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Abstract. This paper describes the participation of the LIMSI-MIROR
team at CLEF eHealth 2017, task 2. The task addresses the automatic
ranking of articles in order to assist with the screening process of Di-
agnostic Test Accuracy (DTA) Systematic Reviews. We used a logistic
regression classifier and handled class imbalance using a combination of
class reweighting and undersampling. We also experimented with two
strategies for relevance feedback. Our best run obtained an overall Av-
erage Precision of 0.179 and Work Saved over Sampling @95% Recall of
0.650. This run uses stochastic gradient descent for training but no fea-
ture selection or relevance feedback. We observe high performance vari-
ation within the queries in the test set. Nonetheless, our results suggest
that automatic assistance is promising for ranking the DTA literature
as it could reduce the screening workload for review writer by 65% on
average.

Keywords: Evidence Based Medicine, Information Storage and Retrieval,
Review Literature as Topic, Supervised Machine Learning

1 Introduction

Systematic reviews seek to gather all available published evidence for a given
topic and provide an informed analysis of the results. This work constitutes
some of the strongest forms of scientific evidence. Systematic reviews are an
integral part of evidence based medicine in particular, and serve a key role in
informing and guiding public and institutional decision-making. Systematic re-
views for Diagnostic Test Accuracy (DTA) studies have been shown particularly
challenging compared to other types of reviews because of the difficulty in defin-
ing search strategies offering adequate levels of sensitivity and specificity [8]. For
this reason, there is a need to particularly investigate automation strategies to
assist DTA systematic review writers in the time-consuming screening process.

Methods for automating the screening process in systematic reviews have
been actively researched over the years [6], with promising results obtained using
a range of machine learning methods. However, previous work has not addressed
DTA studies.
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This paper describes the work underlying our participation in the CLEF
2017 eHealth Task 2 [10, 4]. This work is part of an ongoing effort on providing
automatic assistance for the screening process in systematic reviews addressing
a variety of topics, including DTA studies.

The remainder of this paper is organized as follows; Section 2 presents the
datasets used for system development. Section 3 provides an overview of our
system and describes each component. Finally, section 4 reports our results and
section 5 provides an analysis of our methods and participation in the task.

2 Datasets

The task relied on a corpus comprising 50 DTA systematic review topics asso-
ciated with the full list of articles retrieved by an expert query and assessed for
inclusion based on title and abstract or full text. The corpus was split into a de-
velopment dataset comprising 20 topics and a test set comprising the remaining
30 topics. Our classifier was trained on the development dataset and evaluated
on the test dataset. We have also used a dataset of systematic reviews on drug
class efficacy due to Cohen et al. [1] to develop the methods applied in this task.
Several groups have been using this dataset in the past [1, 5], which gives us a
way to compare our results with previous work, although we can of course only
do by using the same evaluation metrics and training modes as previous work.

For both the CLEF and Cohen datasets we know the inclusion decisions
based on the abstracts, as well as the inclusion decisions based on the full text.
We thus have two definitions of positive examples, depending on whether we use
the abstract decisions or full text decisions as the gold standard.

We use a tripartite labeling to reflect this:

– No (N) is the set of articles that were excluded based on the abstract

– Maybe (M) is the set of articles that were preliminarily included based on
the abstract, but later excluded based on the full text

– Yes (Y) is the set of articles that were included based on both the abstract
and the full text, and later used in the meta-analysis

Table 1 shows a breakdown of the distribution of examples for each class the
CLEF and Cohen datasets used in our work.

Following the work of Cohen et al.[2], we also distinguish between two modes
of training:

– Intertopic training uses articles from a different topic (systematic review)
for training

– Intratopic training uses articles from the current topic (systematic review)
for training



Absolute number Relative number
Dataset Topic Y M N Y M N
Cohen CalciumChannelBlockers 100 180 938 8.21% 14.78% 77.01%

ACEInhibitors 41 142 2361 1.61% 5.58% 92.81%
BetaBlockers 42 260 1770 2.03% 12.55% 85.42%
Opiods 15 33 1867 0.78% 1.72% 97.49%
OralHypoglycemics 136 3 364 27.04% 0.60% 72.37%
Statins 85 88 3292 2.45% 2.54% 95.01%
SkeletalMuscleRelaxants 9 25 1609 0.55% 1.52% 97.93%
Antihistamines 16 76 218 5.16% 24.52% 70.32%
ProtonPumpInhibitors 51 187 1095 3.83% 14.03% 82.15%
Triptans 24 194 453 3.58% 28.91% 67.51%
NSAIDS 41 47 305 10.43% 11.96% 77.61%
ADHD 20 64 767 2.35% 7.52% 90.13%
AtypicalAntipsychotics 146 218 756 13.04% 19.46% 67.50%
UrinaryIncontinence 40 38 249 12.23% 11.63% 77.61%
Estrogens 80 0 288 21.74% 0.00% 78.26%
Total 846 1555 16333 4.52% 8.30% 87.18%

