
Certifications of Critical Systems –
The CECRIS Experience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144851152?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RIVER PUBLISHERS SERIES IN INFORMATION SCIENCE
AND TECHNOLOGY

Series Editors

K. C. CHEN SANDEEP SHUKLA
National Taiwan University Virginia Tech, USA
Taipei, Taiwan and

Indian Institute of Technology Kanpur, India

Indexing: All books published in this series are submitted to Thomson Reuters Book Citation
Index (BkCI), CrossRef and to Google Scholar.

The “River Publishers Series in Information Science and Technology” covers research which
ushers the 21st Century into an Internet and multimedia era. Multimedia means the theory
and application of filtering, coding, estimating, analyzing, detecting and recognizing, syn-
thesizing, classifying, recording, and reproducing signals by digital and/or analog devices or
techniques, while the scope of “signal” includes audio, video, speech, image, musical, multi-
media, data/content, geophysical, sonar/radar, bio/medical, sensation, etc. Networking suggests
transportation of such multimedia contents among nodes in communication and/or computer
networks, to facilitate the ultimate Internet.

Theory, technologies, protocols and standards, applications/services, practice and implemen-
tation of wired/wireless networking are all within the scope of this series. Based on network and
communication science, we further extend the scope for 21st Century life through the knowl-
edge in robotics, machine learning, embedded systems, cognitive science, pattern recognition,
quantum/biological/molecular computation and information processing, biology, ecology, social
science and economics, user behaviors and interface, and applications to health and society
advance.

Books published in the series include research monographs, edited volumes, handbooks and
textbooks. The books provide professionals, researchers, educators, and advanced students in the
field with an invaluable insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the following:

• Communication/Computer Networking Technologies and Applications
• Queuing Theory
• Optimization
• Operation Research
• Stochastic Processes
• Information Theory
• Multimedia/Speech/Video Processing
• Computation and Information Processing
• Machine Intelligence
• Cognitive Science and Brian Science
• Embedded Systems
• Computer Architectures
• Reconfigurable Computing
• Cyber Security

For a list of other books in this series, www.riverpublishers.com

Certifications of Critical Systems –
The CECRIS Experience

Editors

Andrea Bondavalli

Consorzio Interuniversitario Nazionale per l’Informatica (CINI)
and University of Florence

Italy

Francesco Brancati

ResilTech Srl
Italy

Published, sold and distributed by:
River Publishers
Alsbjergvej 10
9260 Gistrup
Denmark

River Publishers
Lange Geer 44
2611 PW Delft
The Netherlands

Tel.: +45369953197
www.riverpublishers.com

ISBN: 978-87-93519-56-5 (Hardback)
978-87-93519-55-8 (Ebook)

c©The Editor(s) (if applicable) and The Author(s) 2017. This book is
published open access.

Open Access

This book is distributed under the terms of the Creative Commons Attribution-Non-
Commercial 4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/
licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, a link is provided to the Creative Commons license and any
changes made are indicated. The images or other third party material in this book are
included in the work’s Creative Commons license, unless indicated otherwise in the
credit line; if such material is not included in the work’s Creative Commons license and
the respective action is not permitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks,
etc. in this publication does not imply, even in the absence of a specific statement, that
such names are exempt from the relevant protective laws and regulations and therefore
free for general use.

The publisher, the authors and the editors are safe to assume that the advice and
information in this book are believed to be true and accurate at the date of publication.
Neither the publisher nor the authors or the editors give a warranty, express or implied,
with respect to the material contained herein or for any errors or omissions that may have
been made.

Printed on acid-free paper.

Contents

Preface xiii

List of Contributors xxi

List of Figures xxv

List of Tables xxix

List of Abbreviations xxxi

1 A Framework to Identify Companies Gaps When Introducing
New Standards for Safety-Critical Software 1

Andrea Ceccarelli and Nuno Silva

1.1 Introduction . 1
1.1.1 Contribution . 2

1.2 State of the Art on Gap Analysis in the ICT World 3
1.3 Overview of the Framework and Methodology 4

1.3.1 The Framework 5
1.3.1.1 Processes 5
1.3.1.2 Techniques and tools 6
1.3.1.3 Personnel 6

1.3.2 The Methodology to Exercise the Framework 7
1.4 Dataset Structure and Population 8

1.4.1 Dataset Structure 8
1.4.2 Population of the Dataset 10

1.5 Metrics for Gap Analysis 14
1.5.1 Qualitative Indications 14
1.5.2 Quantitative Indication 15
1.5.3 Driving Conclusions 16

v

vi Contents

1.6 Case Study and Gap Analysis for DO-178B 17
1.6.1 Matching of DO-178B Techniques and Company’s

Techniques . 17
1.6.2 Acquire Data from Personnel 18
1.6.3 Analyze the Data: Techniques 18
1.6.4 Analyze the Data: Tools 21
1.6.5 Conclusive Recommendations and Feedbacks 22

1.7 Discussion about the Gap Analysis Framework 23
1.7.1 An Application to the Moving Process 23
1.7.2 Time and Cost . 24
1.7.3 Effectiveness and Reactions 24
1.7.4 Replacement Techniques 25
1.7.5 Different Approaches to Compliance 25
1.7.6 Questionnaire Assessment and Bias 26

1.8 Conclusions . 26
References . 27

2 Experiencing Model-Driven Engineering for Railway
Interlocking Systems 31

Fabio Scippacercola, András Zentai and Stefano Russo

2.1 Introduction . 31
2.2 Background: MDE . 32

2.2.1 MDA Viewpoints and Views 35
2.3 The Maturity of MDE . 36
2.4 A Model-Driven Methodology for Prolan 40

2.4.1 Experimentation within A Pilot Project 45
2.4.2 System Requirements Specification 45
2.4.3 System Design . 48
2.4.4 Component Design 50

2.4.4.1 Implementation 51
2.4.5 Validation Design 52
2.4.6 Integration Verification Design 52
2.4.7 Component Verification Design 53
2.4.8 Model-Driven V&V Subprocess 54

