

## Multiplicity at early stages of star formation, small clusters Observations Overview

Masao Saito (NAOJ, TMT-J Project Office)



#### Outline

- 1. Recent progress in multiple Star formation
- 2. SOLA binary survey
- 3. L1551 NE (detailed study)
- 4. Future Study and Summary

# 1. Recent progress in multiple star formation



#### **Multiple Star formation**

- Multiple Star formation
  - Ubiquitous
  - Majority
  - Related to IMF
  - Binary, triple, cluster, and higher order
- Laboratory to test stellar evolution at young phase.



L1448 IRS3B (Tobin+16)



#### **Embedded Cluster**

• Higher angular resolution, more compact objects



• MMS6 in Orion 2/3 by Takahashi+12 (SMA)

#### Young cluster in Pre-ALMA and ALMA era



#### Infrared Dark Cloud G28.53-0.25

Star Formation from Cores to Clusters @ Santiago, Chile

6



#### **Binary Identification before PPVI**

- Characterization of Young Binary Systems
- Fraction, Separation, Age, Primary Mass, Mass Ratio



## Many new binary surveys to come with extreme ones in post PPVI (Reipurth+ in PPVI)

| Reference                | Region (Age)                   | Identification           | Separation    | Telescope                         |
|--------------------------|--------------------------------|--------------------------|---------------|-----------------------------------|
| Daemgen+<br>13           | Chamaeleon I<br>(2 Myr)        | 19 binaries<br>7 triples | 30-1000 au    | VLT JHKL'<br>imaging              |
| Daemgen+<br>15           | Taurus<br>(2 Myr)              | 74 companion candidates  | 10-1500 au    | Gemini N Ks<br>deep imaging       |
| Lafreniere+<br>14        | Upper-Sco<br>(5 Myr)           | 29 binaries<br>5 triples | 15-800 au     | Gemini N K<br>deep imaging        |
| Tobin+16                 | Perseus<br>(< 1 Myr)           | 26 multiple<br>systems   | 15-10 kau     | JVLA deep<br>imaging              |
| Elliott+16<br>(compiled) | $\beta$ -Pictoris moving group |                          | 0.1 – 100 kau | RV, hc imaging,<br>direct imaging |

#### **Binary separation**

Daemgen+15 (Gemini N.)



#### Survey limitation

Daemgen+15 (Gemini N.)





#### **Perseus Binary Surveys**



#### Separation distribution at Class 0 phase

Tobin+16





Star Formation from Cores to Clusters ( Santiago, Chile

#### Mass Ratio

Daemgen+15



Extremely difficult to derive mass ratio at the protostar phase.

#### Exotic binary system

20 and 18 Msun with 170 au separation



Kraus+16



#### Statistical Approach

- Two Point correlation function
- First nearest neighbor separation (1-NNS)
- One-point correlation function (Joncour+17)
- These statistical approaches will be more powerful with uniform sample of binaries and will be applicable to earlier stage binaries.





#### **Progress Summary since PPVI**

#### • Progress

- Radio interferometers have revealed embedded binary systems or mini-clusters with moderate separation
- Various binary candidates such as massive binary, wide binary, BD binary, have been identified
- More statistical approach have been taken.
- Issues
  - Lack of close companion surveys at higher angular resolution
  - Mass ratio of embedded systems
  - Gas Kinematics of circumbinary and circumstellar disk

## 2. SOLA



#### Soul of Lupus with ALMA (SOLA)

- More details in Itziar's Talk
- SOLA means "sky" in Japanese and "lonely" in Spanish
- Lupus (150 pc ~ same distance of Taurus) can play a similar role than Taurus in establishing a star formation scenario of low mass stars in the ALMA era.
- The project covers  $10 10^4$  au scale.

#### Angular Momentum on large scale



#### N<sub>2</sub>H<sup>+</sup> map of cores in Lupus I

Lup1 Core 1 3 4



Left Oth moment map, Right 1st moment map (Kiyokane 16)

Star Formation from Cores to Clusters @ Santiago, Chile



## Observations favor random rotation axes in Lupus 1





#### SOLA ALMA Cycle 2 Continuum Survey

- Lupus I, III, IV (37 in total)
- Selected from mm sources (AzTEC/ASTE)
- Class 0/I/F type SEDs
- Typical  $\theta \sim 0$ ".2 (typical binary separation)

|           | Observed | Detected<br>(binary) | Typical Noise level |
|-----------|----------|----------------------|---------------------|
| Lupus I   | 14       | 1                    | 0.25 mJy            |
| Lupus III | 13       | 4 (1)                | 0.5 mJy             |
| Lupus IV  | 8        | 2 (1)                | 0.9 mJy             |
| Total     | 37       | 8 (2)                |                     |



## SOLA High Resolution Continuum Imag





#### SOLA Binary Candidate

- Cavity Disk or Young Binary?
- Bridge suggest binary?
- Kinematics ultimate test



Ansdell+16



### 3. L1551 NE

#### Protostellar Binaries in the L1551 Region





#### Detailed Study: Case of L1551 NE

Submm continuum images (SMA, Cycle 0, Cycle 2)



Mass ratio is 0.19 with a total mass of 0.8 Mo Submm flux ratio is 0.33 – relation to q?

### Cycle 2 Results: 0.9-mm Continuum



Two Spiral Arms, in particular, the southern arm connecting to Source B, are clear.

Circumstellar Disks (CSD) also resolved ( $r_A \sim 20 \text{ AU}$ ,  $r_B \sim 18 \text{ AU}$ ).



Right ascension (J2000.0)

- Circumstellar Disk (CSD) rotating-gas Component around source A
- Inter-arm gas components connecting between CBD and CSD
- -> East-West Velocity gradient around Source A -> Accretion
- Redshifted Southern Arm and Blueshifted Northern Arm Gas

# 4. Future Direction and Summary



#### **Future Directions**

- More Surveys to fill in the parameter space
  - Separation, q, age etc.
- Detailed Study for some representative sources especially at earliest stage
  - Infalling motion
  - mass determination
- Comparison of observational results with simulation

#### **Future ALMA Observations**

Simulated ALMA Cycle 2 and 3 0.9-mm Dust-Continuum Images of L1551 IRS 5 and NE at a ~0.1 arcsec Resolution



L1551 IRS 5 Equal Binary Mass, Low Angular mom. o the CBD.

—> A number of small Spirals,Equal Accretion Rate.

#### <u>L1551 NE</u>

High Binary Mass Ratio (=0.2), High Angular mom. of the CBD. -> Well-Developed Two Spirals, Secondary Accretes ~10 times more than Primary



#### Summary

- Significant progress in young binary studies have been observed even in the last few years.
- More survey results have come and will come in various binary parameters, particularly at early phase.
- Statistical properties of earliest stage binary survey will constrain formation mechanism of binary stars.
- High angular resolution images will reveal structure and kinematics of youngest binary systems.

#### ALMA is a key facility for binary study.