CLEF (train) CD007394 47 48 2450 1.85% 1.89% 96.27%
CD007427 17 106 1398 1.12% 6.97% 91.91%
CD008054 41 233 2940 1.28% 7.25% 91.47%
CD008643 7 4 15065 0.05% 0.03% 99.93%
CD008686 5 2 3946 0.13% 0.05% 99.82%
CD008691 20 53 1243 1.52% 4.03% 94.45%
CD009020 12 150 1422 0.76% 9.47% 89.77%
CD009323 9 113 3757 0.23% 2.91% 96.85%
CD009591 41 103 7847 0.51% 1.29% 98.20%
CD009593 24 54 14844 0.16% 0.36% 99.48%
CD009944 64 53 1064 5.42% 4.49% 90.09%
CD010409 41 35 43287 0.09% 0.08% 99.82%
CD010438 3 36 3211 0.09% 1.11% 98.80%
CD010632 14 18 1472 0.93% 1.20% 97.87%
CD010771 1 47 274 0.31% 14.60% 85.09%
CD011134 49 166 1738 2.51% 8.50% 88.99%
CD011548 1 108 12591 0.01% 0.85% 99.14%
CD011549 1 1 12699 0.01% 0.01% 99.98%
CD011975 60 559 7582 0.73% 6.82% 92.45%
CD011984 28 426 7738 0.34% 5.20% 94.46%
Total 485 2315 146568 0.32% 1.55% 98.13%

CLEF (test) CD007431 47 9 2050 2.23% 0.43% 97.34%
CD008081 10 16 944 1.03% 1.65% 97.32%
CD008760 9 3 52 14.06% 4.69% 81.25%
CD008782 34 11 10460 0.32% 0.10% 99.57%
CD008803 99 0 5121 1.90% 0.00% 98.10%
CD009135 19 58 714 2.40% 7.33% 90.27%
CD009185 23 69 1523 1.42% 4.27% 94.30%
CD009372 10 15 2223 0.44% 0.67% 98.89%
CD009519 46 58 5867 0.77% 0.97% 98.26%
CD009551 16 30 1865 0.84% 1.57% 97.59%
CD009579 79 59 6317 1.22% 0.91% 97.86%
CD009647 17 39 2729 0.61% 1.40% 97.99%
CD009786 6 4 2055 0.29% 0.19% 99.52%
CD009925 55 405 6071 0.84% 6.20% 92.96%
CD010023 14 38 929 1.43% 3.87% 84.70%
CD010173 10 13 5472 0.18% 0.24% 99.58%
CD010276 24 30 5441 0.44% 0.55% 99.02%
CD010339 9 105 12689 0.07% 0.82% 99.11%
CD010386 1 1 623 0.16% 0.16% 99.68%
CD010542 8 12 328 2.30% 3.45% 94.25%
CD010633 3 1 1569 0.19% 0.06% 99.75%
CD010653 0 45 7957 0.00% 0.56% 99.44%
CD010705 18 5 91 15.79% 4.39% 79.82%
CD010772 11 36 269 3.48% 11.39% 85.13%
CD010775 4 7 230 1.66% 2.90% 95.44%
CD010783 11 19 10875 0.10% 0.17% 99.72%
CD010860 4 3 87 4.26% 3.19% 92.55%
CD010896 3 3 163 1.78% 1.78% 96.45%
CD011145 48 154 10670 0.44% 1.42% 98.14%
CD012019 1 2 10314 0.01% 0.02% 99.97%
Total 639 1250 115698 0.54% 1.06% 98.39%
Total (train + test) 1124 3565 262266 0.42% 1.34% 98.24%

Table 1: The distribution of class labels in each dataset.



3 Method

We first give an overview of our system, which relies on logistic regression, in
section 3.1. Further details about the system are given in sections 3.2–3.5, in-
cluding features, strategies to handle class imbalance and implement relevance
feedback.

3.1 Overview

We have tried the following two classifiers:

– Classifier 1 uses logistic regression trained using stochastic gradient descent
on all features

– Classifier 2 uses standard logistic regression trained using standard meth-
ods on a subset of the features, and with additional preprocessing to improve
the throughput

We have tried three approaches to relevance feedback:

– no relevance feedback
– abrupt uses intertopic ranking until a sufficient number of relevant and non-

relevant articles have been identified, and then switches to using intratopic
ranking based on the identified articles

– gradual initially uses intertopic ranking, and gradually improves the model
using both Y and M identified through relevance feedback

In total, we have submitted the following four runs to the CLEF evaluation:

– no AF full uses classifier 1 with no relevance feedback
– no AF uses classifier 2 with no relevance feedback
– abrupt uses classifier 2 with abrupt relevance feedback
– gradual uses classifier 2 with gradual relevance feedback

3.2 Classification approach

We are currently using two classification systems. Both use logistic regression
but differ in how the model is optimized and the amounts and types of pre- and
postprocessing that is performed. Both methods use implementations provided
by sklearn [7].

Our first method, which is used in no AF full tends to work well for in-
tertopic classification on previous datasets (see table 3), presumably because it
generalizes better. This system uses logistic regression trained using stochastic
gradient descent. The only preprocessing done is the normalization of numerals.

Our second method, which is used in no AF, abrupt, and gradual uses stan-
dard methods for training (liblinear). This version tends to work well on in-
tratopic classification on previous datasets (see table 3), but does not scale as
well with data volume. We therefore need to do additional preprocessing to



reduce the number of features and keep running times down. We thus remove
features with variance less than a predefined threshold, we only consider n-grams
with high mutual information with the target class in the training set, we nor-
malize numerals, and we extract the principal components from the resulting
data.

Principal component analysis tends to reduce overfitting in our experiments,
and it also drastically reduces the time it takes to train and apply the classifier,
which is mostly important when we use relevance feedback.

3.3 Features

For all classifiers we extract n-grams (n ≤ 5) from the titles and abstracts. We
also extract publication type, journal names, author assigned keywords, MeSH
terms, and backward references, where these are available. The backward refer-
ences are only available for references pointing to articles available in Pubmed
Central, and this feature set is therefore fairly sparse.

Not all feature sets are useful for identifying DTA studies, but the current
model has been constructed such that irrelevant features should not adversely
effect the performance. All the feature sets have been shown to be useful on
some domain. For instance MeSH terms might not be useful for DTA studies,
but we have previously found them to be useful in identifying topics related to
drug efficacy.

