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Abstract 

Segregation of particulate mixtures is a problem of great consequence in industries 

involved with the handling and processing of granular materials in which homogeneity is 

generally required. While there are several factors that may be responsible for segregation in 

bulk solids, it is well accepted that nonuniformity in particle size is a fundamental contributor. 

When the granular material is exposed to vibrations, the question of whether or not convection 

is an essential ingredient for size segregation is addressed by distinguishing between the 

situation where vibrations are not sufficiently energetic to promote a mean flow of the bulk 

solid, and those cases where a convective flow does occur. Based on experimental and 

simulation results in the literature, as well as dynamical systems analysis of a recent model of a 

binary granular mixture, it is proposed that “void-filling” beneath large particles is a universal 

mechanism promoting segregation, while convection essentially provides a means of mixing 

enhancement.  

Keywords: Granular Materials, Microstructure, Nonlinear Dynamics, Particulate, Segregation, 

Discrete Element Simulation 

1. Introduction 

 Segregation is a process in which a homogeneous bulk solid composed of various 

constituents or species becomes spatially non-uniform as a result of relative movement within 

the material (Rosato and Blackmore 2000). Its occurrence is of universal concern to the 

industrial sector involved with the processing and handling of bulk solids, as well as to 

geologists in exploring the nature of geophysical flows. (See for example, (Davies 1988; 

Savage and Hutter 1991; Savage 1992; McElwaine and Nishimura 2000).  Within the confines 

of industry, the critical issue when segregation occurs is that it poses a formidable impediment 

to the general requisite of creating and maintaining homogeneous mixtures. An inability to 

achieve and maintain a well-mixed condition of a bulk solid throughout its processing history 

can lead to serious flaws in the properties of an end product, leading to unfavorable economic 

consequences (Carson, Royal et al. 1986; Bates 1997). The magnitude of the problem becomes 

evident when one simply considers the breadth of industries where segregation is an issue, i.e., 

chemicals, food, agriculture, pharmaceuticals, mining, materials, energy, munitions, and 

electronics.  
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 Studies of segregation under a variety of flow situations have appeared throughout the 

literature on granular systems. The fact that the phenomenon is rather ubiquitous in bulk solids 

where particle size differences are present indicates that this property is a primary trigger.  

Below we highlight several relevant papers that demonstrate some of the salient features of 

vibration-induced segregation. For a comprehensive classification of the literature up to 1976, 

the reader is also referred to the review of Cook et al. (Cooke, Stephens et al. 1976). 

Perhaps J. C. Williams (Williams 1963) carried out one of the first qualitative studies on 

the effect of vibration frequency on the motion of a single large sphere in a bed of sand that 

was oscillated vertically.  He attributes the sphere’s observed upward trajectory to the 

“locking” effect of the overburden pressure that it exerts on the column of materials directly 

beneath it, thereby preventing it from moving down.  If the large particle does experience an 

upward movement during the vibration, smaller particles could easily move beneath it and 

become locked. In a subsequent paper (Williams 1976), he highlights particle properties that 

can promote segregation - namely particle size, density, shape and elasticity - and he also 

describes three mechanisms of segregation - trajectory segregation, percolation of fines and the 

rise of coarse particles due to vibration.  A series of articles (Olsen and Rippie 1964; Rippie, 

Olsen et al. 1964; Faiman and Rippie 1965; Rippie, Faiman et al. 1967) on the behavior of 

systems of steel spheres subjected to vertical sinusoidal vibrations explored the influence of 

particle size and distribution, particle density, agitation intensity, and particle shape on energy 

requirements. From the experiments, the authors are able to model the segregation process via 

first-order kinetics, with the system evolving to an equilibrium state characterized by a balance 

between mixing and separation. In addition, they find evidence indicating that the presence of 

an intermediate particle size reduces the segregation rate in the system, an effect that was also 

seen in Monte Carlo simulations (Rosato, Lan et al. 1991).  An investigation (Ahmad and 

Smalley 1973) quantifying the effects of vibration frequency and acceleration on the time 

required for a single large particle in a sand bed to rise to the surface illustrated several 

interesting trends that are important to note. With an increase of acceleration at constant 

frequency, this rise time was reduced; however, within certain acceleration ranges, an increase 

of frequency at constant acceleration resulted in a longer rise time.  Although size effects were 

dominant within their experimental conditions, it was observed that the higher the material 

density of the large particle, the lower was its tendency to rise. A subsequent experiment by 

Harwood (Harwood 1977) using radioactive tracer powders demonstrated the importance of 

the material properties as well as vibration amplitude and frequency.   

