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Francisco Moreira, Nuno Silva, Rosaria Esposito,
Andrea Bondavalli and Alexandre Esper

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.1.1 ISVV Workflow . . . . . . . . . . . . . . . . . . . 118
6.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . 120
6.1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Construction of the ISVV Specific Cost Estimator . . . . . . 121
6.2.1 Structure of the Cost Predictor . . . . . . . . . . . . 122
6.2.2 Cost Drivers . . . . . . . . . . . . . . . . . . . . . 123
6.2.3 Focal Problems in Predicting Costs for ISVV . . . . 123
6.2.4 Factor Reusability for ISVV-Related CE . . . . . . . 124
6.2.5 Human and Organizational Factors . . . . . . . . . . 125
6.2.6 Motivating Example: Testing . . . . . . . . . . . . . 126

6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 127
6.3.1 Faithfulness of the Results . . . . . . . . . . . . . . 127
6.3.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . 129
6.3.3 Pilot Use Case for Project Management . . . . . . . 131



Contents ix

6.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4.1 Complexity Factors . . . . . . . . . . . . . . . . . . 132
6.4.2 Cost Impact of Requirement Management . . . . . . 134
6.4.3 Automated Analysis for Factor Selection . . . . . . 135
6.4.4 Quality Maintenance Across Project Phases . . . . . 136
6.4.5 Fault Density and Input Complexity . . . . . . . . . 138

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 139
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7 Lightweight Formal Analysis of Requirements 143

András Pataricza, Imre Kocsis, Francesco Brancati,
Lorenzo Vinerbi and Andrea Bondavalli

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.3 ReqIF and Modeling . . . . . . . . . . . . . . . . . . . . . 145

7.3.1 Domain Conceptualization . . . . . . . . . . . . . . 148
7.3.2 Integration with Existing Practice of ISVV . . . . . 150

7.4 Requirement Change Propagation . . . . . . . . . . . . . . 152
7.4.1 Original Specification . . . . . . . . . . . . . . . . 152
7.4.2 Changed Specification . . . . . . . . . . . . . . . . 154
7.4.3 The Change Impact Propagation Method . . . . . . 154

7.5 Abstraction Levels of Impact Propagation . . . . . . . . . . 156
7.5.1 Topology-Based Propagation . . . . . . . . . . . . . 158
7.5.2 Type-Based Propagation . . . . . . . . . . . . . . . 158
7.5.3 Value-Based Propagation . . . . . . . . . . . . . . . 160

7.6 Resolution Modeling with CSP . . . . . . . . . . . . . . . . 161
7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 163

References . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8 STECA – Security Threats, Effects and Criticality Analysis:
Definition and Application to Smart Grids 167

Mario Rui Baptista, Nuno Silva, Nicola Nostro,
Tommaso Zoppi and Andrea Ceccarelli

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.2.1 Motivating Concerns in Industry . . . . . . . . . . . 168
8.2.2 State of the Art and Background . . . . . . . . . . . 170

8.3 STECA Process Description . . . . . . . . . . . . . . . . . 171



x Contents

8.3.1 The High Level STECA . . . . . . . . . . . . . . . 171
8.3.2 STECA Inputs . . . . . . . . . . . . . . . . . . . . 172
8.3.3 Security Vulnerabilities . . . . . . . . . . . . . . . . 172
8.3.4 Threats Map . . . . . . . . . . . . . . . . . . . . . 174
8.3.5 Risk Assessment and Attack Severity . . . . . . . . 176
8.3.6 STECA Recommendations . . . . . . . . . . . . . . 178

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 181
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9 Composable Framework Support for Software-FMEA
through Model Execution 183

Valentina Bonfiglio, Francesco Brancati, Francesco Rossi,
Andrea Bondavalli, Leonardo Montecchi, András Pataricza,
Imre Kocsis and Vince Molnár

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.2 Software-FMEA Using fUML/ALF . . . . . . . . . . . . . 184

9.2.1 Tooling for fUML and Alf . . . . . . . . . . . . . . 185
9.2.2 Software-FMEA through Alf Execution . . . . . . . 185
9.2.3 Framework Support for Executable Error