3.4 Class imbalance

Class imbalance can be handled using undersampling, or by class reweighting.
We are currently using a combination of both these approaches.

Class weights We set the weight for the positive class to 80 for the initial
intertopic classifier. We have determined this to be a reasonable weight experi-
mentally using the Cohen dataset.

For the gradual relevance feedback we also attached higher weights to the
intratopic training examples identified through relevance feedback.

Undersampling In order to reduce the effects of the class imbalance we under-
sample the training set to include an equal number of Y, M, and N. However,
by doing so we end up with only around 1500 training samples. PCA yields at
most the same number of principal components as we have input samples, and
1500 is generally too few principal components to build an accurate classifier.
For the second model we therefore perform undersampling in two steps; We first
select a maximum of 500 Y, 1000 M, and 1500 N that we feed into the feature
extraction pipeline, which thus determines the number of features in our model.
We then select a smaller undersample to use for training.

We take a new undersample in each iteration of relevance feedback.



3.5 Relevance Feedback

We use two schemes for relevance feedback. For both schemes we retrain the
classifier each time we retrieve relevance feedback.

abrupt trains an initial intertopic classifier on the training dataset and ranks
the test dataset in descending order of confidence. The system then iteratively
asks for feedback for the top ranked results. When enough positive and negative
examples have been identified, the system switches to using a classifier trained on
the examples identified from relevance feedback. Additional examples are added
to the intratopic classifier as they are discovered.

The idea behind this system is that on some topics in Cohen we can train
highly performing intratopic classifiers using very small amounts of data, and
we have observed that even trained on small amounts of data these sometimes
outperform intertopic classifiers by a large margin. In these cases it might make
sense to switch to intratopic classification as soon as we can.

We set the minimum number of positive examples to 4, and the minimum
number of negative examples to 10.

gradual trains an initial intertopic classifier using the training set and ranks
the test set in descending order of confidence. The system then iteratively asks
for feedback for the top ranked result. Articles queried for relevance feedback are
then added to the model as they are queried, but with higher weights than the
intertopic examples. The model thus starts out as an intertopic classifier, but
gradually turns into an intratopic classifier as more targeted data is added to
the model. Since the intratopic examples identified through relevance feedback
are given higher weights, these will eventually drown out the original classifier,
provided enough examples exist to be discovered.

Besides using Y and N, we also use intratopic M as positive examples, with
lower weights than intratopic Y, but higher than intertopic Y. The reasoning
behind this is that we often encounter M earlier than Y, and in greater numbers,
in particular on topics with very few Y. We have observed on other datasets
that we can sometimes improve performance by using both Y and M as positive
examples, when the number of Y is very low.

After the number of Y found is larger than 40, we stop using M as positive
examples.

Reasonable parameter settings were identified experimentally on the Cohen
dataset.

3.6 Use of the CLEF development dataset

We do not split the training data into separate training and validation splits,
since we do not have the necessary number of Y to do this without hurting



the performance of the classifier. We do however use a small set of samples that
overlaps with the training set for validation. The performance we observe on this
validation suffers from severe overfitting, but we can observe when the model
fails to build a classifier on the current undersample. In such cases we can observe
an AUROC < 0.5 even on the training set. In these cases we simply discard the
classifier and try again with a new undersample. We observe that this improves
performance dramatically when we have a very small amount of training data
(approximately four or less positive examples).

4 Results

We present a comparison with previous work on the Cohen dataset for WSS@95
in table 2 and for AUC in table 3. Results from previous literature are taken
from Khabsa et al. [5], and Cohen et al. [2]. Exact intertopic AUC scores are
not explicitly reported by Cohen et al. and have instead been extracted from
Figure 1 in their paper The majority of these results, with the exception of one
result by Cohenet al. [2] use intratopic classification.

We present our results on the CLEF dataset for average precision in table 4,
normalized average precision in table 5, WSS@95 in table 6, and in aggregate
in table 7. The results in these tables correspond to those submitted as official
runs. For comparison, we also calculate a baseline by evaluating each metric on
the data ordered randomly. This has been repeated 1000 times and we report
the average and standard deviation.

We also report the mean, standard deviation, minimum and maximum WSS@95
and AUC over ten runs for a selection of topics in the CLEF dataset in table 8.

5 Discussion

5.1 Datasets

One of the topics in the CLEF dataset, CD010653, has no Y. While we can still
calculate performance scores relative to M, this topic might arguably have been
omitted from the test data. One of the topics, CD008803, similarly has no M.
This also happens to be the topic with the largest number of Y.

As a general tendency, we can observe that the relative number of Y / M
/ N in the CLEF dataset varies dramatically across topics. At the one end we
have one topic consisting of 14.06% Y (CD008760), and one topic consisting of
15.79% Y (CD010705). At the other end we have three topics with a mere 0.01%
Y (CD011548, CD011549, and CD012019). Most topics in the CLEF dataset
have a very small number of Y compared to Cohen, both in terms of rela-
tive and absolute numbers. Several topics have a large number of M however
(CD007427, CD008054, CD009020, CD009323, CD009591, 011134, CD011548,
CD0011975, CD011984, CD009925, CD10339, CD011145). Curiously, more top-
ics in the training set have a large number of M than in the test set, despite this
comprising a smaller number of topics.



