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Abstract 

In this paper, Antelope Algorithm (AA) is proposed for solving optimal reactive power dispatch 

problem. A population of candidate solution move toward as a herd of Antelope out a sequence 

of jumps through the exploration space in order to find the most outstanding solution. The main 

idea of this algorithm is fairly different from the population based algorithms, as the individual 

solutions are stirred collectively in a herd-like approach. Projected Antelope Algorithm (AA) 

algorithm has been tested in standard IEEE 30 bus test system and simulation results show 

clearly about the superior performance of the projected algorithm in reducing the real power loss. 
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1. Introduction 

 
Optimal reactive power dispatch (ORPD) problem is a multi-objective optimization problem that 

diminishes the real power loss and bus voltage deviation. Various mathematical techniques like 

the gradient method [1-2], Newton method [3] and linear programming [4-7] have been adopted 

to solve the optimal reactive power dispatch problem. Both the gradient and Newton methods 

has the complexity in managing inequality constraints. If linear programming is applied then the 

input- output function has to be uttered as a set of linear functions which mostly lead to loss of 

accurateness. The problem of voltage stability and collapse play a major role in power system 

planning and operation [8]. Global optimization has received extensive research awareness, and a 

great number of methods have been applied to solve this problem. Evolutionary algorithms such 

as genetic algorithm have been already proposed to solve the reactive power flow problem 

[9,10].Evolutionary algorithm is a heuristic approach used for minimization problems by 

utilizing nonlinear and non-differentiable continuous space functions. In [11], Genetic algorithm 

has been used to solve optimal reactive power flow problem. In [12], Hybrid differential 

evolution algorithm is proposed to improve the voltage stability index. In [13] Biogeography 

Based algorithm is projected to solve the reactive power dispatch problem. In [14], a fuzzy based 
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method is used to solve the optimal reactive power scheduling method. In [15], an improved 

evolutionary programming is used to solve the optimal reactive power dispatch problem. In [16], 

the optimal reactive power flow problem is solved by integrating a genetic algorithm with a 

nonlinear interior point method. In [17], a pattern algorithm is used to solve ac-dc optimal 

reactive power flow model with the generator capability limits. In [18], proposes a two-step 

approach to evaluate Reactive power reserves with respect to operating constraints and voltage 

stability. In [19], a programming based proposed approach used to solve the optimal reactive 

power dispatch problem. In [20], presents a probabilistic algorithm for optimal reactive power 

provision in hybrid electricity markets with uncertain loads. This paper proposes Antelope 

algorithm (AA) is used to solve the optimal reactive power dispatch problem. AA imitates the 

behavior of a herd [21, 22] of antelopes that jump their way through a solution space to find the 

optimal point. Antelope algorithm tries to find an optimal point by iteratively altering a 

population of candidate solutions. Yet it does not depend on swarm intelligence, but rather on 

herd-like behavior with innermost assessment.  Projected Antelope Algorithm (AA) has been 

evaluated in standard IEEE 30 bus test system & the simulation results shows that the projected 

approach outperforms all reported standard algorithms in reducing the real power loss. 

 

2. Voltage Stability Evaluation 

 
2.1. Modal Analysis for Voltage Stability Evaluation 

 

Modal analysis is one among best   methods for voltage stability enhancement in power systems. 

The steady state system power flow equations are given by. 

[
∆P
∆Q

] = [
Jpθ      Jpv 

Jqθ     JQV     
]   [

∆𝜃
∆𝑉

]                                                                                                         (1) 

Where 

ΔP = Incremental change in bus real power. 

ΔQ = Incremental change in   bus   reactive Power injection 

Δθ = incremental change in bus voltage angle. 

ΔV = Incremental change in bus voltage Magnitude 

Jpθ , JPV , JQθ , JQV jacobian matrix are   the   sub-matrixes    of   the System  voltage  stability  

is affected  by both P and Q.  

To reduce (1), let ΔP = 0 , then. 

∆Q = [JQV − JQθJPθ−1JPV]∆V = JR∆V                                                                                           (2) 

∆V = J−1 − ∆Q                                                                                                                              (3) 

Where 

JR = (JQV − JQθJPθ−1JPV)                                                                                                             (4) 

JR is called the reduced Jacobian matrix of the system. 