Propagation . . . . . . . . . . . . . . . . . . . . . . 186
9.2.4 Error Tokens, Component Activation . . . . . . . . 186
9.2.5 Execution Orchestration . . . . . . . . . . . . . . . 188
9.2.6 Fault Injection . . . . . . . . . . . . . . . . . . . . 189

9.3 Case Study: Application of Software-FMEA
through Model Execution . . . . . . . . . . . . . . . . . . . 189
9.3.1 Definition of the Modelled System . . . . . . . . . . 189
9.3.2 Process Evaluation . . . . . . . . . . . . . . . . . . 193

9.4 Implementation in a Blockly-based Modelling Tool . . . . . 195
9.4.1 Preparation of the Model . . . . . . . . . . . . . . . 195
9.4.2 Aggregation and Analysis of Traces . . . . . . . . . 197

9.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 199
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

10 A Monitoring and Testing Framework for Critical
Off-the-Shelf Applications and Services 201

Nuno Antunes, Francesco Brancati, Andrea Ceccarelli,
Andrea Bondavalli and Marco Vieira

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.2 Framework Architecture . . . . . . . . . . . . . . . . . . . 204



Contents xi

10.2.1 Instrumented System (IS) . . . . . . . . . . . . . . 205
10.2.2 Test and Collect . . . . . . . . . . . . . . . . . . . . 206

10.3 Implementation Details . . . . . . . . . . . . . . . . . . . . 209
10.3.1 Instrumented System (IS) Implementation . . . . . . 209
10.3.2 Test and Collect Implementation . . . . . . . . . . . 210

10.3.2.1 Functional and stress testing . . . . . . . . 211
10.3.2.2 Robustness testing and penetration

testing . . . . . . . . . . . . . . . . . . . 212
10.3.2.3 Data storage and analysis tools . . . . . . 212

10.4 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . 213
10.4.1 Case Study: Life Ray Web Services . . . . . . . . . 214

10.4.1.1 Tests performed . . . . . . . . . . . . . . 214
10.4.1.2 Tests results . . . . . . . . . . . . . . . . 216

10.4.2 Case Study: SHAPE . . . . . . . . . . . . . . . . . 220
10.4.2.1 Monitoring environment adaptation . . . . 220
10.4.2.2 Tests performed . . . . . . . . . . . . . . 221

10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 222
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

11 Validating a Safety Critical Railway Application Using Fault
Injection 227

Ivano Irrera, András Zentai, João Carlos Cunha
and Henrique Madeira

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 227
11.2 Fault Injection for V&V and Certification . . . . . . . . . . 229

11.2.1 Standards for Safety-critical Railway
Applications . . . . . . . . . . . . . . . . . . . . . 230

11.2.2 Fault Injection . . . . . . . . . . . . . . . . . . . . 231
11.3 The ProSigma Safety-critical Railway Interlocking

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
11.3.1 Concepts of Generic Product, Generic Application

and Specific Application . . . . . . . . . . . . . . . 232
11.3.2 The System Architecture and Functionality . . . . . 233

11.3.2.1 Logic and Input (LI) card . . . . . . . . . 234
11.3.2.2 ETH card . . . . . . . . . . . . . . . . . 236
11.3.2.3 RPI card . . . . . . . . . . . . . . . . . . 237
11.3.2.4 Power Supply Units . . . . . . . . . . . . 237
11.3.2.5 Diagnostic centers . . . . . . . . . . . . . 238
11.3.2.6 Parameter modules . . . . . . . . . . . . 238



xii Contents

11.3.3 System’s Critical Aspects Worth to Study
Using FI . . . . . . . . . . . . . . . . . . . . . . . 238

11.4 The ProSigma FI Framework . . . . . . . . . . . . . . . . . 238
11.4.1 Fault Injector Framework Architecture

and Functionalities . . . . . . . . . . . . . . . . . . 239
11.4.2 The ProSigma FI Tool (ProSigma-FIT) . . . . . . . 240

11.5 ProSigma Safety Assessment Through FI: Experiments
and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 241
11.5.1 Safety Assessment of the Prosigma System:

Experimental Setup . . . . . . . . . . . . . . . . . . 242
11.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . 242

11.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 245
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

12 Robustness and Fault Injection for the Validation
of Critical Systems 247

Nuno Laranjeiro, Gonçalo Pereira, Seyma Nur Soydemir, Raul Barbosa,
Jorge Bernardino, Cristiana Areias, Nuno Antunes, João Carlos Cunha,
Marco Vieira and Henrique Madeira