Topic no AF full no AF VP CNB RF

CalciumChannelBlockers .398 .408 <.100 .234 .287
ACEInhibitors .629 .517 .318 .523 .447

BetaBlockers .511 .427 .284 .367 .361
Opiods .590 .641 <.190 .554 .455

OralHypoglycemics .111 .153 <.050 .080 .074
Statins .436 .573 .242 .315 .400

SkeletalMuscleRelaxants .429 .179 -.050 .265 .371
Antihistamines .149 .157 .080 .148 .030

ProtonPumpInhibitors .307 .320 <.180 .229 .288
Triptans .303 .312 .030 .279 .312
NSAIDS .537 .600 .352 .528 .404

ADHD .616 .530 .668 .622 .447
AtypicalAntipsychotics .210 .234 .140 .206 .199

UrinaryIncontinence .422 .365 .260 .290 .411
Estrogens .292 .475 .140 .375 .180

Table 2: Comparison in terms of WSS@95% with previous literature using Voting
Perceptrons, Complement Naive Bayes, and Random Forests, as reported by Khabsa
et al. [5]. We here only have state of the art metrics for the intratopic case.

Intertopic RF Intratopic
Topic no AF full no AF Cohen gradual no AF full no AF Cohen Khabsa

CalciumChannelBlockers .759 .773 .712 .862 .825 .868 .873 .870
ACEInhibitors .817 .782 .806 .899 .917 .925 .946 .951

BetaBlockers .837 .832 .801 .860 .863 .871 .891 .893
Opiods .885 .902 .856 .936 .905 .893 .897 .913

OralHypoglycemics .657 .581 .573 .753 .568 .768 .781 .734
Statins .826 .798 .773 .797 .873 .922 .900 .915

SkeletalMuscleRelaxants .826 .823 .836 .812 .740 .527 .738 .794
Antihistamines .652 .600 .620 .752 .650 .655 .722 .701

ProtonPumpInhibitors .823 .790 .793 .886 .826 .860 .860 .880
Triptans .819 .796 .823 .804 .792 .808 .909 .894
NSAIDS .912 .828 .899 .922 .861 .935 .951 .933

ADHD .591 .606 .469 .740 .908 .897 .924 .951
AtypicalAntipsychotics .759 .645 .653 .855 .779 .803 .835 .818

UrinaryIncontinence .887 .875 .851 .888 .784 .885 .890 .862
Estrogens .693 .649 .588 .879 .689 .912 .887 .840

Table 3: Comparison in terms of AUC with previous literature using Support Vector
Machines (Cohen) and Random Forests (Khabsa), as reported by Khabsa et al. [5],
and Cohen et al. [2]. Exact intertopic AUC scores are not explicitly reported by Cohen
et al. and have instead been extracted from Figure 1 in their paper.



Y||MN YM||N
w/o RF w/ RF

baseline
w/o RF w/ RF

baseline
Topic no AF full no AF abrupt gradual no AF full no AF abrupt gradual

CD007431 0.047 0.016 0.026 0.013 0.010 ± 0.005 0.065 0.026 0.044 0.019 0.015 ± 0.005
CD008081 0.146 0.099 0.087 0.046 0.016 ± 0.010 0.114 0.097 0.060 0.041 0.032 ± 0.009
CD008760 0.790 0.516 0.569 0.835 0.169 ± 0.052 0.886 0.644 0.734 0.807 0.210 ± 0.050
CD008782 0.057 0.231 0.032 0.042 0.004 ± 0.002 0.060 0.242 0.040 0.050 0.005 ± 0.002
CD008803 0.181 0.131 0.147 0.120 0.020 ± 0.003 0.181 0.131 0.147 0.120 0.020 ± 0.002
CD009135 0.382 0.217 0.149 0.324 0.030 ± 0.009 0.485 0.349 0.266 0.493 0.102 ± 0.012
CD009185 0.041 0.049 0.080 0.027 0.018 ± 0.006 0.139 0.096 0.135 0.085 0.060 ± 0.007
CD009372 0.122 0.189 0.078 0.081 0.007 ± 0.006 0.080 0.107 0.056 0.060 0.014 ± 0.004
CD009519 0.031 0.022 0.034 0.020 0.009 ± 0.002 0.059 0.051 0.067 0.038 0.019 ± 0.002
CD009551 0.199 0.140 0.222 0.157 0.011 ± 0.006 0.287 0.259 0.259 0.284 0.027 ± 0.006
CD009579 0.172 0.105 0.257 0.286 0.013 ± 0.002 0.253 0.157 0.259 0.286 0.022 ± 0.002
CD009647 0.038 0.024 0.019 0.026 0.008 ± 0.004 0.052 0.040 0.034 0.068 0.022 ± 0.004
CD009786 0.028 0.024 0.012 0.008 0.006 ± 0.007 0.034 0.055 0.190 0.014 0.008 ± 0.007
CD009925 0.114 0.080 0.044 0.077 0.010 ± 0.002 0.334 0.168 0.151 0.285 0.071 ± 0.003
CD010023 0.089 0.058 0.051 0.085 0.020 ± 0.008 0.303 0.273 0.168 0.222 0.058 ± 0.009
CD010173 0.014 0.008 0.010 0.001 0.003 ± 0.004 0.025 0.014 0.015 0.003 0.006 ± 0.003
CD010276 0.072 0.055 0.032 0.003 0.006 ± 0.003 0.108 0.100 0.057 0.007 0.011 ± 0.003
CD010339 0.018 0.067 0.021 0.035 0.001 ± 0.002 0.043 0.046 0.020 0.040 0.010 ± 0.001
CD010386 0.053 0.083 0.091 0.167 0.009 ± 0.023 0.031 0.044 0.050 0.085 0.010 ± 0.017
CD010542 0.082 0.145 0.190 0.038 0.036 ± 0.021 0.131 0.158 0.188 0.110 0.068 ± 0.018
CD010633 0.015 0.010 0.010 0.002 0.006 ± 0.014 0.071 0.028 0.023 0.003 0.006 ± 0.010
CD010653 - - - - - 0.011 0.016 0.012 0.005 0.006 ± 0.002
CD010705 0.240 0.220 0.389 0.312 0.174 ± 0.037 0.250 0.247 0.444 0.380 0.214 ± 0.036
CD010772 0.117 0.035 0.069 0.086 0.048 ± 0.020 0.211 0.155 0.214 0.343 0.158 ± 0.021
CD010775 0.187 0.101 0.170 0.069 0.034 ± 0.031 0.623 0.462 0.433 0.258 0.062 ± 0.023
CD010783 0.071 0.037 0.020 0.009 0.002 ± 0.003 0.044 0.103 0.051 0.026 0.004 ± 0.002
CD010860 0.188 0.139 0.135 0.032 0.070 ± 0.042 0.168 0.126 0.134 0.047 0.104 ± 0.042
CD010896 0.347 0.093 0.248 0.239 0.037 ± 0.033 0.213 0.100 0.154 0.163 0.054 ± 0.028
CD011145 0.027 0.009 0.023 0.011 0.005 ± 0.001 0.108 0.044 0.058 0.038 0.019 ± 0.002
CD012019 0.003 0.002 0.003 0.002 0.001 ± 0.008 0.003 0.002 0.002 0.001 0.001 ± 0.001