 

2.2. Modes of Voltage Instability 

 

Voltage Stability characteristics of the system have been identified by computing the Eigen 

values and Eigen vectors. 

Let 

JR = ξ˄η                                                                                                                                        (5) 

Where, 
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ξ = right eigenvector matrix of JR 

η = left eigenvector matrix of JR 

∧ = diagonal eigenvalue matrix of JR and 

JR−1 = ξ˄−1η                                                                                                                                 (6)                                  

          From (5) and (8), we have 

∆V = ξ˄−1η∆Q                                                                                                                              (7)                                  

                 or 

∆V = ∑
ξiηi

λi
I ∆Q                                                                                                                              (8) 

Where ξi  is the ith  column right eigenvector and  η the ith row left  eigenvector of JR.  

 λi   is the ith Eigen value of JR. 

 

The  ith  modal reactive power variation is, 

∆Qmi = Kiξi                                                                                                                                  (9) 

  where, 

Ki = ∑ ξij2j − 1                                                                                                                           (10) 

Where 

ξji is the jth element of ξi 

 

The corresponding ith modal voltage variation is 

∆Vmi = [1 λi⁄ ]∆Qmi                                                                                                                    (11) 

If   |    λi    |    =0   then the  ith modal voltage will collapse . 

In (10), let ΔQ = ek   where ek has all its elements zero except the kth one being 1. Then,  

 ∆V = ∑
ƞ1k  ξ1   

λ1
i                                                                                                                            (12) 

ƞ1k     k th element of ƞ1      

V –Q sensitivity at bus k  
∂VK

∂QK
= ∑

ƞ1k  ξ1   

λ1
i  = ∑

Pki

λ1
i                                                                                                              (13) 

 

3. Problem Formulation 

 

The objectives of the reactive power dispatch problem is to minimize the system real power loss 

and maximize the static voltage stability margins (SVSM).  

 

3.1. Minimization of Real Power Loss 

 

Minimization of the real power loss (Ploss) in transmission lines is mathematically stated as 

follows. 

Ploss= ∑ gk(Vi
2+Vj

2−2Vi Vj cos θij
)

n
k=1

k=(i,j)

                                                                                             (14)            

Where n is the number of transmission lines, gk is the conductance of branch k, Vi and Vj are 

voltage magnitude at bus i and bus j, and θij is the voltage angle difference between bus i and 

bus j. 
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3.2. Minimization of Voltage Deviation 

 

Minimization  of the voltage  deviation magnitudes (VD) at load buses  is mathematically stated 

as follows. 

Minimize VD = ∑ |Vk − 1.0|nl
k=1                                                                                                   (15) 

Where nl is the number of load busses and Vk is the voltage magnitude at bus k. 

3.3. System Constraints 

Objective functions are subjected to these constraints shown below. 

Load flow equality constraints: 

PGi – PDi − Vi ∑ Vj
nb
j=1

[
Gij cosθij

+Bij sin θij
] = 0, i = 1,2… . , nb                                                            (16) 

                                                                        

QGi − QDi − Vi ∑ Vj
nb
j=1

[
Gij sin θij

+Bij cosθij
] = 0, i = 1,2… . , nb                                                       (17)                                 

                   

where, nb is the number of buses, PG and QG are the real and reactive power of the generator, 

PD and QD are the real and reactive load of the generator, and Gij and Bij are the mutual 

conductance and susceptance between bus i and bus j. 

 

Generator bus voltage (VGi) inequality constraint: 

VGi 
min ≤  VGi ≤ VGi

max, i ∈ ng                                                                                                            (18) 

Load bus voltage (VLi) inequality constraint: 

VLi 
min ≤  VLi ≤ VLi

max, i ∈ nl                                                                                                          (19) 

Switchable reactive power compensations (QCi) inequality constraint: 

QCi 
min ≤ QCi ≤ QCi

max, i ∈ nc                                                                                                        (20) 

Reactive power generation (QGi) inequality constraint: 

QGi 
min ≤ QGi ≤ QGi

max, i ∈ ng                                                                                                        (21) 

Transformers tap setting (Ti) inequality constraint: 

Ti 
min ≤  Ti ≤ Ti

max, i ∈ nt                                                                                                            (22) 

Transmission line flow (SLi) inequality constraint: 

SLi 
min ≤ SLi

max, i ∈ nl                                                                                                                     (23) 

Where, nc, ng and nt are numbers of the switchable reactive power sources, generators and 

transformers. 