2.5 Environment System Validation 55
2.6 Experimenting the CIT . 56
2.7 Lesson Learned . 58

References . 59

Contents vii

3 SYSML-UML Like Modeling Environment Based on Google
Blockly Customization 65

Arun Babu Puthuparambil, Francesco Brancati,
Andrea Bondavalli and Andrea Ceccarelli

3.1 Introduction . 65
3.1.1 Goal . 66
3.1.2 Blockly Customization 66
3.1.3 Model Transformation 66
3.1.4 Requirements Management 67
3.1.5 MDE Flow . 67
3.1.6 Guiding and Warning Users 69
3.1.7 Modular Design and Viewpoints 71
3.1.8 Model Querying 73
3.1.9 Code Generation and Export to PlantUML 74
3.1.10 Simulation . 76
3.1.11 Conclusion and Future Work 76

4 A Process for Finding and Tackling the Main Root Causes
that Affect Critical Systems Quality 81

Nuno Silva, Francisco Moreira, João Carlos Cunha
and Marco Vieira

4.1 Introduction . 81
4.2 Background . 83

4.2.1 Orthogonal Defect Classification 84
4.2.2 Independent Software Verification and Validation

(ISVV) . 85
4.2.3 Related Work . 86

4.3 Defects Assessment Process 87
4.3.1 Procedure Prerequisites 88
4.3.2 Defects Classification 88
4.3.3 Defects Root Cause Analysis 89
4.3.4 Improvements and Validation 90

4.4 Results . 90
4.4.1 Characterization of the Systems 91
4.4.2 Defects in the Dataset 92
4.4.3 Enhanced ODC Results 92
4.4.4 Enhanced ODC Defect Impact Analysis 94

viii Contents

4.4.4.1 Type vs. Impact 95
4.4.4.2 Trigger vs. Impact 96

4.4.5 Consolidation of the Root Cause Analysis
and Proposed Improvements 97

4.5 Conclusions . 100
References . 100

5 Framework for Automation of Hazard Log Management
on Large Critical Projects 103

Lorenzo Vinerbi and Arun Babu Puthuparambil

5.1 Introduction . 103
5.1.1 Brief Introduction on DOORS 104

5.2 Approach . 105
5.3 Case Study . 110
5.4 Conclusion . 111
5.5 Tool Screenshots . 112

References . 115

6 Cost Estimation for Independent Systems Verification
and Validation 117

András Pataricza, László Gönczy, Francesco Brancati,
Francisco Moreira, Nuno Silva, Rosaria Esposito,
Andrea Bondavalli and Alexandre Esper

6.1 Introduction . 118
6.1.1 ISVV Workflow 118
6.1.2 Objectives . 120
6.1.3 Approach . 121

6.2 Construction of the ISVV Specific Cost Estimator 121
6.2.1 Structure of the Cost Predictor 122
6.2.2 Cost Drivers . 123
6.2.3 Focal Problems in Predicting Costs for ISVV 123
6.2.4 Factor Reusability for ISVV-Related CE 124
6.2.5 Human and Organizational Factors 125
6.2.6 Motivating Example: Testing 126

6.3 Experimental Results . 127
6.3.1 Faithfulness of the Results 127
6.3.2 Sensitivity Analysis 129
6.3.3 Pilot Use Case for Project Management 131

Contents ix

6.4 Case Studies . 132
6.4.1 Complexity Factors 132
6.4.2 Cost Impact of Requirement Management 134
6.4.3 Automated Analysis for Factor Selection 135
6.4.4 Quality Maintenance Across Project Phases 136
6.4.5 Fault Density and Input Complexity 138

6.5 Conclusions . 139
References . 140

7 Lightweight Formal Analysis of Requirements 143

András Pataricza, Imre Kocsis, Francesco Brancati,
Lorenzo Vinerbi and Andrea Bondavalli

7.1 Introduction . 143
7.2 Objective . 144
7.3 ReqIF and Modeling . 145

7.3.1 Domain Conceptualization 148
7.3.2 Integration with Existing Practice of ISVV 150

7.4 Requirement Change Propagation 152
7.4.1 Original Specification 152
7.4.2 Changed Specification 154
7.4.3 The Change Impact Propagation Method 154

7.5 Abstraction Levels of Impact Propagation 156
7.5.1 Topology-Based Propagation 158
7.5.2 Type-Based Propagation 158
7.5.3 Value-Based Propagation 160

7.6 Resolution Modeling with CSP 161
7.7 Conclusions . 163

References . 165

8 STECA – Security Threats, Effects and Criticality Analysis:
Definition and Application to Smart Grids 167

Mario Rui Baptista, Nuno Silva, Nicola Nostro,
Tommaso Zoppi and Andrea Ceccarelli

8.1 Introduction . 167
8.2 Motivation . 168

8.2.1 Motivating Concerns in Industry 168
8.2.2 State of the Art and Background 170

8.3 STECA Process Description 171

x Contents

8.3.1 The High Level STECA 171
8.3.2 STECA Inputs . 172
8.3.3 Security Vulnerabilities 172
8.3.4 Threats Map . 174
8.3.5 Risk Assessment and Attack Severity 176
8.3.6 STECA Recommendations 178

8.4 Conclusion . 181
References . 181

9 Composable Framework Support for Software-FMEA
through Model Execution 183

Valentina Bonfiglio, Francesco Brancati, Francesco Rossi,
Andrea Bondavalli, Leonardo Montecchi, András Pataricza,
Imre Kocsis and Vince Molnár

9.1 Introduction . 183
9.2 Software-FMEA Using fUML/ALF 184

9.2.1 Tooling for fUML and Alf 185
9.2.2 Software-FMEA through Alf Execution 185
9.2.3 Framework Support for Executable Error

Propagation . 186
9.2.4 Error Tokens, Component Activation 186
9.2.5 Execution Orchestration 188
9.2.6 Fault Injection . 189

9.3 Case Study: Application of Software-FMEA
through Model Execution 189
9.3.1 Definition of the Modelled System 189
9.3.2 Process Evaluation 193

9.4 Implementation in a Blockly-based Modelling Tool 195
9.4.1 Preparation of the Model 195
9.4.2 Aggregation and Analysis of Traces 197

