets that include 

inflammatory mediators, adhesion molecules and antiapoptotic proteins [24,50,55] provided 

a molecular basis for the role of inflammation in cancer. Many inflammatory mediators 

influence transendothelial migration of inflammatory cells and vascular permeability. Their 

presence in cancer, however, is not ubiquitous.

Notably, the fact that cancer can remain undetected for years until disease has progressed 

[56], means that it can develop without overt inflammation [26]. Disease progression, in 

contrast, is often marked by systemic increase of inflammatory cytokines [24]. And 

furthermore, an inflammatory response may also lead to resolution of the tumor: for 

example, experimental NF-κB hyperactivation in tumor tissues, by combined stimulation 

with IFNα with poly-I:C (a TLR3 ligand) can allow reprogramming of the chemokine 

microenvironment to enhance the recruitment of cytolytic T effector cells [57]. When 

applied individually each chemokine modulator generated a heterogeneous response for 

different tumors, while the response was uniform for the combination of IFNα and poly-I:C, 

and was enhanced by inhibitors of prostaglandin E2 production [57]. The clinical 

significance of the proportions between secreted products of NF-κB target genes can be 

appraised by the discovery that the ratio of inflammation-inducing to inflammation resolving 

cytokines can be reverse between a) pathological conditions involving overt inflammation 

[25] and b) cancer [58].
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As is often evident by the display of different sets of markers by a single fraction of a 

specific malignant tumor [59], the cancer cell can become a mosaic of gene expression 

patterns and phenotypic markers that are normally encountered in cells from different tissues 

and different developmental stages (stem cells, precursor cells, and mature, differentiated 

cells) [33], [55], [60], [61], [62]. Somatic tumors do not originate from a single source or 

developmental phase. For example, different stages of B-cell maturation can give rise to 

lymphomas, and NF-κB is involved in many cases [1]. Mantle cell lymphoma is an 

aggressive malignancy supported by aberrant B cell receptor (BCR) signaling, which is 

targeted by inhibitors ibrutinib and sotrastaurin. While either drug can inhibit BCR-induced 

canonical NF-κB signaling, in many cases malignant B-cells can survive through the 

alternative NF-κB pathway [63]. Oncogenesis does not follow a strict pattern of signal relay, 

and is not confined to a single cell source, even if gene expression follows certain lineage-

dependent restrictions. However, analysis of gene expression gives information on the NF-

κB target gene signature that is essential to identify critical downstream pharmacological 

therapeutic targets [64]. When combined with the study of cultured cells, genetic analysis 

enables a personalized approach to tumors unforeseen by standard therapeutic protocols 

[65]. Apart from personalized treatment, a clinical approach for mantle cell lymphoma, is to 

interfere with malignant cell metabolism by inhibiting mammalian target of rapamycin 

(mTOR) threonine kinase, which is a target of IKKβ and acts in synergy with NF-κB [66],

[67].

A large number of genes that are activated by NF-κB and associated with oncogenesis and 

chronic inflammation contain STAT3 DNA-binding sites. In contrast, many genes 

associated with antitumor immunity lack STAT3 DNA-binding sites and can only be 

activated by NF-κB when STAT3 is inhibited in tumors [68]. STAT3 facilitates NF-κB 

binding to genes that are important for tumor growth while inhibiting its binding to Th-1 (T-

helper cell type 1) stimulatory genes in growing tumors, including tumor-infiltrating 

immune cells (Fig. 3B). The result is that the tumor cell is not attacked by the immune 

system. In contrast, in normal T-cells STAT3 limits NF-κB activation, IL-2 production, and 

proliferation [69].

The change of NF-κB targets brought about by STAT3 in a malignant cell [68], allows the 

cell to reach high NF-κB activity in its nucleus, by overcoming negative feedback 

mechanisms (such as IκBα activation by NF-κB) [1]. Tumor cells that exhibit this type of 

constitutive NF-κB/STAT3 activity become competitive for niche occupation, and can 

induce cells from adjacent tissues to secrete biomolecules and metabolites, and possibly to 

undergo autophagy [19,36,37]. The resulting secreted products aid malignant cell 

propagation, specifically favoring cells that have neutralized tumor suppressors. STAT3 

physically interacts with NF-κB to activate the catalytic subunit of telomerase (tert) in 

human breast cancer stem cells [70]. What is interesting is that once NF-κB overcomes the 

restraints posed by p53 activity, it is no longer subject to inhibition by glucocorticoid 

receptor (“GR”) [71]. NF-κB then can perturb the homeostatic effects of STAT3, GR, and 

p53 in mitochondria (schematic illustration in Fig. 3) [10,72].