Average 0.179 0.145 0.143 0.146 0.027 ± 0.003 0.133 0.100 0.111 0.109 0.047 ± 0.003

Table 4: Average precision score for all topics in the CLEF dataset.



Y||MN YM||N
w/o RF w/ RF

baseline
w/o RF w/ RF

baseline
Topic no AF full no AF abrupt gradual no AF full no AF abrupt gradual

CD007431 0.825 0.673 0.762 0.704 0.503 ± 0.074 0.773 0.684 0.769 0.700 0.501 ± 0.060
CD008081 0.907 0.872 0.801 0.695 0.504 ± 0.091 0.801 0.751 0.653 0.603 0.506 ± 0.057
CD008760 0.963 0.895 0.933 0.955 0.518 ± 0.098 0.976 0.917 0.927 0.920 0.536 ± 0.082
CD008782 0.942 0.983 0.351 0.876 0.501 ± 0.050 0.939 0.977 0.360 0.888 0.500 ± 0.044
CD008803 0.944 0.889 0.898 0.915 0.505 ± 0.029 0.944 0.889 0.898 0.915 0.504 ± 0.028
CD009135 0.962 0.875 0.856 0.959 0.503 ± 0.068 0.875 0.841 0.744 0.897 0.524 ± 0.033
CD009185 0.790 0.676 0.677 0.744 0.500 ± 0.060 0.779 0.603 0.618 0.687 0.514 ± 0.031
CD009372 0.947 0.970 0.817 0.853 0.500 ± 0.092 0.815 0.839 0.714 0.749 0.501 ± 0.059
CD009519 0.865 0.802 0.862 0.807 0.498 ± 0.041 0.851 0.792 0.838 0.766 0.503 ± 0.028
CD009551 0.960 0.961 0.892 0.946 0.503 ± 0.072 0.945 0.953 0.862 0.930 0.506 ± 0.043
CD009579 0.902 0.784 0.871 0.913 0.505 ± 0.032 0.902 0.827 0.821 0.875 0.505 ± 0.025
CD009647 0.747 0.774 0.674 0.830 0.500 ± 0.071 0.720 0.706 0.628 0.835 0.504 ± 0.038
CD009786 0.918 0.854 0.756 0.736 0.503 ± 0.118 0.895 0.858 0.743 0.762 0.501 ± 0.093
CD009925 0.947 0.822 0.695 0.839 0.502 ± 0.038 0.883 0.674 0.616 0.753 0.518 ± 0.013
CD010023 0.890 0.806 0.780 0.879 0.504 ± 0.077 0.872 0.864 0.780 0.889 0.513 ± 0.039
CD010173 0.929 0.805 0.882 0.379 0.495 ± 0.091 0.901 0.770 0.766 0.383 0.502 ± 0.062
CD010276 0.956 0.938 0.882 0.279 0.503 ± 0.057 0.940 0.904 0.801 0.345 0.503 ± 0.038
CD010339 0.887 0.860 0.777 0.873 0.506 ± 0.094 0.816 0.760 0.580 0.764 0.504 ± 0.028
CD010386 0.971 0.982 0.984 0.992 0.512 ± 0.290 0.820 0.686 0.804 0.531 0.510 ± 0.202
CD010542 0.794 0.748 0.793 0.650 0.503 ± 0.099 0.692 0.606 0.696 0.676 0.512 ± 0.066
CD010633 0.846 0.873 0.830 0.315 0.503 ± 0.171 0.884 0.903 0.869 0.414 0.500 ± 0.145
CD010653 - - - - - 0.688 0.753 0.721 0.497 0.500 ± 0.043
CD010705 0.713 0.621 0.867 0.802 0.531 ± 0.068 0.655 0.611 0.868 0.817 0.544 ± 0.059
CD010772 0.805 0.455 0.581 0.679 0.504 ± 0.089 0.661 0.485 0.551 0.719 0.537 ± 0.041
CD010775 0.956 0.893 0.601 0.847 0.496 ± 0.146 0.982 0.947 0.762 0.914 0.508 ± 0.084
CD010783 0.935 0.935 0.926 0.916 0.501 ± 0.089 0.918 0.941 0.848 0.870 0.502 ± 0.052
CD010860 0.832 0.840 0.837 0.217 0.498 ± 0.141 0.697 0.656 0.667 0.152 0.514 ± 0.111
CD010896 0.855 0.648 0.721 0.904 0.501 ± 0.168 0.756 0.691 0.605 0.733 0.503 ± 0.115
CD011145 0.860 0.736 0.792 0.750 0.500 ± 0.042 0.868 0.751 0.724 0.723 0.504 ± 0.020
CD012019 0.964 0.960 0.962 0.946 0.505 ± 0.286 0.917 0.767 0.806 0.542 0.497 ± 0.160

Average 0.890 0.825 0.795 0.766 0.504 ± 0.022 0.839 0.780 0.735 0.708 0.509 ± 0.014

Table 5: Normalized average precision score for all topics in the CLEF dataset.