A crucial aspect of the phenomenon is that segregation is often governed by a combination 

of mechanisms, which themselves depend on the nature of the flow, particle properties and 

environmental conditions. Consider, for example, those particle features which can influence 

segregation behavior: particles sizes and distributions, shape, morphology, contact friction, 

elasticity, brittleness, density, chemical affinities, ability to absorb moisture, and magnetic 

properties.  An additional complexity is brought about by the interplay between different time 

and length scales. These scales depend upon the means by which energy is imparted to the 

bulk solid causing it to flow, such as through vibrations (Evesque and Rajchenbach 1989; 

Fauve, Douady et al. 1989; Laroche, Douady et al. 1989; Clement and Rajchenbach 1991; 

Clement, Duran et al. 1992; Gallas, Herrmann et al. 1992; Taguchi 1992; Brennen, Ghosh et al. 

1993; Hunt, Hsiau et al. 1994; Lan and Rosato 1995; Aoki, Akiyama et al. 1996; Clement, 

Vanel et al. 1996; Knight 1997; Lan and Rosato 1997), shearing (Lun, Savage et al. 1984; 
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Campbell and Brennen 1985; Savage 1991; Savage and Dai 1991; Rosato and Kim 1994; 

Karion and Hunt 2000), and gravity (Fowler 1960; Fowler 1961; Campbell 1990; Walton 

1991; Furll 1992). Consequently, individual researchers have had to focus their efforts on 

narrow ranges of conditions in an attempt to identify, isolate or enhance dominant 

mechanisms. As an example, we refer to the pioneering work of Bridgwater and his colleagues 

(Bridgwater, Sharpe et al. 1969; Bridgwater and Ingram 1971; Scott and Bridgwater 1975; 

Bridgwater 1976; Cooke, Stephens et al. 1976; Scott and Bridgwater 1976; Cooke, Bridgwater 

et al. 1978; Stephens and Bridgwater 1978; Stephens and Bridgwater 1978; Stephens, Cooke et 

al. 1978; Cooke and Bridgwater 1979; Foo and Bridgwater 1983; Bridgwater, Foo et al. 1985; 

Bridgwater 1999). 

The theme of this paper is on segregation that takes place as a consequence of vertical 

vibrations applied to bulk solids whose constituent particles are of non-uniform size. Within 

this context, we review the literature describing the dynamics of a single large particle or 

intruder in a vertically vibrated bed of mono-sized particulates.  While this behavior is not 

sufficient to predict segregation patterns in systems where size distributions exist, it is not 

unreasonable to expect that this may provide some measure of the tendency of a specific bulk 

solid to become spatially inhomogeneous. We remark that industrial systems often employ a 

combination of vertical and horizontal vibrations, such as in screeners. However, there have 

been relatively few studies on only horizontal shaking (Herrmann 1994; Liffman, Metcalfe et 

al. 1997). Equally important is the effect of particle density on segregation in vibrated systems, 

where again there does not appear to be a large body of literature. (See for example, (Rippie, 

Olsen et al. 1964; Ohtsuki, Kinoshita et al. 1995; Shinbrot and Muzzio 1998; Eggert and Wu 

2000)). An understanding of the relationship between size and density in segregating systems 

is unclear. Shinbrot and Muzzio propose that the sinking of large, low density particles in 

strongly vibrated deep beds may be promoted by the important role that inertia plays in causing 

heavy objects to lift off the bed, in contrast to lighter objects that are more inclined to exhibit 

more chaotic motions. In situations where the flow is promoted by gravity, such as in chute 

flows inclined at slopes much greater than the bed-friction angle, recent experiments (Vallance 

and Savage 2000) indicate that density segregation is far weaker than that promoted by particle 

size.  Another consideration is segregation that is promoted by particle shape.  Although we 

shall focus on size effects in this paper, recent studies have shown that particles shapes – such 

as angular, needle and plate-like – have some interesting effects on segregation and mixing. 