STAT3 and p53, in normal cells limit NF-κB-driven immune responses to protect tissue 

integrity; this task is performed in coordination with GR [71,72]. Malignant cells that have 
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lost the gene that encodes p53, exhibit decreased response to glucocorticoids [71], increased 

expression of NF-κB target genes [10], and increased ratio of incoming/secreted exosomes 

[73]. Similar effects can be expected when genes that mediate control of NF-κB by p53 and 

STAT3 are epigenetically repressed.

Cytokines regulated by transcription factors, NF-κB and STAT3, found to participate in 

cancer-related inflammation include IL-1β, IL-6, IL-23, and TNF-α [14,24] (Fig. 3 B). They 

can facilitate tumor growth through activation of other cytokines such as IL-8, and several 

types of adhesion molecules [12,36] culminating in: 1). 1) induction of expression for 

survival proteins ( Mcl-1, Bcl-2, etc.,) on tumor cells [74], 2) growth arrest, senescence, 

autophagy, secretory phenotype [36], and apoptosis in cohorts of surrounding cells (due to 

the presence of intact p53), 3) proliferation or quiescence in different cohorts of neoplastic 

cells, 4) decrease in the efficiency of immune response against the tumor, and 5) metastasis 

[24]. It is very important to emphasize that through the restrictions on NF-κB activity, an 

organism links tissue function and system homeostasis to the control of cell survival (Figure 

4). As a specific example, abnormally high levels of the cytokine IL-6 can confer multiple 

carcinogenic properties to immortalized cells, as we discuss in the next section.

5.2. NF-κB dysregulation permits oncogenes like myc to cause cancer

Many different types of oncogenes cause cancer that depends on NF-κB; here we address a 

few representative studies of adenocarcinoma models. Inflammatory breast cancer, a 

particularly lethal disease, is characterized by NF-κB activity [75]. In cell culture, transient 

activation of Src oncoprotein (Rous sarcoma virus proto-oncogene tyrosine-protein kinase 

homolog) can mediate an epigenetic switch from immortalized breast cells to a stably 

transformed line that forms self-renewing mammospheres that contain cancer stem cells 

[76]. This switch is possible because Src activates NF-κB, inducing thereby Lin28 

expression, thus decreasing levels of let7 miRNA; the result is activation of the cytokine 

IL-6, which induces STAT3 expression. Result is further increase in NF-κB activity. Normal 

breast epithelial cells express at least one negative regulator of NF-κB activity, namely 

miR-146b, which is a direct STAT3 target gene [77]. However, in cancer cells, in spite of 

high STAT3 activity, miR-146b levels may remain low, especially when the miR-146b gene 

promoter is methylated. Breast cancer patient samples that express IL-6 and show STAT3 

activity correlate with a negative prognosis when miR-146b levels are low [77]. Thereby in 

breast cancer cells, a shift in RelA target genes, caused by transcription factor STAT3, could 

play a role at least in some phases of carcinogenesis. The higher activity of STAT3 in some 

tumors could result from activation of NF-κB by an “above-threshold” event such as 

transient activation of Src [76]. Therefore, a positive feedback loop that works in a tumor - 

such as above-threshold activation of NF-κB or of its inflammatory gene targets (Fig. 3B) - 

may constitute an identifiable drug target. Such a therapeutic intervention may become safer 

when specific tissues or cells are targeted [11].