Y||MN YM||N
w/o RF w/ RF

baseline
w/o RF w/ RF

baseline
Topic no AF full no AF abrupt gradual no AF full no AF abrupt gradual

CD007431 0.621 0.298 0.356 0.415 0.071 ± 0.078 0.297 0.079 0.356 0.323 0.030 ± 0.052
CD008081 0.452 0.260 0.056 0.391 0.042 ± 0.082 0.430 0.138 0.283 0.365 0.023 ± 0.048
CD008760 0.731 0.512 0.591 0.575 0.023 ± 0.075 0.731 0.575 0.591 0.575 0.075 ± 0.087
CD008782 0.767 0.873 -0.037 0.476 0.036 ± 0.046 0.706 0.857 -0.039 0.476 0.013 ± 0.035
CD008803 0.787 0.584 0.528 0.612 0.009 ± 0.023 0.787 0.584 0.528 0.312 0.009 ± 0.023
CD009135 0.759 0.457 0.739 0.783 0.048 ± 0.067 0.439 0.403 0.035 0.580 0.012 ± 0.026
CD009185 0.377 0.073 0.096 0.500 0.031 ± 0.057 0.377 0.026 0.024 0.114 0.013 ± 0.025
CD009372 0.654 0.844 0.051 0.170 0.040 ± 0.083 0.353 0.461 0.139 0.170 0.025 ± 0.050
CD009519 0.597 0.294 0.442 0.624 0.011 ± 0.034 0.483 0.219 0.336 0.291 0.006 ± 0.022
CD009551 0.856 0.866 0.584 0.834 0.070 ± 0.075 0.757 0.838 0.368 0.667 0.014 ± 0.037
CD009579 0.531 0.153 0.327 0.522 0.012 ± 0.027 0.580 0.275 0.203 0.351 0.008 ± 0.021
CD009647 0.321 0.469 0.124 0.577 0.058 ± 0.073 0.240 0.243 0.028 0.499 0.018 ± 0.033
CD009786 0.799 0.656 0.134 0.248 0.098 ± 0.124 0.621 0.656 0.234 0.248 0.041 ± 0.085
CD009925 0.810 0.346 0.050 0.277 0.022 ± 0.033 0.469 0.0 -0.040 -0.037 0.002 ± 0.010
CD010023 0.714 0.649 0.572 0.693 0.085 ± 0.085 0.492 0.474 0.515 0.662 0.024 ± 0.034
CD010173 0.777 0.476 0.555 0.078 0.039 ± 0.083 0.671 0.271 0.174 0.078 0.034 ± 0.057
CD010276 0.811 0.803 0.486 -0.031 0.031 ± 0.050 0.719 0.511 0.217 -0.031 0.024 ± 0.034
CD010339 0.193 0.114 0.077 0.330 0.052 ± 0.095 0.346 0.192 0.026 0.219 0.011 ± 0.023
CD010386 0.920 0.931 0.932 0.940 0.461 ± 0.289 0.616 0.337 0.571 0.019 0.286 ± 0.237
CD010542 0.464 0.171 0.099 0.191 0.056 ± 0.097 0.232 0.065 0.099 0.191 0.041 ± 0.061
CD010633 0.637 0.741 0.584 0.050 0.203 ± 0.197 0.637 0.741 0.584 0.050 0.143 ± 0.164
CD010653 - - - - - 0.218 0.272 0.227 0.050 0.014 ± 0.035
CD010705 0.213 0.187 0.625 0.503 0.040 ± 0.064 0.064 0.161 0.564 0.494 0.014 ± 0.048
CD010772 0.532 0.070 0.247 0.153 0.108 ± 0.101 0.077 0.001 -0.041 -0.009 0.006 ± 0.031
CD010775 0.867 0.726 0.170 0.701 0.140 ± 0.163 0.867 0.813 0.174 0.718 0.109 ± 0.098
CD010783 0.856 0.906 0.819 0.842 0.124 ± 0.106 0.701 0.381 0.340 0.072 0.015 ± 0.043
CD010860 0.578 0.695 0.716 0.046 0.134 ± 0.155 0.237 0.067 -0.050 -0.039 0.065 ± 0.106
CD010896 0.517 0.098 0.151 0.684 0.192 ± 0.196 0.518 0.098 0.151 0.051 0.086 ± 0.121
CD011145 0.497 0.342 0.228 0.175 0.011 ± 0.034 0.446 0.327 0.108 0.103 0.004 ± 0.015
CD012019 0.914 0.909 0.912 0.896 0.455 ± 0.286 0.797 0.369 0.534 0.276 0.195 ± 0.190

Average 0.640 0.500 0.390 0.457 0.093 ± 0.023 0.497 0.348 0.241 0.271 0.015 ± 0.016

Table 6: Work saved over sampling at 95% recall for all topics in the CLEF dataset.