More information on this topic can be found in (Matsen 1983; Wanibe and Itoh 1999; Brown, 

Clarke et al. 2000).   

In this paper, we consider two extreme or limiting flow cases: (1) the vibrations are not 

energetic enough to promote a mean flow within the bulk solid; and (2) the vibrations induce a 

mean convective flow. This paper is organized as follows. In Section 2, an introduction to 

discrete element simulations is given since this technique is now widely used in investigations 

of the behavior of particle assemblies.  In the next section a discussion of the effects of 

vibrations on granular materials is presented, which primarily emphasizes convection and 

densification. Section 4 examines the relationship between segregation, convection and 

densification.  In the conclusion, it is proposed that void-filling is a universal sorting 

mechanism which is present with or without convection. 

2. Discrete Element Simulations 
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 The development of the “discrete element” simulation method and the considerable 

growth in its application over approximately the last ten years due to advances in computing 

technology has been instrumental in enhancing our ability to understand the physics governing 

the complex behavior of granular or particulate flows. Besides furnishing a means of 

interpreting developing theories, these simulations provide invaluable information on the 

evolution of internal microstructure and its relationship to observable or measurable 

phenomena. Although the method is actually an outgrowth of molecular dynamics modeling 

first reported by Alder and Wainwright (Alder and Wainwright 1956) and later extended by 

Ashurst and Hoover (Ashurst and Hoover 1973) for nonequilibrium problems of dense fluid 

transport, it was independently developed by Cundall (Cundall 1974) in the 1970’s. Flows of 

practical interest all involve inelastic particles that are far from their equilibrium state. 

Therefore, nonequilibrium statistical theories are required to model flowing granular solids, 

and not the more usual thermodynamic equilibrium theories of gas dynamics.  
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 In contrast to energy-conserving gas molecules which behave essentially as smooth, 

perfectly elastic particles, macroscopic granular particles suffer collisional energy losses and 

can spin as a result of the transfer of tangential momentum. Therefore, it is necessary to 

employ force models that approximate the behavior of real colliding granules (Walton 1992; 

Schafer, Dippel et al. 1996). With the prescription of appropriate contact laws based on 

idealized dissipative collisions, the equations of motion of the system of particles can be 

numerically integrated to yield the complete specification of the history of all particle positions 

and velocities. This data may be used to compute transport properties, which can be correlated 

with the evolution of the microstructure.  

 In general, force models for granular flows in the absence of an interstitial fluid can be 

categorized as using either “hard” or “soft” particles. Rigid “hard” particle models.  (for 

example, (Campbell and Brennen 1985; Campbell 1990; Savage 1991; Walton 1991)) are 

based on instantaneous, binary collisions, and are restricted to systems dominated by 

collisions, i.e., those in which continuous contacts are not characteristic. Numerical studies 

employing these particles have also been termed “event driven” simulations (Lubachevsky 

1991). The main feature is that post-collisional kinematics are computed from a collision 

Fig. 1: Normal force model of Walton and Braun (1986). 
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operator which is a function of interaction parameters (i.e., coefficient of friction, and normal 

and tangential restitution coefficients) and the pre-collisional velocities and spins of the 

particles (Walton 1992). Soft models on the other hand admit forces that are proportional to a 

small, allowed overlap  between particles. Within this class, there are “spring-dashpot” (SD) 

and hysteretic-like models. SD interactions (Luding 1994) employ an elastic restoring force in 

the normal direction F Kn
e    , which for Hertzian contact between elastic spheres of 

diameter d is given by  F E dn
e  (1 2 3 2  , where E is Young’s modulus and  is 

Poisson’s ratio. Energy loss associated with particle interaction in the normal direction is 

obtained through a damping force F Dn
d    , and selection of the constants  and  will 

determine the variation of the restitution coefficient e with impact velocity. Nonphysical 

behavior may result with certain choices of the constants  and . For example, by using  = 