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 247
12.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 250
12.3 Robustness Testing and Fault Injection for the Robustness

Evaluation of Services . . . . . . . . . . . . . . . . . . . . 254
12.3.1 Robustness Testing with wsrbench and PDInjector 255
12.3.2 Emulating Software Faults with ucXception . . . . . 258

12.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 260
12.4.1 External Interface Testing: Case Study #1 . . . . . . 261
12.4.2 Inner Interface Testing: Case Study #2 . . . . . . . . 262
12.4.3 Injecting Software Faults in Service Middleware:

Case Study #3 . . . . . . . . . . . . . . . . . . . . 265
12.4.4 Results for Case Study #3 . . . . . . . . . . . . . . 266

12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 270
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Index 275

About the Editors 277



Preface

The rapid spread of critical systems raises new challenges from multiple
aspects. The functionality embedded into critical systems is a major driver
of efficient and economic operation of a variety of societal services ranging
from traffic control to health care, but at the same time, the vulnerability of
the society to malfunctioning equipment reaches a critical level both in the
terms of risks to the human life and huge economic impacts. The rapid devel-
opment of underlying technologies implies a huge challenge to this industry
which followed for decades a safety driven conservative approach. This way,
a uniform approach to the development, validation and verification is an
important factor in the Europe wide integration of services as emphasized
for instance by the creation of the ARTEMIS European Technology Platform
on the side of technology. On the human skill side, the dissemination of the
best industrial practices and appropriate training is a key enabling factor for
this unification process.

All over Europe there is a significant lack of skilled workforce related to
critical embedded systems.

Traditional V&V methods frequently exceed effort needed for the core
development time, and while the “soft” IT industry rapidly turns to sys-
tem integration based on the reuse of high volume hardware and software
components, for safety related applications this will still evolve.

All this poses serious difficulties to companies, which are on one hand
constrained to meet predefined quality goals, whereas, on the other hand,
are required to deliver systems at acceptable cost and time to market. Large
companies mainly follow a brute-force approach by focused large volume
investment into tooling and in-house training, but even high-tech SMEs are
highly vulnerable to the new challenges.

Looking at the field of the Verification and Validation one of the most
challenging goals is the definition of methods, strategies and tools able to vali-
date a system adequately, while simultaneously keeping the cost and delivery
time reasonably low. It is not easily possible to establish a proper balance
between achievable quality with a particular technique (in terms of RAMS

xiii
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attributes) and the costs required for achieving such quality. The situation
is even worse in the case of integration of existing SW in a safety critical
system to be certified, since, assessing products which encompass COTS
software is a challenge although modern standards consider this possibility.
An additional concern is the usage of recently adopted methods for SW
development like model based ones, since the certification of systems using
software developed with these supports is at the limit of the applicability of
the existing standards, and only the most recent ones are aligned with these
‘modern’ methods.

This book documents the main insights on Cost Effective Verification
and Validation processes that we gained during our work in the European
Research Project CECRIS (acronym for Certification of Critical Systems).
The objective of this research was to tackle the challenges of certification
by focusing on those aspects that turn out to be more difficult and or
important for current and future critical systems industry: the effective use
of methodologies, processes and tools.

The CECRIS project took a step forward in the growing field of devel-
opment, verification and validation and certification of critical systems. It
focused on the more difficult/important points of (safety, efficiency, business)
of critical system development, verification and validation and certification
process. The scientific objectives of the project were to study both the
scientific and industrial state of the art methodologies for system develop-
ment and the impact of their usage on the verification and validation and
certification of critical systems. Moreover the project aimed at developing
strategies and techniques supported by automatic or semi-automatic tools
and methods for these types of activities, whose cost-quality achievements
are well-predictable in order to tie costs of application of techniques to the
RAMS attributes level achieved by the product being tested. The project
set guidelines to support engineers during the planning of the verification &
validation phases.