Y||MN YM||N
w/o RF w/ RF

baseline
w/o RF w/ RF

baseline
Topic no AF full no AF abrupt gradual no AF full no AF abrupt gradual

WSS@95 0.640 0.500 0.390 0.457 0.093 ± 0.023 0.497 0.348 0.241 0.271 0.045 ± 0.016
WSS@100 0.591 0.420 0.350 0.407 0.112 ± 0.022 0.412 0.261 0.173 0.195 0.056 ± 0.015

last rel 1678 2263 2619 2384 3393.7 ± 118.1 2250 2993 3414 3406 3749.7 ± 68.8
NCG@10 0.517 0.407 0.357 0.346 0.081 ± 0.010 0.475 0.367 0.316 0.350 0.092 ± 0.006
NCG@20 0.802 0.639 0.644 0.685 0.180 ± 0.015 0.717 0.554 0.518 0.601 0.192 ± 0.008
NCG@30 0.908 0.783 0.753 0.789 0.280 ± 0.018 0.825 0.674 0.609 0.698 0.291 ± 0.010
NCG@40 0.946 0.843 0.814 0.832 0.379 ± 0.020 0.887 0.746 0.678 0.763 0.391 ± 0.011
NCG@50 0.972 0.890 0.842 0.881 0.479 ± 0.020 0.929 0.800 0.727 0.816 0.491 ± 0.011
NCG@60 0.984 0.921 0.886 0.911 0.579 ± 0.020 0.955 0.851 0.789 0.853 0.591 ± 0.011
NCG@70 0.990 0.942 0.911 0.937 0.679 ± 0.018 0.976 0.903 0.834 0.889 0.691 ± 0.011
NCG@80 0.997 0.960 0.939 0.959 0.778 ± 0.016 0.987 0.930 0.878 0.918 0.791 ± 0.007
NCG@90 0.998 0.987 0.965 0.980 0.878 ± 0.013 0.996 0.964 0.920 0.943 0.890 ± 0.007

NCG@100 1.000 0.998 1.000 1.000 0.977 ± 0.006 1.000 0.999 0.998 0.997 0.990 ± 0.002
norm area 0.890 0.825 0.795 0.766 0.504 ± 0.022 0.839 0.780 0.735 0.708 0.509 ± 0.014

ap 0.133 0.100 0.111 0.109 0.027 ± 0.003 0.179 0.145 0.143 0.146 0.047 ± 0.003

Table 7: Aggregate performance for each ranking metric.

WSS@95 AUC
no AF full no AF no AF full no AF

Topic mean std min max mean std min max mean std min max mean std min max
CD008760 .723 .034 .653 .762 .666 .080 .481 .764 .949 .012 .933 .971 .937 .020 .899 .962
CD010386 .899 .012 .883 .921 .932 .006 .923 .942 .949 .012 .933 .971 .982 .006 .973 .992
CD010705 .085 .036 .025 .143 .047 .027 .011 .099 .696 .013 .683 .705 .595 .028 .572 .632
CD012019 .920 .006 .907 .929 .923 .007 .903 .927 .962 .010 .949 .982 .973 .007 .899 .979
CD010339 .250 .085 .084 .415 .438 .139 .265 .607 .884 .013 .029 .864 .903 .039 .798 .923

Table 8: The average, standard deviation, mininum, and maximum WSS@95 and
AUC over ten iterations on a subset of the topic in CLEF for our systems no AF

and no AF full.



The number of N also varies wildly, from 52 up to 43287. Compared to the
Cohen dataset we also have a smaller minimum number of N, as well as much
larger maximum number.

If we compare the training and test sets, the training set contains almost
double the absolute number of M, many more N, but fewer Y.

5.2 Performance

While relevance feedback sometimes gives an improvement in performance, rele-
vance feedback often seems to only confuse the system (tables 4–7). This should
be contrasted with our experiments on the Cohen dataset, where the same im-
plementation reliably yields an improvement (table 3), and generally yields per-
formance intermediate between intertopic and intratopic classification, as one
would expect. There are perhaps better approaches to relevance feedback than
ours, which can reliably improve upon the baseline, but it might also be that
there is simply little to gain from relevance feedback on several of the topics. Of
particular note, we should not expect any improvements by using RF on topics
such as CD010386, CD010633, CD010860, CD010896, and CD012019, that have
a low absolute number of Y and M. It is also worth pointing out that our abrupt
scheme requires at least 4 Y before switching to the intratopic model, and any
differences between no AF and abrupt on these topics can thus only be due to
chance.

We can see an improvement on the topic CD010705 when using relevance
feedback (tables 4–7). This topics is also the topic with the highest percentage
of Y at 15.79%. We do not see any improvement for CD008760, the other topic
with a high percentage of Y (14.06%), but this may be due to the initial classifier
having much higher performance.

We can observe that gradual outperforms abrupt on topic CD008760, de-
spite this topic having only 3 M, which is probably too low a numbe for gradual
to have an advantage. The simplest explanation for this is likely random chance.

It is however easy to see that relevance feedback does not appear to lead
to an improvement for our system. For instance abrupt outperforms no AF 15
times out of 30, and gradual outperforms no AF only 10 times out of 30 (tables
4).

Of course, it seems unlikely for relevance feedback to be useful for those topics
where the number of positives is extremely low, even in theory. In particular, if
there is only one relevant article, as is the case for CD012019 and CD010386,
then relevance feedback cannot really add any value to the classification. Any
successful use of relevance feedback on such topics would necessarily have to use
the negative examples.

We get better performance for no AF full than no AF. We have however gen-
erally observed that this difference is generally reversed for intratopic classifica-
tion, which is what we should end up with when we after relevance feedback, but
it is possible that we would get better performance if we were to use no AF full

as a base for our relevance feedback experiments, since we would start with a
much better initial classifier.