9.5 Concluding Remarks . 199
References . 199

10 A Monitoring and Testing Framework for Critical
Off-the-Shelf Applications and Services 201

Nuno Antunes, Francesco Brancati, Andrea Ceccarelli,
Andrea Bondavalli and Marco Vieira

10.1 Introduction . 202
10.2 Framework Architecture 204

Contents xi

10.2.1 Instrumented System (IS) 205
10.2.2 Test and Collect . 206

10.3 Implementation Details . 209
10.3.1 Instrumented System (IS) Implementation 209
10.3.2 Test and Collect Implementation 210

10.3.2.1 Functional and stress testing 211
10.3.2.2 Robustness testing and penetration

testing 212
10.3.2.3 Data storage and analysis tools 212

10.4 Demonstration . 213
10.4.1 Case Study: Life Ray Web Services 214

10.4.1.1 Tests performed 214
10.4.1.2 Tests results 216

10.4.2 Case Study: SHAPE 220
10.4.2.1 Monitoring environment adaptation 220
10.4.2.2 Tests performed 221

10.5 Conclusion . 222
References . 223

11 Validating a Safety Critical Railway Application Using Fault
Injection 227

Ivano Irrera, András Zentai, João Carlos Cunha
and Henrique Madeira

11.1 Introduction . 227
11.2 Fault Injection for V&V and Certification 229

11.2.1 Standards for Safety-critical Railway
Applications . 230

11.2.2 Fault Injection . 231
11.3 The ProSigma Safety-critical Railway Interlocking

System . 232
11.3.1 Concepts of Generic Product, Generic Application

and Specific Application 232
11.3.2 The System Architecture and Functionality 233

11.3.2.1 Logic and Input (LI) card 234
11.3.2.2 ETH card 236
11.3.2.3 RPI card 237
11.3.2.4 Power Supply Units 237
11.3.2.5 Diagnostic centers 238
11.3.2.6 Parameter modules 238

xii Contents

11.3.3 System’s Critical Aspects Worth to Study
Using FI . 238

11.4 The ProSigma FI Framework 238
11.4.1 Fault Injector Framework Architecture

and Functionalities 239
11.4.2 The ProSigma FI Tool (ProSigma-FIT) 240

11.5 ProSigma Safety Assessment Through FI: Experiments
and Results . 241
11.5.1 Safety Assessment of the Prosigma System:

Experimental Setup 242
11.5.2 Results . 242

11.6 Conclusion . 245
References . 245

12 Robustness and Fault Injection for the Validation
of Critical Systems 247

Nuno Laranjeiro, Gonçalo Pereira, Seyma Nur Soydemir, Raul Barbosa,
Jorge Bernardino, Cristiana Areias, Nuno Antunes, João Carlos Cunha,
Marco Vieira and Henrique Madeira

12.1 Introduction . 247
12.2 Related Work . 250
12.3 Robustness Testing and Fault Injection for the Robustness

Evaluation of Services . 254
12.3.1 Robustness Testing with wsrbench and PDInjector 255
12.3.2 Emulating Software Faults with ucXception 258

12.4 Case Studies . 260
12.4.1 External Interface Testing: Case Study #1 261
12.4.2 Inner Interface Testing: Case Study #2 262
12.4.3 Injecting Software Faults in Service Middleware:

Case Study #3 . 265
12.4.4 Results for Case Study #3 266

12.5 Conclusion . 270
References . 270

Index 275

About the Editors 277

Preface

The rapid spread of critical systems raises new challenges from multiple
aspects. The functionality embedded into critical systems is a major driver
of efficient and economic operation of a variety of societal services ranging
from traffic control to health care, but at the same time, the vulnerability of
the society to malfunctioning equipment reaches a critical level both in the
terms of risks to the human life and huge economic impacts. The rapid devel-
opment of underlying technologies implies a huge challenge to this industry
which followed for decades a safety driven conservative approach. This way,
a uniform approach to the development, validation and verification is an
important factor in the Europe wide integration of services as emphasized
for instance by the creation of the ARTEMIS European Technology Platform
on the side of technology. On the human skill side, the dissemination of the
best industrial practices and appropriate training is a key enabling factor for
this unification process.

All over Europe there is a significant lack of skilled workforce related to
critical embedded systems.

Traditional V&V methods frequently exceed effort needed for the core
development time, and while the “soft” IT industry rapidly turns to sys-
tem integration based on the reuse of high volume hardware and software
components, for safety related applications this will still evolve.

All this poses serious difficulties to companies, which are on one hand
constrained to meet predefined quality goals, whereas, on the other hand,
are required to deliver systems at acceptable cost and time to market. Large
companies mainly follow a brute-force approach by focused large volume
investment into tooling and in-house training, but even high-tech SMEs are
highly vulnerable to the new challenges.

Looking at the field of the Verification and Validation one of the most
challenging goals is the definition of methods, strategies and tools able to vali-
date a system adequately, while simultaneously keeping the cost and delivery
time reasonably low. It is not easily possible to establish a proper balance
between achievable quality with a particular technique (in terms of RAMS

xiii

xiv Preface

attributes) and the costs required for achieving such quality. The situation
is even worse in the case of integration of existing SW in a safety critical
system to be certified, since, assessing products which encompass COTS
software is a challenge although modern standards consider this possibility.
An additional concern is the usage of recently adopted methods for SW
development like model based ones, since the certification of systems using
software developed with these supports is at the limit of the applicability of
the existing standards, and only the most recent ones are aligned with these
‘modern’ methods.

This book documents the main insights on Cost Effective Verification
and Validation processes that we gained during our work in the European
Research Project CECRIS (acronym for Certification of Critical Systems).
The objective of this research was to tackle the challenges of certification
by focusing on those aspects that turn out to be more difficult and or
important for current and future critical systems industry: the effective use
of methodologies, processes and tools.