3/2 and = 0, an increase of e with relative impact velocity occurs in contradistinction to the 

behavior of real materials (Goldsmith 1960; Johnson 1987).   In the discussions in Section 3 

and 4 of this paper, several discrete element investigations are described. These employ the 

soft sphere models derived by Walton and Braun (Walton and Braun 1986; Walton and Braun 

1986), which have been shown to reproduce (Walton 1992) the almost linear loading behavior 

for spherical surfaces that experience plastic deformation of the order of one percent of a 

particle diameter. In the direction along the line of centers of the contacting spheres, loading 

and unloading springs of stiffness K1 and K2, respectively, determine the normal force. This 

can be expressed as, 
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, where o is the overlap remaining when Fn  0 . For the 

linear case ( = 1), Figure 1 illustrates the paths for the normal force versus overlap . Loading 

is along path AB, and if unloading occurs at B, it follows the line BC to o. At this point, if 

there is no reloading (which would follow CBD with unloading along DECA), particles 

continue to separate at constant velocity to a zero overlap. The linear model produces a 

constant restitution coefficient given by e K K 1 2  if the unloading paths (lines BC and DF 

in Fig. 1) have the same slope K2. A variable restitution coefficient as a function of the relative 

approach velocity vo may be obtained by allowing K2 to be linearly dependent on the maximum 

force realized before unloading K K cFm2 1  . This is given by  e cvo o o   , where 

the parameter c is empirically determined and o K m 2 1 . We remark that models that 

yield the theoretically predicted behavior e vo 1 4  (Johnson 1987), namely plastic 

deformation in the contact region, have been developed (Ning and Thornton 1993), capturing 

the rebound of particles from surfaces after elastic-plastic impact has occurred.  

 In the tangential direction, Walton and Braun (Walton and Braun 1986) approximated 

Mindlin’s and Deresiewicz’s (Mindlin and Deresiewicz 1953) theory for elastic spheres 

subjected to tangential loading, resulting in a one-dimensional “incrementally slipping” friction 

force model for disks which was subsequently extended to three dimensions for spheres 

(Walton and Braun 1986). Although this does not include the effects of contacts that 

experience rotation coupled with tangential sliding, particles can rotate due to the transmission 

of tangential impulse. In accordance with the theory, full sliding of the contact occurs when the 
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limiting force Fn  is attained as a result of increasing elastic strain. This takes place when the 

contact tangential stiffness, given by  
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decreases to zero. In the latter expression, Fn  and T are the magnitudes of the current normal 

and tangential forces, respectively, K Ko  0 8 1.  is an initial tangential stiffness,  is the friction 

coefficient and T *  is the turning point value of T. We remark that the recent paper of Vu-Quoc 

and Zhang (Vu-Quoc and Zhang 1999) reports on an improved tangential force model for 

elastic frictional contacts based on Walton and Braun’s original model.  

3. Some Important Features of Vibrated Granular Materials 

 Under rapid deformation conditions, granular materials appear to respond much like 

fluids. Numerous examples of this behavior are visible in the industrial handling and 

processing of particulates (i.e., screening, sieving and powder mixing), as well as in naturally 

occurring events, such as landslides and avalanches. The main feature of these highly energetic 

flows is that momentum and vibrational kinetic energy are transmitted from boundaries or a 

free surface to the interior through impacts or collisions between the granules. Consequently, 

the solids fraction (i.e., the volume fraction occupied by solids) will be substantially different 

from its value when the material is at rest, while the granular temperature (Ogawa 1978) (i.e., 

the kinetic energy associated with the fluctuating or deviatoric particle velocities) can display 

significant spatial variations. These latter characteristics reveal the inherent nonequilibrium 

nature of these flows.  