Ordinarily, screeners would be free to choose the order in which they screen
each article, and may proceed for instance in alphabetical or chronological order.
For the purposes of our baseline, we assume that any such order ordinarily
available to screeners would be indistinguishable from random order on average.

5.3 Metrics

Average Precision has been selected as the main metric for this task as it was pre-
viously found particularly adapted to evaluate retrieval performance for highly
imbalanced datasets [9, 3]. However, these studies rely on common assumptions
that we value high precision at the top of the ranking, whereas for systematic
review screening we value recall almost exclusively. Of particular note, average
precision heavily penalizes rankings where the top few results are non-relevant,
even if the ranking manages to place all relevant articles in the upper percentiles
of the ranking.

Furthermore, average precision is strongly correlated with the number of
positives in the topic, with most of the cases where we achieve ap > 0.2 are
for topics with high prevalence. While this is to be expected, it means that
average precision makes it difficult to compare performance across topics, since
we can see a strong correlation with the prevalence of relevant articles in the
topic (tables 1, 4–7). Similarly, Mean Average Precision will likely be dominated
by the results on the topics with many relevant articles and a small number
of total candidates, i.e. arguably the topics which are the least representative
systematic reviews of DTA studies, and where automated methods are likely the
least useful.

5.4 Reliability of the Experiments

Our classification method is stochastic, and thus does not produce deterministic
results that are always the same every time we run on the same input data. To
gauge the reliability of the experiment we repeat it ten times for a subset of the
topics and calculate the standard deviations, as well as examine the minimum
and maximum values (table 8).

We can generally observe a fairly large variability for topics with a small total
number of candidates, such as CD008760 and CD010705, and for topics with a
comparably smaller proportion of Y, such as CD010339. When we consider topics
with a large number of candidates we can observe a large variability for the
CD012019, but small variability for CD010386. We might speculate that small
topic size and a small relative number of Y is correlated with larger variability,
but it is clear that the variability for some topics is quite large, regardless of
the underlying causes and mechanisms. The standard deviation can be as large
as .139, which is large enough that it casts doubts about the reliability of the
results. Furthermore, the minimum and maximum values are much more skewed
towards extreme values than we should expect from the standard deviations were
the values normally distributed, suggesting that the distribution is heavy-tailed
and skewed towards outliers.



Considering the above, we might suspect that the differences in performance
in tables 4–7 are not significant. For instance abrupt outperforms gradual 17
times out of 30, but we do not know whether this means that abrupt is a better
method, or if this is simply due to random chance. We might speculate that
our gradual implementation works better for the cases where we have a suffi-
cient number of M, but the experiment is ultimately too low-powered to draw
conclusions. Future iterations of the campaign could consider whether perfor-
mance should be computed as an average over multiple runs, in order to get
more precise results for stochastic systems such as ours.

We can however see smaller variability in the mean performance across all
topics, which might suggest that these are more reliable estimates. However,
these give little indication as to how the performance depends on topic compo-
sition.

5.5 General Remarks on the Shared Task Model

The Shared Task Model is typically implemented in evaluation campaigns that
seek to perform a community-wide technical evaluation of systems addressing a
particular task. A Shared Task thus offers an evaluation paradigm that includes:
1/a specific definition of the task and evaluation metrics 2/an implementation
through the dissemination of datasets and evaluation tools and 3/the execution
of the evaluation in a controlled setting where participants have access to data
at the same time and are evaluated blindly by an independent third party. As
outlined below, this year the TAR task was not conducted according to the
Shared Task Model.

In this iteration of the evaluation campaign, the final set of evaluation met-
rics was decided only shortly before participants were required to freeze their
systems. One of the expected outcomes of evaluation campaigns such as this is
indeed the discussion of the relative merits of the various metrics to be used.
However, changing the target metric close to the submission deadline means that
some participants may have optimized for different metrics than those ultimately
used for evaluation.

The gold standard labeled test data was distributed directly to the par-
ticipants at the begining of the test phase. This is explained by the lack of an
assessor through which participants could receive relevance feedback as has been
the case in e.g. TREC Total Recall. While common labeled test collections are
routinely used for research, this procedure is unusual in a shared task setting
where participants are typically asked to process a test dataset while being blind
to the gold standard associated with the dataset. This could alternatively have
been accomplished in part by requiring the submission of runs without relevance
feedback before the distribution of the gold standard labels.

Another feature of the shared task model is the computation of performance
metrics for all participants by a common, independent party which ensures that
all participations are evaluated using the exact same conditions. This confers a
stronger reliability in the comparability and reproducibility of results. At the



time of writing, while a common evaluation tool has been released, the perfor-
mance reported by participants has been self-computed without validation from
the task organizers. In addition to result validation, it would also have been use-
ful to receive an indication of the overall performance of the participants prior to
the deadline for the submission of the working notes. This would have enabled a
discussion about the relative performance of the system that is currently difficult
to do without comparing with previous literature using external datasets.

6 Conclusions

Our best system is the one using logistic regression trained using stochastic
gradient descent, using a minimum of preprocessing, and no relevance feedback.
This system achieves a workload reduction of 64.0% on average, with a minimum
workload reduction of 19.3%, and a maximum workload reduction of 92.0%. On
average, we would have to screen 1678 articles per topic to retrieve all relevant
articles. Overall there is a large variation in performance across topics however.

We do not generally see an improvement when using relevance feedback. For
the topics where relevance feedback is hypothetically feasible we sometimes see
an improvement, although the effect does not appear very reliable, and the low
power of the experiment means that the results are unlikely to be significant.
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