 

4. Antelope Algorithm 

 

The deeds of the Antelope is jumping around their habitat in explore of the locating best food. 

And an Antelope finding itself in any point in space can give it a real-valued mark, indicating 

food quality shown in Fig .1.  
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Figure 1: Antelope 

 

 
Figure 2: Antelope Herd Movement 

 

The Antelope leader jumps to a given location, and all the other Antelopes jump to arbitrary 

positions around the leader shown in Fig 2. The Antelope’s then report their new positions and 

the related quality to the leader. Based on this information, the leader decides the way of its next 

jump. The leader’s jump distance raise smaller when two successive jumps are in conflicting 

directions, or else it raise larger to another level. Numerous jumps are carried out in this fashion, 

and the dimension of the scatter region around the leader can be condensed over time to expand 

information from narrower regions. The herd remembers the single best location it has been 

found so far. Appropriately, we try to find the point that diminishes a real valued cost function 

over a given bounded D-dimensional real valued investigate space: 

arg𝑚𝑖𝑛𝑥 𝑐𝑜𝑠𝑡(𝑥), 𝑥 ∈ 𝑆                                                                                                             (24) 

Where 𝑆 = [𝑙𝑏1, 𝑢𝑏1]  × . .× [𝑙𝑏𝐷, 𝑢𝑏𝐷]  
For this reason we use a population of P antelopes (D- dimensional vectors representing 

candidate solutions), of which one is the head or leader.  

Let we define, 
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𝑙𝑒𝑎𝑑𝑒𝑟  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ be an D-dimensional vector containing the leader’s position, 

A be a P×D matrix whose first row is 𝑙𝑒𝑎𝑑𝑒𝑟  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and whose remaining rows contain the other 

Antelope’s positions, 

𝑟𝑎𝑛𝑘⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗   be a P-dimensional vector containing the cost-ranking of each of the Antelope’s, 

𝑗𝑢𝑚𝑝⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗ be an D-dimensional vector giving the direction of the leader’s jump, 

j length be a scalar value representing the leader’s jump’s length, 

scatter be a scalar value controlling how close to the leader the Antelope’s will be scattered,  

𝜂+ and 𝜂− be scalar values used to automatically lengthen or shorten the jumps, 

m length be a scalar value representing the minimal allowed jump length. 

Antelope Algorithm (AA) for solving optimal reactive power dispatch problem 

a) Initialization of parameters 

i) Initialize the leader to a random point in the search space. 

ii) Initialize the (P -1) other Antelope’s to an   arbitrary points in a region around the leader, with 

parameter scatter controlling the size of this region. 

iii) Appraise the cost function at each of the P points. 

iv)  Rank the costs and store the result in 𝑟𝑎𝑛𝑘⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗   

v)  Store the lowest cost and the associated position. 

vi)  Compute the jump direction according to the following formula: 

∀𝑖 ∈ [1, 𝐷], 𝑗𝑢𝑚𝑝⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗𝑖 = 𝑐𝑜𝑣 (𝑟𝑎𝑛𝑘⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗  , 𝐴.𝑖)                                                                                        (25) 

𝑗𝑢𝑚𝑝⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗i denotes the i-th element of the jump vector and A.i denotes the i-th column of matrix A. 

vii) Initialize jump-length variable j length to the maximal distance between the leader and the 

other Antelope’s. 

b) Loop (until stopping criterion is met) 

i) Update the leader’s position according to the following formula: 

𝑙𝑒𝑎𝑑𝑒𝑟𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑙𝑒𝑎𝑑𝑒𝑟𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ −
𝑗𝑙𝑒𝑛𝑔𝑡ℎ𝑡

‖𝑗𝑢𝑚𝑝𝑡⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗
‖
𝑗𝑢𝑚𝑝𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗                                                                                    (26) 

ii) Update the other Antelope’s positions by randomly placing them in a region around the 

leader, the size of which is controlled by parameter scatter. 

iii) Evaluate the cost function at each of the P points. 

iv) Rank the costs and store the result in 𝑟𝑎𝑛𝑘⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗  . 

v) Store the lowest cost and the associated position if it is lower than the stored best.  

vi) Compute the jump direction according to formula (25). 

vii) Update the jump-length variable: if the new jump is made a direction opposite to that of the 

last jump (if 𝑗𝑢𝑚𝑝𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑗𝑢𝑚𝑝𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ < 0) then multiply j length by 𝜂−, else multiply it by 𝜂+  . If this 

makes j length smaller than m length, set it to m length. 

vii) Update the scatter parameter. 