 When a vessel containing granular materials is “strongly” vibrated, fluid-like behavior can 

occur, with the possible appearance of arching, surface waves and convection, such as in 

(Savage 1988; Douady, Fauve et al. 1989; Fauve, Douady et al. 1989; Clement and 

Rajchenbach 1991; Clement, Duran et al. 1992; Taguchi 1992; Lan and Rosato 1995; 

Wassgren 1996; Knight 1997; Lan and Rosato 1997). On the other hand, the application of 

small amplitude/high frequency oscillations (Vanel, Rosato et al. 1997; Rosato and Yacoub 

2000) or taps (Takahashi and Suzuki 1986; Knight, Frandrich et al. 1995; Nowak 1997) can 

promote subtle changes in the microstructure resulting in an increase in bulk density. Such an 

effect has important applications for instance in industries where there is major interest in 

reducing costs associated with transportation of bulk solids over long distances. 

The fluid like nature of vibrated particulates is revealed in the experiments of Hunt et al. 

(Hunt, Hsiau et al. 1994) who reported a striking volume increase of the bed at relative 

accelerations 2/2  ga , where a is the displacement amplitude,  is the vibration 

frequency and g is gravitational acceleration. To explain this phenomenon, Brennen et al. 

(Brennen, Ghosh et al. 1993) offer a plausible theory that is based on an analogy with the 

bifurcation of the solution for a single sphere bouncing on a vibrating plate, for which the 

critical value of relative acceleration, as a function of the normal restitution coefficient (e), is 

given by   )1/()1(2 eega crcr  . By replacing e with an assumed bulk restitution 

coefficient of the bed 25.0 , the computed value of 88.1cr was found to be in good 
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agreement with the experimental results. Discrete element simulations (Lan and Rosato 1995) 

demonstrated the same expansion in a bed of smooth, inelastic spheres with a computed bulk 

restitution 32.0 .  

Kinetic theory models have provided some insight into behavior produced by vibrations 

by utilizing the correspondence between the motion of molecules of dense gases and the 

fluctuating movement of granular particles that experience energy dissipation through inelastic 

collisions (Ogawa 1978). One such model is that of Richman and Martin (Richman and Martin 

1992) who report the steady-state depth profiles of solids fraction and granular temperature in a 

bed of uniform, smooth, inelastic spheres that are subjected to vibrations induced by a bumpy 

floor having a Maxwellian velocity distribution about a zero mean speed.  Their theory predicts 

that the granular temperature profile monotonically decreases upward from the floor, while the 

solids fraction achieves a maximum at some intermediate location along the depth. Analogous 

discrete element simulations (Lan and Rosato 1995) at large floor accelerations ( 5.56 ) 

agreed quite well with the theoretical predictions, but departed significantly from the theory at 

lower accelerations (e.g., 7.5,84.2 ). It was inferred from the computations that the 

deviation at low accelerations was a consequence of a violation of one or more of the 

assumptions implicit in the kinetic theory (such as the Maxwellian distribution of “peculiar” 

velocities, and an equal collision frequency between the boundary and flow particles and the 

flow particles themselves).   

Relevant to the topic of this paper is the mean convective flow that develops when 

particles are vigorously shaken, and, at the opposite extreme, the densification that occurs due 

to energetic, low amplitude vibrations. Savage (Savage 1988) experimentally studied 

convection using polystyrene particles in a rectangular vessel that was excited via a vibrating 

flexible floor membrane with non-uniform amplitude across its width (maximum in the center 

and a zero at the side walls). The two slowly recirculating vortices identified in the 

experiments were attributed to “acoustic” waves transmitted through the bed from the floor. 

Here, particles traveled upwards along the centerline of the box and downward along the walls. 

A maximum in the magnitudes of the streaming velocities versus base frequency was observed 

over a range of floor membrane amplitudes. The decrease of these velocities beyond critical 

values of floor acceleration was explained as a loss of bed contact with the base thereby 

resulting in a less effective energy transfer. Streaming flow velocities were predicted through 

an analysis of a kinetic theory based model previously developed by Jenkins and Savage 

(Jenkins and Savage 1983).  