The Project Consortium was composed by three academic partners and
three companies:

1. CINI-Consorzio Interuniversitario Nazionale per l’Informatica
2. Resiltech S.r.l.
3. Universidade de Coimbra
4. Budapesti Muszaki es Gazdasagtudomanyi Egyetem
5. Prolan Iranyitastechnikai Zartkoruen Mukodo Reszvenytarsasag
6. CRITICAL Software SA
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The CECRIS project has given to the partners the opportunity of sharing
their industrial-academic expertise and experiences and to develop fruitful
collaborations and research products. Through the ‘Transfer of Knowledge’
activities, industrial partners have had the opportunity to better know, evaluate
and apply new research methods, while the academic partners could get from
industry valuable feedback, better understanding the industrial problems and
needs.

Several synergies that have been established during the secondments, are
now in place beyond the project termination for exploiting further potential
strategic research activities. Moreover, the collaborations for the maintenance
and improvement of the project tools developed during CECRIS will last
for years, since these tools support the overall V&V process and reduce the
certification costs of safety-critical systems.

It is the objective of this book to collect the main project results in terms
of methodologies and processes and to propose them in a single edited book.

The first part of the book is related to certification processes. Chapter one
presents an easy-to-use framework and a supporting methodology to perform
a rapid gap analysis on the usage of standards for safety-critical software,
being them new ones to be introduced or standards already applied. In other
words, the framework can be applied to reason in terms of “changing stan-
dard” or in terms of “introducing a new standard”. The ultimate objective is to
discover with limited effort how far a company is from acquiring sufficient the
necessary and sufficient level of knowledge to apply a specific standard. Our
approach is based on the concept of rating the knowledge available: it starts
from an understanding of the expertise of a company, and it rates the improve-
ments, in terms of training, needed to reach an adequate level of confidence
with the techniques and processes required in the standard. Our approach
can be applied to an entire standard, a part of it, or to individual techniques
and tools. Thus, our framework offers the possibility to depict the status of
the knowledge available in the company, which may offer valuable insights
on the areas that are mostly covered, and where potential improvements are
possible. The approach can indicate the introduction time, which estimates
the overall training time required to introduce a new standard.

The second part of the book focuses on model-driven methodologies.
For a company being competitive on the market, following technologies and
being updated with new trends and practices is essential. In safety-critical
domains, the introduction of new practices and methodologies is slower
than in other engineering fields, since safety standards and long established
practices tend to defer the adoption of new emerging technologies, until
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assessments and time reveal them mature and safe enough. Slow introduction
of new methods is especially characterizing the railway domain where the
lifespan of products could easily reach decades or even a century. Now it
is long time that Model-Driven Engineering techniques and tools have been
proposed, but their maturity – especially for safety-critical systems – is still
debated. Some recent surveys investigated the adoption of MDE methodolo-
gies and technologies in practice. They revealed the increasing adoption of
MDE in industry. The technology is attractive for the development of critical
systems, since it can speed up the activities of Verification and Validation
(V&V), and it enables the early verification of systems, through techniques
such as model reviews, guideline checkers, rapid control prototyping and
model- and software-in-the-loop Tests. These techniques shift the cost of
development from the phases of V&V to the ones of requirement analysis
and design, thus leading to benefits in terms of residual errors. Compa-
nies not performing model-in-the-loop testing find almost 30% more errors
during module test. Chapter two reports the results of a twelve months
industrial-academic partnership for the transfer of knowledge of MDE tech-
niques from the academy to one of the company involved in the project,
with the goal of assessing their level of maturity for industrial adoption.
During this activity, it emerged the lack of well-defined processes for the
development of a CENELEC SIL-4 safety critical signaling system that was
suited for the real industrial needs.

In Chapter three focuses on the issues related to the lack of expertise in
CS/OO/SysML formalisms that often lead to the need of a lot of training and
support to use the modeling tools. Ideally, designers should spend all their
effort on modeling and nothing else. However, existing modeling tools have
lot of issues related to installation and plug-ins. The use of Google Blockly
was envisaged for modeling and simulation of systems. Blockly is a visual
programming library, used to model/program using interlocked blocks. Each
of the blocks also supports traditional input widgets such as labels, images,
textbox, checkbox, combo box, etc. It can be configured in such a way that
only compatible blocks can be connected together (i.e. can be made “valid
by design”). Blockly supports code and XML generation, and requires only
a modern web browser which can be run on any device or operating system.
However, Blockly was not readily usable for modeling using SysML/UML
like formalisms. A lot of changes and customizations were made in Blockly
to make it more suitable for such type of modeling.