 

The algorithm fundamentally takes three parameters: the population size P, the scatter-range 

scatter, and the minimal jump-length m length. P is the number of cost-function evaluations in 

each iteration and the concentration of exploitation of each visited area. The scatter range 

controls “how local” the search is at each iteration: a lower scatter value will let the random 

evaluations occur in a narrower region around the leader. The minimum jump-length is used to 

avoid convergence to local optima. Parameters  𝜂+ and  𝜂− are directly inspired by those of 

Riedmiller and Braun’s RPROP algorithm [23] for the training of feed forward neural networks. 

The idea, interpret the original article, is that two successive jumps in conflicting directions 

http://www.granthaalayah.com/


[Lenin *, Vol.5 (Iss.8): August, 2017]                                                      ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

DOI: 10.5281/zenodo.886268 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [197] 

 

designate that the last jump was too long and the algorithm has jumped over a local minimum; 

jump-length is then decreased by factor 𝜂−. Otherwise, jump-length is slightly increased by 

factor  𝜂+  in order to increase speed of convergence in shallow regions. Although our setting is 

quite different, we used the original values of both parameters,   𝜂+   = 0.49 and  𝜂− = 1.1. We 

chose to use the rank of costs instead of costs to compute the jump direction. This makes the 

algorithm invariant to any increasing transformation of the cost function. Antelope’s were 

uniformly distributed inside a hyper parallel piped centred on the leader, according to the 

following formula: 

∀(𝑖, 𝑗) ∈ [2, 𝑃] × [1, 𝐷], 𝑎𝑖𝑗 = 𝑙𝑒𝑎𝑑𝑒𝑟𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + (𝑟𝑖𝑗−0.5) × 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 × (𝑢𝑏𝑗 − 𝑖𝑏𝑗)                          (27) 

Where aij denotes element (i, j) of matrix A, 𝑙𝑒𝑎𝑑𝑒𝑟𝑗  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is the leader-vector’s j-th element, scatter 

is a scalar value chosen in [0,1], ubj and lbj are respectively the upper and lower bounds of 

dimension j, and rij is a random value uniformly drawn from [0,1]. A better choice might be to 

generate normal deviates from 𝑙𝑒𝑎𝑑𝑒𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 
 

5. Simulation Results  

 

The efficiency of the proposed Antelope Algorithm (AA) for solving the multi-objective reactive 

power dispatch problem is demonstrated by testing it on standard IEEE-30 bus system. The 

IEEE-30 bus system has 6 generator buses, 24 load buses and 41 transmission lines of which 

four branches are (6-9), (6-10) , (4-12) and (28-27) - are with the tap setting transformers. The 

lower voltage magnitude limits at all buses are 0.95 p.u. and the upper limits are 1.1 for all the 

PV buses and 1.05 p.u. for all the PQ buses and the reference bus. The simulation results have 

been presented in Tables 1, 2, 3 &4. And in the Table 5 shows the proposed algorithm 

powerfully reduces the real power losses when compared to other given algorithms. The optimal 

values of the control variables along with the minimum loss obtained are given in Table 1. 

Corresponding to this control variable setting, it was found that there are no limit violations in 

any of the state variables.   

 

Table 1: Results of AA – ORPD optimal control variables 

Control variables Variable setting 

V1 

V2 

V5 

V8 

V11 

V13 

T11 

T12 

T15 

T36 

Qc10 

Qc12 

Qc15 

Qc17 

Qc20 

Qc23 

1.042 

1.045 

1.046 

1.034 

1.001 

1.038 

1.00 

1.00 

1.01 

1.01 

2 

2 

3 

0 

2 

3 
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Qc24 

Qc29 

Real power loss 

SVSM 

3 

2 

4.2958 

0.2478 

 

Optimal Reactive Power Dispatch problem together with voltage stability constraint problem 

was handled in this case as a multi-objective optimization problem where both power loss and 

maximum voltage stability margin of the system were optimized simultaneously. Table 2 

indicates the optimal values of these control variables. Also it is found that there are no limit 

violations of the state variables. It indicates the voltage stability index has increased from 0.2478 

to 0.2489, an advance in the system voltage stability. To determine the voltage security of the 

system, contingency analysis was conducted using the control variable setting obtained in case 1 

and case 2. The Eigen values equivalents to the four critical contingencies are given in Table 3. 