The NF-κB/STAT3 positive feedback loop noted [76], had an interesting aspect: myc 

mRNA levels increased at a pace that followed stat3 mRNA. Interestingly, in the 

transcription factor chromatin immunoprecipitation results obtained with the ENCODE 

project on the human genome [78], binding sites for STAT3 on the myc gene are 
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particularly dense (Fig. 5A). Analysis of p53 transcriptional function via genome-wide 

chromatin occupancy and gene expression identified STAT3 as antagonist for p53 on the 

myc gene [79]. Inhibition of STAT3 activity can suppress myc expression in cultured cells 

[80]. In conclusion, the NF-κB-STAT3 interaction can affect cell fate by activating 

expression of myc [81]. In human T lymphocytes, for example Protein Kinase C theta-

activated NF-κB signaling regulates the expression of telomerase (tert) via c-Myc, which 

inhibits cellular senescence. More important, is probably the fact that c-Myc activates the 

coordinated expression of genes that modulate cellular metabolism, growth, and 

proliferation; when expressed at high levels, is also capable of mediating resistance to cell 

cycle arrest at the G1 phase by rapamycin [82], or to metabolic effects of AMPK activators 

[83]. By increasing the metabolic and oxidant burden, c-Myc increases cellular dependence 

on the NF-κB functions that decrease growth restrictions:

a) NF-κB competes with p53 both in the nucleus and in mitochondria. Many tumor 

cells have defects either in the tp53 gene itself, or in p53-linked pathways [84], 

or have Serine 536-phosphorylated RelA, which is an effective inhibitor of p53 

activity [85,86]. With Ser-536-phosphorylated RelA, tumors may override IκBα 

and p53-imposed restrictions on metabolism and growth [87]. This enables 

tumors to use a higher glycolytic rate that is consistent with the Warburg effect 

[88], and thereby compete with cells that have wildtype p53.

b) NF-κB activates myc expression, and at the same time, expression of survival 

proteins that can quench apoptotic signals from Myc [21]. In three-dimensional 

cell cultures, incorporation of a cell in its natural niche restricts several 

oncogenes including myc, ccnd1, akt1, from completing cancer cell development 

[89]. This means that oncogenes have increased need for cooperating events 

within a natural niche. Importantly, NF-κB can cooperate with Myc for 

telomerase gene expression [90]. Higher telomerase activity allows a tumor cell 

to gain a “competitive edge” over stromal cells, and utilize them as a feeder 

stromal layer:

Indeed, while human and mouse fibroblasts can become tumorigenic upon lentiviral 

transduction with an SV40 large T antigen (to sequester p53 and Rb tumor suppressors) and 

oncogenic Ras, the naked mole-rat fibroblast proved resistant. This resistance to oncogene-

induced tumorigenesis was reversed by transduction with human telomerase. Naked mole-

rat fibroblasts then formed tumors that grew rapidly in immunodeficient mice [91]. It is 

important to note that they have high constitutive levels of p53 protein [92], which is 

apparently overridden by increased telomerase expression. Therefore disruption of the 

negative feedback between factors such as STAT3 and RelA, can augment the capacity of 

transformed cells for malignant growth by amplifying expression of target genes like myc, 

and thereby fitting subclones of tumor cells with biochemical properties that are essential for 

malignant growth. One of the simplest approaches, therefore, to restore function of tumor 

suppressors in cancer is to inhibit key components of the resulting inflammatory response, 

regardless of whether it is a direct or an indirect consequence of cancer itself [93]. This 

approach is also supported by the fact that drugs such as metformin, as we will discuss next, 

inhibit synergistic NF-κB activity with STAT3 at concentrations that do not kill normal 

cells.
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6. NF-κB effects on tissue: shaping the microenvironment

In spite of enormous genetic heterogeneity between cancers, common themes exist. One of 

them is a higher mutation rate in the later stages [94]; this is consistent with dysregulation of 

the p53 network that normally links cell survival to genetic integrity [95]. As p53 interacts 

with RelA [71] dysregulation of the p53 network leads to the question if RelA targets are 

overexpressed in cancer [96], and which molecular mechanisms mediate their effects on the 

microenvironment [97]. We know that malignant cells secrete signaling molecules such as 

cytokines and metabolites to redirect the phenotype of cells in surrounding tissue [37,98,99]. 