The CECRIS project took a step forward in the growing field of devel-
opment, verification and validation and certification of critical systems. It
focused on the more difficult/important points of (safety, efficiency, business)
of critical system development, verification and validation and certification
process. The scientific objectives of the project were to study both the
scientific and industrial state of the art methodologies for system develop-
ment and the impact of their usage on the verification and validation and
certification of critical systems. Moreover the project aimed at developing
strategies and techniques supported by automatic or semi-automatic tools
and methods for these types of activities, whose cost-quality achievements
are well-predictable in order to tie costs of application of techniques to the
RAMS attributes level achieved by the product being tested. The project
set guidelines to support engineers during the planning of the verification &
validation phases.

The Project Consortium was composed by three academic partners and
three companies:

1. CINI-Consorzio Interuniversitario Nazionale per l’Informatica
2. Resiltech S.r.l.
3. Universidade de Coimbra
4. Budapesti Muszaki es Gazdasagtudomanyi Egyetem
5. Prolan Iranyitastechnikai Zartkoruen Mukodo Reszvenytarsasag
6. CRITICAL Software SA

Preface xv

The CECRIS project has given to the partners the opportunity of sharing
their industrial-academic expertise and experiences and to develop fruitful
collaborations and research products. Through the ‘Transfer of Knowledge’
activities, industrial partners have had the opportunity to better know, evaluate
and apply new research methods, while the academic partners could get from
industry valuable feedback, better understanding the industrial problems and
needs.

Several synergies that have been established during the secondments, are
now in place beyond the project termination for exploiting further potential
strategic research activities. Moreover, the collaborations for the maintenance
and improvement of the project tools developed during CECRIS will last
for years, since these tools support the overall V&V process and reduce the
certification costs of safety-critical systems.

It is the objective of this book to collect the main project results in terms
of methodologies and processes and to propose them in a single edited book.

The first part of the book is related to certification processes. Chapter one
presents an easy-to-use framework and a supporting methodology to perform
a rapid gap analysis on the usage of standards for safety-critical software,
being them new ones to be introduced or standards already applied. In other
words, the framework can be applied to reason in terms of “changing stan-
dard” or in terms of “introducing a new standard”. The ultimate objective is to
discover with limited effort how far a company is from acquiring sufficient the
necessary and sufficient level of knowledge to apply a specific standard. Our
approach is based on the concept of rating the knowledge available: it starts
from an understanding of the expertise of a company, and it rates the improve-
ments, in terms of training, needed to reach an adequate level of confidence
with the techniques and processes required in the standard. Our approach
can be applied to an entire standard, a part of it, or to individual techniques
and tools. Thus, our framework offers the possibility to depict the status of
the knowledge available in the company, which may offer valuable insights
on the areas that are mostly covered, and where potential improvements are
possible. The approach can indicate the introduction time, which estimates
the overall training time required to introduce a new standard.

The second part of the book focuses on model-driven methodologies.
For a company being competitive on the market, following technologies and
being updated with new trends and practices is essential. In safety-critical
domains, the introduction of new practices and methodologies is slower
than in other engineering fields, since safety standards and long established
practices tend to defer the adoption of new emerging technologies, until

xvi Preface

assessments and time reveal them mature and safe enough. Slow introduction
of new methods is especially characterizing the railway domain where the
lifespan of products could easily reach decades or even a century. Now it
is long time that Model-Driven Engineering techniques and tools have been
proposed, but their maturity – especially for safety-critical systems – is still
debated. Some recent surveys investigated the adoption of MDE methodolo-
gies and technologies in practice. They revealed the increasing adoption of
MDE in industry. The technology is attractive for the development of critical
systems, since it can speed up the activities of Verification and Validation
(V&V), and it enables the early verification of systems, through techniques
such as model reviews, guideline checkers, rapid control prototyping and
model- and software-in-the-loop Tests. These techniques shift the cost of
development from the phases of V&V to the ones of requirement analysis
and design, thus leading to benefits in terms of residual errors. Compa-
nies not performing model-in-the-loop testing find almost 30% more errors
during module test. Chapter two reports the results of a twelve months
industrial-academic partnership for the transfer of knowledge of MDE tech-
niques from the academy to one of the company involved in the project,
with the goal of assessing their level of maturity for industrial adoption.
During this activity, it emerged the lack of well-defined processes for the
development of a CENELEC SIL-4 safety critical signaling system that was
suited for the real industrial needs.

In Chapter three focuses on the issues related to the lack of expertise in
CS/OO/SysML formalisms that often lead to the need of a lot of training and
support to use the modeling tools. Ideally, designers should spend all their
effort on modeling and nothing else. However, existing modeling tools have
lot of issues related to installation and plug-ins. The use of Google Blockly
was envisaged for modeling and simulation of systems. Blockly is a visual
programming library, used to model/program using interlocked blocks. Each
of the blocks also supports traditional input widgets such as labels, images,
textbox, checkbox, combo box, etc. It can be configured in such a way that
only compatible blocks can be connected together (i.e. can be made “valid
by design”). Blockly supports code and XML generation, and requires only
a modern web browser which can be run on any device or operating system.
However, Blockly was not readily usable for modeling using SysML/UML
like formalisms. A lot of changes and customizations were made in Blockly
to make it more suitable for such type of modeling.

The Third part of this book composed of Chapters four, five, six and
seven, deals with V&V and quality processes.

Preface xvii

Chapter four presents a process for finding and tackling the main root
causes that affect critical systems quality. Following standards and applying
good engineering practices during software development is not enough to
guarantee defects free software, thus additional processes, such as Indepen-
dent Software Verification and Validation (ISVV), are required in critical
projects. The objective of ISVV is to provide complementary and indepen-
dent assessments of the software artifacts in order to find residual defects
and allow their correction in a timely manner. Independence is the most
important concept of ISVV and it has been referred to and used in safety-
critical domains such as civil aviation (DO-178B), railway signaling systems
(CENELEC), and space missions (European Cooperation for Space Stan-
dardization – ECSS). However, such systems are still far from being perfect
and it is common to hear about software bugs in aeronautics, train accidents
caused by software problems, satellite systems that need to be patched after
launch, and so on. This chapter presents an analysis on trends, common (and
uncommon) problems and their causes, and looks at the general picture of
critical defects within the software development lifecycle of space systems,
considering a dataset of 1070 defects. The results are intended to help
engineers in tackling the problems starting from the most frequent ones,
instead of dealing with them one by one, as is traditionally done in industry
nowadays. In practice, this work brings light to the main root causes of issues
in space projects, which were identified, based on the defects classification
and on relevant expert knowledge about those defects and about the software
development process, contributing towards proposing improvements to the
processes, methodologies, tools, standards and industry culture.