The Third part of this book composed of Chapters four, five, six and
seven, deals with V&V and quality processes.
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Chapter four presents a process for finding and tackling the main root
causes that affect critical systems quality. Following standards and applying
good engineering practices during software development is not enough to
guarantee defects free software, thus additional processes, such as Indepen-
dent Software Verification and Validation (ISVV), are required in critical
projects. The objective of ISVV is to provide complementary and indepen-
dent assessments of the software artifacts in order to find residual defects
and allow their correction in a timely manner. Independence is the most
important concept of ISVV and it has been referred to and used in safety-
critical domains such as civil aviation (DO-178B), railway signaling systems
(CENELEC), and space missions (European Cooperation for Space Stan-
dardization – ECSS). However, such systems are still far from being perfect
and it is common to hear about software bugs in aeronautics, train accidents
caused by software problems, satellite systems that need to be patched after
launch, and so on. This chapter presents an analysis on trends, common (and
uncommon) problems and their causes, and looks at the general picture of
critical defects within the software development lifecycle of space systems,
considering a dataset of 1070 defects. The results are intended to help
engineers in tackling the problems starting from the most frequent ones,
instead of dealing with them one by one, as is traditionally done in industry
nowadays. In practice, this work brings light to the main root causes of issues
in space projects, which were identified, based on the defects classification
and on relevant expert knowledge about those defects and about the software
development process, contributing towards proposing improvements to the
processes, methodologies, tools, standards and industry culture.

Chapter 5 describes a framework for automation of hazard log manage-
ment on large critical projects. A hazard is any situation that could cause harm
to the system or lives. Hazards depend on the system and its environment,
and the probability of the hazard to cause harm is known as risk. Hazards are
analyzed by identifying their causes and the possible negative consequences
that might ensue. This chapter describes a modular and extensible way to
specify rules for checks locally at the stake-holder side, as well as while
combining data from various parties to form the hazard log (HL). The HZ-
LOG automatization tool simplifies the process of hazard data collection on
large projects to form the hazard log while ensuring data consistency and
correctness. The data provided by all parties are collected using a template
containing scripts to check for mistakes/errors based on internal standards of
the company in charge of the hazard management. The collected data is then
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subjected to merging in DOORS, which also contain scripts to check and
import data to form the hazard log.

Chapter 6 instead deals with cost estimation for independent systems
verification and validation. Validation, verification and especially certification
are skill and effort demanding activities which are typically performed in an
independent way by specialized small and medium enterprises. Prediction of
the work needed to accomplish them is crucial for the management of such
projects, which is by its very nature heavily depending on the implementation
of the V&V process and its support. Process management widely uses cost
estimators in planning of software development projects for resource allo-
cation. Cost estimators use the scoring of a set of cost influencing factors,
as input. They use extrapolation functions calibrated previously on measures
extracted from a set of representative historical project records. These pre-
dictors do not provide reliable measures for the separate phases of V&V and
certification in safety critical projects. The current chapter summarizes the
main use cases and results of an activity focusing on these particular phases.

Chapter 7 addresses lightweight formal analysis of requirements which
are the core items of the design (and Validation) workflow of safety critical
systems. Accordingly, their completeness, compliance with the standards and
understandability is a dominant factor in the subsequent steps. Requirements
review is a special kind of Independent Software/Systems Verification and
Validation (ISVV). The chapter presents methodologies to use lightweight
formal methods supporting experts in a peer review based ISVV.

Part four of this book, composed of chapters eight and nine, deals with
particular phases of V&V processes known as FMEA & FMECA.

Chapter 8 describes STECA which stands for “Security Threats, Effects
and Criticality Analysis” and its application to a Smart Grids scenario. The
STECA approach is meant to perform security assessment and the chap-
ter explains the process proposed to identify vulnerabilities, their related
threats, a risk assessment approach and finally a path to identify appropriate
countermeasures. This process is based on the same principles used for
the FMEA/FMECA process, widely used for safety critical analysis and
highly regarded by the majority of international standards. STECA starts
from a vulnerability point of view and moves on towards threat analysis and
criticality assessment. Following the guidelines defined, the approach is then
instantiated on a Smart Grid use case, resulting in a set of precise guidelines
and a systematic way to perform security assessment including vulnerability
evaluation and attack impact analysis.
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Chapter 9 describes a composable framework support for Software-
FMEA through Model Execution. Performing Failure Mode and Effects
Analysis (FMEA) during software architecture design is becoming a basic
requirement in an increasing number of domains. However, due to the
lack of standardized early design-phase model execution, classic Software-
FMEA (SW-FMEA) approaches carry significant risks and are human
effort-intensive even in processes that use Model-Driven Engineering.