and that diverse types of cancer can secrete signaling molecules that disrupt the immune 

responses [51,68]; interaction between cancer and stroma may allow a tumor escape 

rejection, even after being recognized by adaptive immunity [100]. Carcinoma cells through 

secretion of IL-6, IL-8, CXCL10, and CCL5, (their expression depending on RelA) 

overcome the control of Hypoxia-Induced Factors (HIF) and induce CD11b+Gr-1+ myeloid 

cells to promote tumor growth and angiogenesis [101]. Loss of the control of cytokine 

expression by the NF-κB /p53 interaction network, enables immunosuppression and 

disruption of tissue integrity, in spite of signals for regeneration. Pancreatic adenocarcinoma 

recently emerged as a model for the effects of aberrant NF-κB feedback by its interaction 

partners, especially p53: multiple cytokines and chemokines including IL-6, IL-23, CXCL1, 

CCL20, and CSF3, were expressed by premalignant pancreatic ductal epithelial cells in a 

RelA-dependent manner to promote development of metastatic cancer [102]. Thereby loss 

of feedback restriction on RelA results to aberrant coordination of secretion of the mediators 

for inflammation and regeneration, preventing the restoration of tissue integrity, and the 

physiological function of the immune response (indications exist that this role can be 

generalized in neoplasia: eg., for a variety of pediatric malignancies, IL-6 is a predictor of 

severe infections [103] ). In pancreatic cancer IL6 is known to promote an 

immunosuppressive microenvironment [104]. Systemic inflammation with activity of NF-

κB, IL-6, and STAT3 not only did not clear mice from pancreatic cancer xenografts, but 

instead blocked chemotherapy and gemcitabine from clearing the tumors [105]. In 

confirmation of the role of NF-κB, blocking of gemcitabine-induced RelA nuclear 

translocation, decreases levels of MMP (metalloprotease)-2, MMP-9, VEGF, and IL-8, 

inhibiting angiogenesis and invasion [106].

How could loss of feedback control of NF-κB disrupt the components of the 

microenvironment? Two target molecules that can contribute to this effect are fascin and 

TGFβ.

In most normal or transformed cells, as we have seen, NF-κB has the capacity to interfere 

with transcription factors important in cell phenotype and fate. The main reason for lifting 

phenotypic restrictions for most cells and reversing properties of cellular differentiation is 

that during inflammation the organism needs to concentrate tissue-resident cells on the 

challenge (e.g. infection, or necrotic tissue), and after cessation of the challenge, to prime 

resident cells for terminating the inflammatory response and restoring function. One gene 

essential in cell migration is fascin [107]. In metastatic breast cancer cells, IL6-induced 

STAT3 cooperates with TNF-induced NF-κB to activate fascin expression [108]. In the 

process of normal mammary gland morphogenesis or luminal differentiation, transcription 

Vlahopoulos et al. Page 10

Cytokine Growth Factor Rev. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



factor GATA3 would limit fascin gene expression [109]. Moreover, glucocorticoids can 

further reduce fascin expression, and thereby allow the formation of tight junctions, which 

are essential for building epithelial barriers [110]. Thus normal tissue function relies on 

negative feedback regulation of inflammatory mediators. This negative feedback regulation 

results in an on-off cycle for NF-κB in normal cells and tissues [111], which is lost in 

adenocarcinoma, as indicated by the effects of deregulated expression of its downstream 

targets that we discuss next.

In adenocarcinoma TGFβ can suppress antigen presentation, cytotoxic T cells, natural killer 

(NK) cells, and induce FoxP3+ regulatory T cells that inhibit the antitumor immune 

response [112,113]. It is very interesting to note the convergence of binding sites for NF-κB, 

STAT3 and c-Myc toward the gene encoding for TGFβ on the human chromosome 19 (Fig 5 

B). TGFβ on the one hand regulates epithelial-mesenchymal transition [114], and on the 

other hand suppresses systemic immunity, hence facilitating metastasis [115]. In fact, 

impaired control of signaling between NF-κB, TGFβ, and HIF1 is implicated in cancer 

metastasis and organ failure [116,117]. Importantly, however, disruption of the NF-κB 

feedback control by TGFβ, demonstrates the potential to compromise tissue regeneration 

and integrity: elevated TGFβ levels in the tumor microenvironment can contribute to fascin 

overexpression [118,119]. It is interesting to note that TGFβ can use NF-κB as a mediator 

for gene expression in epithelial-mesenchymal transition [120], and therefore is a key node 

for positive feedback to NF-κB during cell transformation by oncogene ras. In the presence 

of oncogenic Ras, inflammatory stimuli trigger NF-κB-mediated positive feedback that 

amplifies Ras activity to pathological levels, generating pancreatic adenocarcinoma in mice 

[4].