Chapter 5 describes a framework for automation of hazard log manage-
ment on large critical projects. A hazard is any situation that could cause harm
to the system or lives. Hazards depend on the system and its environment,
and the probability of the hazard to cause harm is known as risk. Hazards are
analyzed by identifying their causes and the possible negative consequences
that might ensue. This chapter describes a modular and extensible way to
specify rules for checks locally at the stake-holder side, as well as while
combining data from various parties to form the hazard log (HL). The HZ-
LOG automatization tool simplifies the process of hazard data collection on
large projects to form the hazard log while ensuring data consistency and
correctness. The data provided by all parties are collected using a template
containing scripts to check for mistakes/errors based on internal standards of
the company in charge of the hazard management. The collected data is then

xviii Preface

subjected to merging in DOORS, which also contain scripts to check and
import data to form the hazard log.

Chapter 6 instead deals with cost estimation for independent systems
verification and validation. Validation, verification and especially certification
are skill and effort demanding activities which are typically performed in an
independent way by specialized small and medium enterprises. Prediction of
the work needed to accomplish them is crucial for the management of such
projects, which is by its very nature heavily depending on the implementation
of the V&V process and its support. Process management widely uses cost
estimators in planning of software development projects for resource allo-
cation. Cost estimators use the scoring of a set of cost influencing factors,
as input. They use extrapolation functions calibrated previously on measures
extracted from a set of representative historical project records. These pre-
dictors do not provide reliable measures for the separate phases of V&V and
certification in safety critical projects. The current chapter summarizes the
main use cases and results of an activity focusing on these particular phases.

Chapter 7 addresses lightweight formal analysis of requirements which
are the core items of the design (and Validation) workflow of safety critical
systems. Accordingly, their completeness, compliance with the standards and
understandability is a dominant factor in the subsequent steps. Requirements
review is a special kind of Independent Software/Systems Verification and
Validation (ISVV). The chapter presents methodologies to use lightweight
formal methods supporting experts in a peer review based ISVV.

Part four of this book, composed of chapters eight and nine, deals with
particular phases of V&V processes known as FMEA & FMECA.

Chapter 8 describes STECA which stands for “Security Threats, Effects
and Criticality Analysis” and its application to a Smart Grids scenario. The
STECA approach is meant to perform security assessment and the chap-
ter explains the process proposed to identify vulnerabilities, their related
threats, a risk assessment approach and finally a path to identify appropriate
countermeasures. This process is based on the same principles used for
the FMEA/FMECA process, widely used for safety critical analysis and
highly regarded by the majority of international standards. STECA starts
from a vulnerability point of view and moves on towards threat analysis and
criticality assessment. Following the guidelines defined, the approach is then
instantiated on a Smart Grid use case, resulting in a set of precise guidelines
and a systematic way to perform security assessment including vulnerability
evaluation and attack impact analysis.

Preface xix

Chapter 9 describes a composable framework support for Software-
FMEA through Model Execution. Performing Failure Mode and Effects
Analysis (FMEA) during software architecture design is becoming a basic
requirement in an increasing number of domains. However, due to the
lack of standardized early design-phase model execution, classic Software-
FMEA (SW-FMEA) approaches carry significant risks and are human
effort-intensive even in processes that use Model-Driven Engineering.

From a dependability-critical development process point of view, FMEA
should be performed in the early phases of system design; for software, this
usually translates to the architecture design phase. Additionally, for some
domains, standards prescribe the safety analysis of the software architecture –
as is the case e.g. with ISO 26262 in the automotive domain. Significant risk
is introduced by the fact that the error propagation assumptions usually made
at this stage have to hold for the final system – otherwise the constructed
hazard mitigation arguments will not hold. This chapter addresses SFMEA
based on a new standard for UML 2 modeling language. Throughout the
chapter, the reader will be introduced to i) advances in standardized model
execution semantics, ii) the outline of a composable framework built on top of
executable software architecture models to help SW-FMEA, iii) a realization
of such a framework applied on a case study from the railway domain.

The last part of this book, Part five, contains contributions developed
in CECRIS related to Robustness and Fault injection and is composed of
3 chapters.

Chapter 10 describes a monitoring and testing framework for critical
off-the-shelf applications and services. One of the biggest verification and
validation challenges is the definition of approaches and tools to support
systems assessment while minimizing costs and delivery time. Such tools
reduce the time and cost of assessing Off-The-Shelf (OTS) software com-
ponents that must undergo proper certification or approval processes to be
used in critical scenarios. In the case of testing, due to the particularities
of components, developers often build ad-hoc and poorly-reusable testing
tools, which results in increased time and costs. This chapter introduces
a framework for testing and monitoring of critical OTS applications and
services. The framework includes i) a box instrumented for monitoring OS
and application level variables, ii) a toolset for testing the target components
and iii) tools for data storing, retrieval and analysis. The chapter presents
an implementation of the framework that allows applying, in a cost-effective
fashion, functional testing, robustness testing and penetration testing to web

xx Preface

services. Finally, the framework usability and utility is demonstrated based
on two different case studies that also show its flexibility.

Chapter 11 is about the validation of a safety critical railway applica-
tion using fault injection. This chapter will summarize the fault injection
experiments performed with the ProSigma system. It will include a detailed
description of the system, fault injection test goals, description of the fault
injection tool, the results of the FI tests, etc.