From a dependability-critical development process point of view, FMEA
should be performed in the early phases of system design; for software, this
usually translates to the architecture design phase. Additionally, for some
domains, standards prescribe the safety analysis of the software architecture –
as is the case e.g. with ISO 26262 in the automotive domain. Significant risk
is introduced by the fact that the error propagation assumptions usually made
at this stage have to hold for the final system – otherwise the constructed
hazard mitigation arguments will not hold. This chapter addresses SFMEA
based on a new standard for UML 2 modeling language. Throughout the
chapter, the reader will be introduced to i) advances in standardized model
execution semantics, ii) the outline of a composable framework built on top of
executable software architecture models to help SW-FMEA, iii) a realization
of such a framework applied on a case study from the railway domain.

The last part of this book, Part five, contains contributions developed
in CECRIS related to Robustness and Fault injection and is composed of
3 chapters.

Chapter 10 describes a monitoring and testing framework for critical
off-the-shelf applications and services. One of the biggest verification and
validation challenges is the definition of approaches and tools to support
systems assessment while minimizing costs and delivery time. Such tools
reduce the time and cost of assessing Off-The-Shelf (OTS) software com-
ponents that must undergo proper certification or approval processes to be
used in critical scenarios. In the case of testing, due to the particularities
of components, developers often build ad-hoc and poorly-reusable testing
tools, which results in increased time and costs. This chapter introduces
a framework for testing and monitoring of critical OTS applications and
services. The framework includes i) a box instrumented for monitoring OS
and application level variables, ii) a toolset for testing the target components
and iii) tools for data storing, retrieval and analysis. The chapter presents
an implementation of the framework that allows applying, in a cost-effective
fashion, functional testing, robustness testing and penetration testing to web
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services. Finally, the framework usability and utility is demonstrated based
on two different case studies that also show its flexibility.

Chapter 11 is about the validation of a safety critical railway applica-
tion using fault injection. This chapter will summarize the fault injection
experiments performed with the ProSigma system. It will include a detailed
description of the system, fault injection test goals, description of the fault
injection tool, the results of the FI tests, etc.

Chapter 12 is concerned with robustness of complex Critical Systems.
Systems are nowadays being deployed also as services or web applications,
and are being used to provide enterprise-level business-critical operations.
These systems are supported by complex middleware, which often links
different systems, and where a failure can bring in disastrous consequences
for both clients and service providers. In this chapter we present a toolset
that can be used to evaluate the robustness of a given system, under the
following two different perspectives: i) executing robustness tests against the
service’s external interface (e.g., the interface with business clients) and also
inner interfaces (e.g., the application-database interface); ii) emulating the
presence of source code defects, on the service middleware, to understand
how the presence of a defect can affect the robustness of the overall system.
The toolset has been demonstrated on a set of web services, an Enterprise
Resource Planning web application, and on the popular Apache HTTP server.
Results show that the toolset can be easily used to disclose critical problems in
web applications and to support middleware, helping developers in building
and validating more reliable services.

Although the chapters of the book are arranged in a logical order, an effort
has been made to keep each chapter self-contained. This book can be used for
supplemental reading for advanced teaching on Critical systems validation
and verification methodologies.

Andrea Bondavalli

Francesco Brancati
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Budakalász, Hungary

Andrea Bondavalli, 1) Department of Mathematics and Informatics, Univer-
sity of Florence, Florence, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

Andrea Ceccarelli, 1) Department of Mathematics and Informatics, Univer-
sity of Florence, Florence, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

Arun Babu Puthuparambil, Robert Bosch Center for Cyber Physical
Systems, Indian Institute of Science, Bangalore, India

Cristiana Areias, 1) CISUC, Department of Informatics Engineering,
University of Coimbra, Portugal
2) ISEC – Coimbra Institute of Engineering, Polytechnic Institute of Coimbra,
Portugal

Fabio Scippacercola, 1) DIETI, Università degli Studi di Napoli Federico II,
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