The same positive feedback is likely to occur also in colon, lung, and other types of 

adenocarcinoma [4]. In a normal cell TGFβ poses certain growth restrictions, however in 

subpopulations of eg. [121], pancreatic cancer cells NF-κB can substitute for TGFβ 

signaling in epithelial-mesenchymal transition [120] and thus increase metastatic tumor 

burden. Furthermore, by inducing overexpression of myc as we discussed in the previous 

chapter, dysregulated NF-κB activity can overcome restrictions on angiogenesis and 

neovascularisation, which are normally imposed by TGFβ [122]. Thereby TGFβ ceases to 

function as a tumor suppressor in the adenocarcinoma cell. Hence on the one hand cancer 

cells can grow unrestricted by the presence of TGFβ, and on the other hand TGFβ still 

affects other cells that are abundant in the tissue. Specifically, TGFβ restricts the antigen-

presenting function of myeloid cells [123], and in parallel, enables myeloid cells to prevent 

CD8(+) T cells from blocking adenocarcinoma metastasis [115]. In adenocarcinoma cells, 

therefore, a loss of negative regulation of NF-κB by TGFβ, allows them to respond 

differently to stimuli that normally induce tumor suppression, and to amplify downstream 

signals, affecting surrounding tissue. Components of the metastatic niche in this way disrupt 

the ordered mobilization of cells involved in inflammation and regeneration, compromising 

the integrity of tissue function and immune response (Figure 4).
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7. Niche effects and material turnover: insight enabled by study of 

lymphoid malignancy

Cells of lymphoid malignancies in, can survive in niches that produce autocrine or paracrine 

factors such as IL-6, which stimulate parts of the stem cell signal transduction apparatus 

[37,124]. IL6 - by activating STAT3 - inhibits cell death from cytotoxic drugs such as 

arsenite [125]. In the hematopoietic stem cell niche myeloma cells compete with normal 

hematopoietic cells for mediators and metabolites supplied by stromal cells [37,124,125].

Resistance of cancer cells to toxic agents and immune responses is augmented by a flow of 

secretory microvesicles and exosomes, resulting in a deterioration of the stroma in favor of 

the tumor. One trigger for this flow are cytokines, such as IL-6 [124]. The flow of 

microvesicles and exosomes between stromal and tumor cells is regulated by NF-κB [36], 

STAT3 [126], and p53 [73]. The exchange of contents between tumor and normal cells can 

therefore have a specific direction (due to partial or total inactivation of p53 networks in the 

former). Secretory vesicles transport a variety of lipids, proteins, and nucleic acids, 

including mRNA, and microRNAs: flow of microvesicles and exosomes results in 

redistribution of regulatory, metabolic and structural components [127]. The result is a 

substantial enhancement of cancer cell resistance to stress, in spite of deregulated material 

turnover [21]. How does homeostasis function in cancer cells? In contrast with carcinoma, 

leukemia originates from cell lineages with inherent capacity for clonal growth and cell 

migration: lower burden of complexity in carcinogenesis makes leukemia a better model for 

resistance of cancer by induction of homeostatic responses, as we see next.

Glucocorticoids kill lymphoblasts causing acute leukemia [128]. High-dose glucocorticoid 

treatment may cause a certain degree of hyperglycemia. During induction therapy, this is 

associated with poorer survival in children with acute lymphocytic leukemia [129]. 