Chapter 12 is concerned with robustness of complex Critical Systems.
Systems are nowadays being deployed also as services or web applications,
and are being used to provide enterprise-level business-critical operations.
These systems are supported by complex middleware, which often links
different systems, and where a failure can bring in disastrous consequences
for both clients and service providers. In this chapter we present a toolset
that can be used to evaluate the robustness of a given system, under the
following two different perspectives: i) executing robustness tests against the
service’s external interface (e.g., the interface with business clients) and also
inner interfaces (e.g., the application-database interface); ii) emulating the
presence of source code defects, on the service middleware, to understand
how the presence of a defect can affect the robustness of the overall system.
The toolset has been demonstrated on a set of web services, an Enterprise
Resource Planning web application, and on the popular Apache HTTP server.
Results show that the toolset can be easily used to disclose critical problems in
web applications and to support middleware, helping developers in building
and validating more reliable services.

Although the chapters of the book are arranged in a logical order, an effort
has been made to keep each chapter self-contained. This book can be used for
supplemental reading for advanced teaching on Critical systems validation
and verification methodologies.

Andrea Bondavalli

Francesco Brancati

List of Contributors

Alexandre Esper, CRITICAL Software S.A., Coimbra, Portugal

András Pataricza, Dept. of Measurement and Information Systems,
Budapest University of Technology and Economics, Budapest, Hungary

András Zentai, Prolan Process Control Co., Szentendrei út 1–3, H-2011
Budakalász, Hungary

Andrea Bondavalli, 1) Department of Mathematics and Informatics, Univer-
sity of Florence, Florence, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

Andrea Ceccarelli, 1) Department of Mathematics and Informatics, Univer-
sity of Florence, Florence, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

Arun Babu Puthuparambil, Robert Bosch Center for Cyber Physical
Systems, Indian Institute of Science, Bangalore, India

Cristiana Areias, 1) CISUC, Department of Informatics Engineering,
University of Coimbra, Portugal
2) ISEC – Coimbra Institute of Engineering, Polytechnic Institute of Coimbra,
Portugal

Fabio Scippacercola, 1) DIETI, Università degli Studi di Napoli Federico II,
Via Claudio 21, 80125 Napoli, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica, Italy

Francesco Brancati, Resiltech s.r.l., Pontedera (PI), Italy

xxi

xxii List of Contributors

Francesco Rossi, Resiltech s.r.l., Pontedera (PI), Italy

Francisco Moreira, CRITICAL Software S.A., Coimbra, Portugal

Gonçalo Pereira, CISUC, Department of Informatics Engineering, Univer-
sity of Coimbra, Portugal

Henrique Madeira, CISUC, Department of Informatics Engineering, Uni-
versity of Coimbra, Portugal

Imre Kocsis, Dept. of Measurement and Information Systems, Budapest
University of Technology and Economics, Budapest, Hungary

Ivano Irrera, CISUC, Department of Informatics Engineering, University of
Coimbra, Portugal

João Carlos Cunha, 1) CISUC, Department of Informatics Engineering,
University of Coimbra, Portugal
2) ISEC – Coimbra Institute of Engineering, Polytechnic Institute of Coimbra,
Portugal

Jorge Bernardino, 1) CISUC, Department of Informatics Engineering,
University of Coimbra, Portugal
2) ISEC – Coimbra Institute of Engineering, Polytechnic Institute of Coimbra,
Portugal

László Gönczy, Dept. of Measurement and Information Systems, Budapest
University of Technology and Economics, Budapest, Hungary

Leonardo Montecchi, 1) Department of Mathematics and Informatics,
University of Florence, Florence, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

Lorenzo Vinerbi, Resiltech s.r.l., Pontedera (PI), Italy

Marco Vieira, CISUC, Department of Informatics Engineering, University
of Coimbra, Portugal

Mario Rui Baptista, CRITICAL Software S.A., Coimbra, Portugal

List of Contributors xxiii

Nicola Nostro, Resiltech s.r.l., Pontedera (PI), Italy

Nuno Antunes, CISUC, Department of Informatics Engineering, University
of Coimbra, Portugal

Nuno Laranjeiro, CISUC, Department of Informatics Engineering, Univer-
sity of Coimbra, Portugal

Nuno Silva, CRITICAL Software S.A., Coimbra, Portugal

Raul Barbosa, CISUC, Department of Informatics Engineering, University
of Coimbra, Portugal

Rosaria Esposito, Resiltech s.r.l., Pontedera (PI), Italy

Seyma Nur Soydemir, CISUC, Department of Informatics Engineering,
University of Coimbra, Portugal

Stefano Russo, 1) DIETI, Università degli Studi di Napoli Federico II, Via
Claudio 21, 80125 Napoli, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica, Italy

Tommaso Zoppi, 1) Department of Mathematics and Informatics, University
of Florence, Florence, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

Valentina Bonfiglio, Resiltech s.r.l., Pontedera (PI), Italy

Vince Molnár, Dept. of Measurement and Information Systems, Budapest
University of Technology and Economics, Budapest, Hungary

List of Figures

Figure 1.1 Overall view of the gap analysis framework. 5
Figure 1.2 EER structure of the database. 8
Figure 1.3 Example of roles organization in a critical software

company. 12
Figure 1.4 Involvement of the different roles in avionics

standards. 13
Figure 2.1 A representation of the Prolan Block and its

operating environment. 40
Figure 2.2 Software Development Life Cycle according

to EN 50128. 42
Figure 2.3 The adapted model-driven V-Model life cycle

for Prolan. 43
Figure 2.4 Prolan Block (PB) functional requirements. 46
Figure 2.5 PB non-functional requirements. 46
Figure 2.6 BDD diagram showing the environment

of the PB. 47
Figure 2.7 Computation Independent Model (CIM) use case

diagram for the Prolan Block. 48
Figure 2.8 State machine diagram of the semaphore behavior. . 49
Figure 2.9 High-level system architecture. 50
Figure 2.10 The transformations of the BB-PIT. 53
Figure 2.11 A test case automatically generated

from the BB-PIT by Conformiq. 54
Figure 2.12 The configuration of the PM for HIL Testing. . . . 57
Figure 3.1 Various types of blocks in Blockly. 66
Figure 3.2 An example of a vending machine profile

in PlantUML. 67
Figure 3.3 An example of a vending machine model under

construction. 68
Figure 3.4 An example of requirements management. 68
Figure 3.5 MDE flow. 69

xxv

xxvi List of Figures

Figure 3.6 An example of guiding users with compatible
blocks (for Transitions). 70