From this result it is observed that the Eigen value has been improved considerably for all 

contingencies in the second case.  

 

Table 2: Results of   AA -Voltage Stability Control Reactive Power Dispatch Optimal Control 

Variables 

Control Variables Variable Setting 

V1 

V2 

V5 

V8 

V11 

V13 

T11 

T12 

T15 

T36 

Qc10 

Qc12 

Qc15 

Qc17 

Qc20 

Qc23 

Qc24 

Qc29 

Real power loss 

SVSM 

1.049 

1.047 

1.048 

1.037 

1.003 

1.030 

0.090 

0.090 

0.090 

0.090 

3 

3 

2 

3 

0 

2 

2 

3 

4.9879 

0.2489 

 

Table 3: Voltage Stability under Contingency State 

Sl.No Contingency ORPD Setting VSCRPD Setting 

1 28-27 0.1409 0.1424 

2 4-12 0.1649 0.1652 

3 1-3 0.1769 0.1779 

4 2-4 0.2029 0.2041 
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Table 4: Limit Violation Checking Of State Variables 

State Variables 
Limits 

ORPD VSCRPD 
Lower  Upper 

Q1 -20 152 1.3422 -1.3269 

Q2 -20 61 8.9900 9.8232 

Q5 -15 49.92 25.920 26.001 

Q8 -10 63.52 38.8200 40.802 

Q11 -15 42 2.9300 5.002 

Q13 -15 48 8.1025 6.033 

V3 0.95 1.05 1.0372 1.0392 

V4 0.95 1.05 1.0307 1.0328 

V6 0.95 1.05 1.0282 1.0298 

V7 0.95 1.05 1.0101 1.0152 

V9 0.95 1.05 1.0462 1.0412 

V10 0.95 1.05 1.0482 1.0498 

V12 0.95 1.05 1.0400 1.0466 

V14 0.95 1.05 1.0474 1.0443 

V15 0.95 1.05 1.0457 1.0413 

V16 0.95 1.05 1.0426 1.0405 

V17 0.95 1.05 1.0382 1.0396 

V18 0.95 1.05 1.0392 1.0400 

V19 0.95 1.05 1.0381 1.0394 

V20 0.95 1.05 1.0112 1.0194 

V21 0.95 1.05 1.0435 1.0243 

V22 0.95 1.05 1.0448 1.0396 

V23 0.95 1.05 1.0472 1.0372 

V24 0.95 1.05 1.0484 1.0372 

V25 0.95 1.05 1.0142 1.0192 

V26 0.95 1.05 1.0494 1.0422 

V27 0.95 1.05 1.0472 1.0452 

V28 0.95 1.05 1.0243 1.0283 

V29 0.95 1.05 1.0439 1.0419 

V30 0.95 1.05 1.0418 1.0397 

 

Table 5: Comparison of Real Power Loss 

Method Minimum loss (MW) 

Evolutionary programming [24] 5.0159 

Genetic algorithm [25] 4.665 

Real coded GA with Lindex as SVSM  [26] 4.568 

Real coded genetic algorithm [27] 4.5015 

Proposed AA  method 4.2958 
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6. Conclusion  

 
Antelope Algorithm (AA) has been effectively applied for solving Optimal Reactive Power 

Dispatch problem. The Antelope Algorithm (AA) based Optimal Reactive Power Dispatch has 

been successfully tested in standard IEEE 30 bus system. Performance comparisons with well-

known population-based algorithms give advance results. Antelope Algorithm (AA) succeeded 

in plummeting real power loss, when compare to other reported standard algorithms. The 

simulation results presented in preceding section prove the capability of Antelope Algorithm 

(AA) approach to arrive at near global optimal solution. 
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