Glycolysis has been identified as one potential pathway of resistance of leukemia cells to 

glucocorticoid [130], and STAT3 has been identified as a stress-responsive transcription 

factor, capable of interacting with glucocorticoid-regulated pathways [131]. High activity of 

STAT3 was observed in lymphoma cells with signatures corresponding to NF-κB activity, 

proliferation, and glycolysis [132]. STAT3 activated by IL-6 can enhance expression of the 

glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-

bisphosphatase-3 (PFKFB3) [133].

Cultured leukemia cells that were resistant to glucocorticoid treatment [128], could be killed 

by proteasome inhibition, the main signature effect being inhibition of STAT3 target genes 

[21]. At least a portion of glucocorticoid-resistant leukemia, therefore, can be treated by 

drug combinations that include inhibitors of proteasome and modulators of STAT3-

dependent metabolism. Indeed, experimental evidence suggests that leukemia cells do not 

operate a metabolism identical to other components of the immune system, and seem to be 

particularly sensitive to inhibition of STAT3-regulated pathways: the hypoglycemic drug 

metformin, which inhibits STAT3 transcriptional activity in lymphocytes [134], elicits 

autophagy and apoptosis in leukemic cells (IC50 for patient samples ranged between 0.6 and 

0.9mM at 96h), while not having a comparable toxicity on normal proliferating CD4(+) T-

lymphocytes from healthy donors [135].
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Hyperactivation of the STAT3 inducer JAK2 can make malignant cells sensitive to 

metabolic inhibition: 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase 

inhibitors - widely used to treat hypercholesterolemia - induce apoptosis and inhibit JAK2-

V617F-dependent neoplastic cell growth. These cells are more sensitive to statin treatment 

than non-JAK2-V617F-dependent cells. Importantly, statin treatment inhibited 

erythropoietin-independent erythroid colony formation of primary cells from 

myeloproliferative neoplasia patients, but had no effect on erythroid colony formation from 

healthy individuals [136]. A hypercholesterolemia that is followed by severe 

hypocholesterolemia, indicates that at least a portion of neoplastic cells utilize cholesterol 

and can be targeted by statin treatment [137].

8. Homeostatic challenges: impact on NF-κB activity in solid and lymphoid 

tumors

Subclones of cancer cells may escape death by activating intracellular protein turnover, 

through exchange of vesicles with stromal cells, and by selective recruitment of groups of 

cells of the immune system. Inflammatory mediators and metabolites also enable diverse 

subpopulations of cancer cells to cooperate or compete, influence their microenvironment, 

and ultimately develop new phenotypes. This lifts key tissue-mediated restrictions on cell 

fate.

The ability of tumor cells to evade chemotherapy, radiation, and targeted therapy is very 

often proportional to their capacity to activate salvage pathways and exploit homeostasis 

mechanisms that are normally heavily restricted in normal cells [14,106, 138-140]. Normal 

undifferentiated cells, for example, are very sensitive to changes in conditions and 

differentiation stimuli [10,34]. Tumor initiating cells, in contrast, may retain stem cell 

properties even after exposure to differentiation stimuli [141]; maintaining homeostasis is a 

challenge. A solution utilized by tumor cells, is to increase proteasome activity [142]. 

Higher activity of the proteasome in healthy cells ensures a good probability of the organism 

living longer, by removing misfolded proteins [143]. Aberrantly high activity of the 

proteasome in tumor cells ensures their selective advantage over healthy cells, and the 

removal of apoptosis inducers [142].

Malignant cells can respond to proteasome inhibition by activating NF-κB and restoring 

mechanisms for their survival by activating salvage pathways, such as lysosome 

acidification [8]. Cascade-initiating mechanisms are redundant in neoplasia under certain 

conditions: under selective pressure exerted by drugs, a malignant cell may ultimately retain 

only the enzymatic activities that are essential to its very existence. However, deregulated 

gene expression, combined with a high mutational load, generates aberrantly expressed, 

misfolded proteins. Removal of aberrant products is achieved by degradation through 

multifunctional complexes such as the proteasome, which is a therapeutic target [142]. 