Figure 3.7 An example of type indicator plugin (Shows which
blocks are compatible with the current selected
block “Transition/t4” with yellow color). 70

Figure 3.8 An example of constraints. 71
Figure 3.9 An example of groups and links. 72
Figure 3.10 Enabling and disabling viewpoints in model. 72
Figure 3.11 Model query without any filter (return true;). 73
Figure 3.12 Example of model query to select all blocks of type

“RUMI” (return block.of type == ‘RUMI’). 74
Figure 3.13 The subset of example model of “Vending machine”

exported to PlantUML. 75
Figure 3.14 Example sequence diagram in Blockly. 77
Figure 3.15 Classical view of sequence diagram (subset). 78
Figure 3.16 Blocks to support custom simulation initialization

and code to execute when simulation ends. 79
Figure 3.17 Blocks with images. 79
Figure 4.1 ISVV phases. 85
Figure 4.2 Generalized defect assessment procedure. 87
Figure 4.3 Defect type vs. defect impact. 95
Figure 4.4 Defect trigger vs. defect impact. 97
Figure 5.1 Populating the hazard log (HL). 105
Figure 5.2 Excel sheet of one of the participants. 112
Figure 5.3 Checking of HA data through MS Excel scripts. . . 113
Figure 5.4 Dialogue boxes of MS Excel scripts. 113
Figure 5.5 Errors caught in HZ analysis by scripts. 114
Figure 5.6 Excel sheet imported and merged in DOORS

to form HL. 114
Figure 6.1 Schematic view on V&V activities. 119
Figure 6.2 COSYSMO 2.0: Size Drivers/Effort Multipliers. . . 122
Figure 6.3 Rayleigh distribution by different parameters

(a) fault detection rate (b) fault coverage. 126
Figure 6.4 COSYSMO estimation compared to real

V&V effort. 127
Figure 6.5 Cost drivers sensitivity analysis. 131
Figure 6.6 Trends of fault in multi-phased ISVV projects. . . . 137
Figure 6.7 Complexity metrics and fault density. 138
Figure 7.1 ReqIF based information exchange. 145

List of Figures xxvii

Figure 7.2 Exchange document structure. 146
Figure 7.3 Specifications, requirements, and attributes. 147
Figure 7.4 Unstructured and structured model. 150
Figure 7.5 Causality statistics structure. 151
Figure 7.6 The original and changed specification

in our example. 153
Figure 7.7 Propagation resolution and computed change

impact cover extent. 156
Figure 7.8 Example rich requirement structure for propagation

categorization. 157
Figure 7.9 Change impact propagation categories. 159
Figure 8.1 High level view of the STEC process. 171
Figure 8.2 Example from the Energy industry showing

the architecture of a Smart Grid. 173
Figure 8.3 Attack probability graph. 177
Figure 8.4 Threat Event Risk Matrix. 177
Figure 8.5 Description of impact categories. 178
Figure 8.6 STECA report example. 179
Figure 9.1 Composite error token passing during execution

and component activation. 187
Figure 9.2 Framework components for program composition. . 188
Figure 9.3 Parts of the simulated environment in the case

study. 190
Figure 9.4 Main components of the modelled system. 191
Figure 9.5 Structure of a balise telegram. 192
Figure 9.6 Alf implementation of a BTM behaviour. 192
Figure 9.7 Log trace of a fault-free execution of the case study

model. 193
Figure 9.8 Visualization of a fault-free execution

tree of the case study model. 193
Figure 9.9 Blockly-based model of the case study system

and its environment. 196
Figure 9.10 Error propagation in the case study model

when input is consistent. 198
Figure 10.1 Framework architecture: overall view

and interactions. 205
Figure 10.2 Detailed functioning of the Instrumented System. . 206
Figure 10.3 Detailed functioning of the Test and Collect. 207

xxviii List of Figures

Figure 10.4 An extract of the workload to set a New Calendar
Event. 217

Figure 10.5 Extract from robustness test results. 218
Figure 10.6 Example of robustness test: (a) request;

(b) response. 218
Figure 10.7 Calendar Service penetration tests result. 219
Figure 10.8 Evolution of Number of working processes

in SHAPE. 222
Figure 11.1 The ProSigma abstraction layers. 233
Figure 11.2 System architecture. 234
Figure 11.3 LI card interfaces. 235
Figure 11.4 ETH card architecture. 237
Figure 11.5 RPI card architecture. 238
Figure 11.6 Fault injection structure and environment. 239
Figure 11.7 Fault injection structure and environment. 241
Figure 11.8 The ProSigma system and the FI tool

and environment. 243
Figure 11.9 Fault injection campaign: failure modes

distribution. 244
Figure 12.1 Scenario for service robustness evaluation using

wsrbench, PDInjector and ucXception. 254
Figure 12.2 Basic execution profile of the tests. 257
Figure 12.3 Anomalous effects by type of patch. 268
Figure 12.4 Effects by behavior. 269

List of Tables

Table 1.1 A sample extract of the traceability matrix
on processes . 7

Table 1.2 A sample extract of the traceability matrix
on techniques . 7

Table 1.3 The binary decision diagram 15
Table 1.4 An extract of our sheet for data analysis; overall

it contains 48 techniques and 41 tools. The whole
data set is not reported because of its dimension
and non-disclosure agreements 19

Table 4.1 Orthogonal defect classification attributes
description . 84

Table 4.2 Enhanced ODC classification results 93
Table 4.3 Summary of root causes for main defect types 96
Table 4.4 Summary of root causes for main defect triggers . . 98
Table 5.1 Hazard analysis template 106
Table 5.2 An example configuration of hazard log tool

(“Hazard Log Field” are the fields in DOORS, “HA”
is the fields in Excel, and “Type” indicates
where the field can be found (HZ, ‘hazard’;
MT, ‘mitigation’; BH, ‘can be found in both’) 108