Inhibition of the proteasome [8], or epigenetic reprogramming via a deacetylase inhibitor 

[144], may lead to activation of homeostatic responses and NF-κB, and rescue a malignant 

cell from antineoplastic treatments. One such example is the induction of lysosome activity 

after inhibition of the proteasome: this is not only a trigger for lysosome-dependent 

degradation of IκB, but it can also result in rescue of the cancer cell through autophagy, 
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which enables it to survive by recycling many of its contents [145]. It is therefore important 

to target therapeutic intervention to the drug-induced metabolic pathway that rescues the 

malignant cell.

It is therefore evident that interactions between cancer and stroma can include exchange of 

microvesicles, exosomes, cytokines, growth factors, and metabolites. Drastic changes in 

proteins that function as critical nodes of the NF-κB network disrupt key feedback responses 

and essential mechanisms of oscillation for NF-κB activity. Neoplastic tissue is 

characterized by particularly high levels of certain metabolites and enzymatic activities, with 

resultant breakdown of regulatory mechanisms and establishment of abnormal ratios 

between critical rheostat molecules located in organelles and on chromatin. As metabolites 

and homeostatic mechanisms depend heavily on the host tissue, no animal model or current 

in vitro system can be viewed as faithful reproduction of a cancer host: key challenge in the 

field is to develop in vitro models that will enable characterizing changes of inflammatory 

mediators in specific states of cancer development.

Conclusions and outlook

It is becoming increasingly clear that many aspects of inflammation influence the course of 

malignant disease decisively. NF-κB driven inflammatory gene expression programs are 

known mediators of cancer-related mortality [146]. This article presents a few mechanisms 

that have drastic effects on the cancer cell microenvironment, when their impact on NF-κB 

activity is altered. The next decade is expected to define cancer in terms of an aberrant 

function of the NF-κB network. Inflammatory signal pathways and NF-κB activation in 

malignant tumors neither follow a normal pattern of function nor respond to modulators in a 

readily expected fashion [74,144]; their secreted targets, nonetheless, can be readily 

identified. Compounds that inhibit the activation of selected subsets of NF-κB-dependent 

genes are increasingly being assayed in preclinical studies [29]; metabolic intervention, 

however, is closer to clinical application [14]. NF-κB driven signals, through their 

downstream targets convey the capacity for rapid responses and systemic amplification to 

inflammation, being capable to change cellular function, especially in relation to host tissue. 

Disruption of NF-κB feedback regulation explains is why this factor from a mechanism of 

tumor control gains the potential to transform the clinical course of the disease, since tumors 

that involve diverse oncogenes evolve into cancer after dysregulation of NF-κB. There are 

multiple control mechanisms with partly overlapping effects on NF-κB activity. As a 

paradigm, regulation of NF-κB by transcription factors STAT3, GR, and p53, which 

mediate effects of metabolism and stress, does not function as in normal cells. Loss of 

feedback for those mechanisms changes key properties of a neoplastic cell and alters tissue 

steady state. The result is an aberrant interaction with the host tissue and the immune 

system, with impact on discrete cancer cell subpopulations and the resulting 

microenvironment. Importantly, dysregulation of NF-κB activity affects oncogenesis, 

because it enables a tumor cell to combine key properties of stem cells with essential 

adaptation features of a differentiated cell. Characterization of the modules that control NF-

κB activity points at designing treatment according to the biological state of host tissue. In 

the near future, selective inhibition of signal pathways interacting with NF-κB could prove 
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effective in combination with cell-targeted agents, and contribute significantly to 

personalized cancer treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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*Highlights (for review)

- During inflammation, a sequential activation of different cell types takes place, 

induced by cytokines, chemokines, and adhesion factors. Malignant cells can express 

combinations of cytokines, chemokines, and adhesion factors from different stages 

of the inflammatory cascade.

- Dysregulation of NF-κB activity affects oncogenesis, because it enables a tumor 

cell to combine selected properties of stem cells with tissue adaptation features of a 

differentiated cell. This dysregulation influences several gene cohorts in subsets of 

cancer cells; however, it has far-ranging effects on the entire organism through 

disruption of essential mediators of homeostasis.