Table 5.3 Example configuration for Excel scripts 108
Table 6.1 Pilot use case for introducing formal methods

in verification . 131
Table 6.2 Effect of requirement lifecycle 134
Table 7.1 Comparison of change impact propagation

categories . 162
Table 8.1 Vulnerabilities, weak spots, and security threats . . . 174
Table 8.2 Linking weak spots and ISO/IEC 27005 vulnerability

categories . 175
Table 10.1 Extract test results for New Calendar Event 217
Table 10.2 Summary of the variables monitored 222

xxix

xxx List of Tables

Table 11.1 Railway object outputs 236
Table 11.2 Failure modes . 243
Table 11.3 Summary of FI campaign results 244
Table 12.1 Examples of Robustness and poor data quality

mutations . 257
Table 12.2 Fault emulation operators 259
Table 12.3 Fault emulation constraints 260
Table 12.4 Overview of the tests and results for case

study #2 . 263
Table 12.5 Selected cases from case study #2 263
Table 12.6 Number of patches for mod rewrite 266
Table 12.7 Types of observed behaviors 267
Table 12.8 Results by behavior 268

List of Abbreviations

A/D Analog/Digital
ALARP As low as reasonably practicable
Alf Action Language for Foundational UML
ASILs Automotive Software Integrity Levels
ASPICE Automotive SPICE
BB-PIT Black Box Platform Independent Test Model
BB-PST Black Box Platform Specific Test Model
BDD Block Definition Diagram
BI Business Intelligence
CAN Controller Area Network
CE Cost Estimator
CENELEC Comité européen de normalisation en électronique et en

électrotechnique
CIM Computation Independent Model
CIT Computation Independent Test Model
CIV Computation Independent Viewpoint
CMMI Capability Maturity Model Integration
COCOMO Constructive Cost Model
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
CS Critical System
CSP Constraint Satisfaction Problem
csp(FD) finite-domain CSP
CTC Central Traffic Control
Dako Andras, need your help here
DB Database
DI Digital Input
DMI Driver Machine Interface
DOORS Dynamic Object Oriented Requirements System
DSL Domain-Specific Language

xxxi

xxxii List of Abbreviations

Eclipse
RMF

Eclipse Requirement Management Framework

ECSS European Cooperation for Space Standardization
EER Enhanced Entity–Relationship
EN Européen Norme
ERTMS European Rail Traffic Management System
ESA European Space Agency
ETCS European Train Control System
ETH CAN to UDP protocol converter
FDIR Fault Detection, Isolation and Recovery
FI Fault Injection
FIR Fault Injection Runs
FIT Fault Injection Tool
FMEA Failure Modes and Effects Analysis
FMECA Failure Modes, Effects and Criticality Analysis
FTA Fault Tree Analysis
FW Firmware
GA Generic Application
GB-PIT Grey Box Platform Independent Test Model
GP Generic Product
GR Golden Runs
GSM Global System for Mobile communications
HA Hazard analysis
HAN Home Area Network
HB HeartBeat signal
HIL Hardware-in-the-loop
HL Hazard log
HMI Human-Machine Interface
HSIA HW/SW interaction analysis
HW Hardware
HZ Hazard
IBD Internal Block Diagram
ICT Information and Communication Technology
IDEF Integration DEFinition
IEC International Electrotechnical Commission
IP Internet Protocol
IS Interlocking System
ISO International Organization for Standardization
ISVV Independent Software Verification and Validation

List of Abbreviations xxxiii

ISVV Independent Software/Systems Verification and Validation
JIF Relay Interface
JTAG Join Test Action Group
KLOC Thousands of lines of code
KPI Key Performance Indicator
LI Logic and Input
M2M Model-to-Model Transformation
M2T Model-to-Text Transformation
MBE Model-Based Engineering
MBSE Model-Based System Engineering
MDA Model-Driven Architecture
MDD Model-Driven Development
MDE Model-Driven Engineering
MDT Model-Driven Testing
MIL Model-in-the-loop
MoC Models of computation
MT Mitigation
NIST National Institute of Standards and Technology
OBU On-board Unit
OCD On-Chip Debugger
ODC Orthogonal Defect Classification
OMG Object Management Group
OS Operating System
OWL Web Ontology Language
OXF Object Execution Framework
PA Product Assurance
PAR Parameter Module
PB Prolan Block
PHA Preliminary Hazard Analysis
PIM Platform Independent Model
PIT Platform Independent Test Model
PIV Platform Independent Viewpoint
PM Prolan Monitor
PSDK Prosigma Diagnostic Center
PSM Platform Specific Model
PST Platform Specific Test Model
PSU Power Supply Unit
PSV Platform Specific Viewpoint
PTD ProSigma generic application

xxxiv List of Abbreviations

QA Quality Assurance
RAM Random Access Memory
RAMS Reliability, Availability, Maintainability, and Safety
RBC Radio Block Control
RCA Root Cause Analysis
RDF Resource Description Framework
ReqIF Requirements Interchange Format
RID Review Identified Discrepancy
RODIN Rigorous Open Development Environment for Complex

Systems
ROI Return on Investment
RPI UDP to X25 over IP protocol converter
SA Specific Application
SAM Specific Application Module
SCAMPI Standard CMMI Appraisal Method for Process

Improvement
SDLC Software Development Life Cycle
SDP Software Development Process
SHA System hazard analysis
SIL Safety Integrity Level
SME Small and medium-sized enterprise
SPICE Software Process Improvement and Capability

Determination
SSHA Subsystem hazard analysis
SST Safety Signal Transmitter
STECA Security Threats, Effects and Criticality Analysis
SUT System Under Test
SVF Software Validation Facility
SW Software
SW-FMEA Software Failure Modes and Effects Analysis
SXF Simple Execution Framework
SysML
OMG

Systems Modeling Language

TC Telecommand
TIU Train Interface Unit
TM Telemetry
TMR Triple Modular Redundancy
UDP User Datagram Protocol
UML Unified Modeling Language

List of Abbreviations xxxv

USB Universal Serial Bus
UTP UML Testing Profile
V&V Verification and Validation
W3C World Wide Web Consortium
WB-PST White Box Platform Specific Test Model
X25 ITU-T X.25 Protocol