- Regulation of NF-κB by transcription factors signal transducer and activator of 

transcription-3 (STAT3), glucocorticoid receptor (GR), and p53 protein, which 

mediate effects of metabolism and stress, does not function in cancer cells as in 

normal cells. The result is an aberrant interaction with the host tissue and the 

immune system, with impact on discrete cancer cell subpopulations and their 

microenvironment.
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Fig.1. 
A: depiction of the primary structure of RelA. A few representative examples of 

posttranslational modifications are shown. A schematic outline of relevant pathways is given 

in the Kyoto Encyclopedia of Genes and Genomes resource at http://www.kegg.jp/pathway/

hsa04064
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Fig. 2. 
A: During inflammation, a sequential activation of different types of leukocytes takes place, 

induced by cytokines, chemokines, and adhesion factors. Malignant cells express subsets of 

genes that are normally induced in cell subtypes that are essential for survival of the 

organism.
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Fig.3. 
A: A simplified, schematic depiction of three representative signal pathways with proven 

potential to interact with intracellular signal relay mechanisms regulated by NF-κB. B: 

STAT3 and NF-κB induce unique combinations of gene cohorts with an activity profile that 

can distinguish subgroups of malignant cells. C: A model drug (red arrow) that inhibits a 

tyrosine kinase involved in NF-κB activation (here Bruton tyrosine kinase “BTK”), will fail 

to work when NF-κB is constitutively active (blue arrow), and can thereby saturate 

regulatory sequences (promoters and enhancers) of its oncogenic targets.
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Fig. 4. 
Immune response is impaired in the vicinity of cells secreting mediators as IL-10, or 

prostaglandin E2, while other tissue sites, upon a local increase in e.g., IL-12, or TNFα have 

increased risk of cellular infiltrations and organ damage.
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Fig. 5. 
Chromatin immunoprecipitation data of the ENCODE project, for binding of transcription 

factors NF-κB RelA, STAT3, and c-Myc. A: on human chromosome 8q24.21 locus of the 

myc gene . B: On the chromosome 19q13.2, locus of the tgfb1 gene (red zone).
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Table 1

Identities of representative isoforms of the proteins referred herein, according to the National Center of 

Biotechnology Information (NCBI) and the Online Mendelian Inheritance in Man catalog (OMIM) that 

outlines the current consensus for the biological role of each entry.

Protein name NCBI (Entrez Gene ID) OMIM entry

AKT1 207 164730

AMPK 5562 602739

AR 367 313700

Bcl-2 596 151430

Bfl1 597 601056

Calpain1 / mu I 823 114220

Calpain2 / m II 824 114230

CCL2 6347 158105

CCL20 6364 601960

CCL5 6352 187011

ccnd1 (cyclin D1) 595 168461

CD11b 3684 120980

CD8 925 186910

CD44 960 107269

COX2 5743 600262

CSF3 1440 138970

CXCL1 2919 155730

CXCL1O 3627 147310

ER 2099 133430

Fascin-1 6624 602689

Foxp3 50943 300292

GATA3 2625 131320

GRα 2908 138040

Hexokinase 2 3099 601125

HIF1 3091 603348

HMG-CoA reductase 3156 142910

IFNα 3439 147660

IFNβ 3456 147640

IFNγ 3458 147570

IkBα 4792 164008

IKK1 1147 600664

IKK2 3551 603258

IL-10 3586 124092

IL-12A 3592 161560

IL-12B 3593 161561

IL-1β 3553 147720

IL-2 3558 147680
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Protein name NCBI (Entrez Gene ID) OMIM entry

IL-23A 51561 605580

IL-6 3569 147620

IL-8 3576 146930

JAK2 3717 147796

Mcl-1 4170 159552

MMP2 4313 120360

MMP9 4318 120361

Myc 4609 190080

Nanog 79923 607937

NFkB1 (p50) 4790 164011

NFkB2 4791 164012

P53 7157 191170

PFKB3 5209 605319

Proteasome subunit A1 5682 602854

Proteasome subunit C5 5705 601681

Ras (KRAS1) 3845 190070

Rb (Rb1) 5925 614041

Rel 5966 164910

RelA 5970 164014

RelB 5971 604758

Src 6714 190090

STAT3 6774 102582

Tert (telomerase) 7015 187270

TGFβ 7040 190180

TLR3 7098 603029

TNF 7124 191160

VEGF 7422 192240
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