Taguchi (Taguchi 1992) developed a discrete element simulation of vibration-induced 

convection using inelastic, frictional disks. In contrast to the flexible oscillating floor employed 

in the Savage experiments, the entire rectangular box of particles was sinusoidally vibrated. It 

was found that convection “strength” was minimal when 2.1/2  ga . He conjectured 

that two stages in a single shaking cycle contributed to the development of this flow. When the 

upward acceleration of the floor was greater than gravity, particles are pushed together causing 

a pressure to be developed in the bed. During the interval when downward acceleration of floor 

becomes greater than g, particles are in free flight, so that the vertical component of this 

pressure is relaxed. However, the constraint of the walls would tend to prevent a release of the 

horizontal pressure component, thus promoting relative horizontal sliding motion between 

particles. It was argued that this sliding induced a horizontal flow, which would meet at the 
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center of the cell and then turn upwards to create the observed flow pattern. Subsequent 

simulations of Gallas et al. (Gallas, Herrmann et al. 1992) employed rigid and flexible 

vibrating floors where, in the latter case, the computational cell had periodic sidewall 

conditions and a floor whose amplitude varied along its width with a zero value at the ends.  

The resulting flow field, which was similar to that in the experiments of Savage (Savage 1988), 

was attributed to the spatial form of the floor excitations. Upon replacing the floor by a rigid, 

sinusoidally oscillating plane with frictionless sidewalls, particles flowed downward in the 

center of the cell and upwards along the walls. The authors argued that this pattern was a 

consequence of horizontal flows (generated by a transfer of part of the relative vertical 

momentum into the horizontal direction), being forced upwards at the sidewalls that prohibited 

the horizontal flow. A reversal of the flow pattern occurred when sidewalls were made 

frictional - particles moved upwards in the center and down along the sidewalls. They 

suggested that the additional mechanism of a strong downward shear drag force, resulting from 

pressure exerted on the walls by the compressed packing, was responsible for the downward 

motion. It was argued that a combined effect of internal horizontal flows and wall shear drag 

was responsible for a convection pattern when sidewalls were frictional.  

Knight et al. (Knight 1997) examined granular convection in non-rectangular vessels using 

both photographic and MRI techniques to obtain images of the flow. When the walls were 

tilted outward from the vertical beyond a transition angle, the flow was quite different from 

that which occurred with vertical walls (i.e., particles move upward in the center and 

downward in a stream near the walls). In this case, particles moved down in center, 

accompanied by a substantial upward flow within the triangular region formed by the angled 

sides. This is explained in terms of a “ratchet mechanism” that opposes the downward wall 

shear that was hypothesized earlier by Taguchi as the origin of convection. Reversal of the 

flow direction from up to down in the center can also occur in rectangular vessels with smooth 

walls. This phenomenon, which was identified earlier in discrete element simulations (Gallas, 

Herrmann et al. 1992; Lan 1994), was observed in the experiments of Aoki et al. (Aoki, 

Akiyama et al. 1996).  

At this juncture it is worthwhile noting that segregation behavior in vibrated containers 

where convection is present is strongly influenced by the depth of the filling material (Poschel 

and Herrmann 1995). Thus segregation patterns that are promoted principally by convection 

will be necessarily dependent on the amount of filling material.  A great deal more research is 

needed in order to devise scaling relations that could be used in industrial process operations.  

It is possible to increase the bulk density of a container of granular solids either by 

applying vibrations with relatively small displacement amplitudes (a/d < 0.1) and high 

frequencies (Vanel, Rosato et al. 1997; Rosato and Yacoub 2000), or through tapping 

(Takahashi and Suzuki 1986; Knight, Frandrich et al. 1995; Nowak 1997). We demonstrate 

this in the following simple experiment. A 6.35 cm diameter acrylic cylinder was rigidly 

mounted onto an electromagnetic shaker so that a piston could actuate the cylinder’s floor, 

which was free to move up and down. The cylinder was filled with uniform 3.175 mm 

diameter (d) acrylic spheres to a poured depth H = 9.515 cm. A series of studies over a range 

of amplitudes (0.0375  a/d  0.24) and frequencies (25 Hz  f  100 Hz) was carried out to 

determine the change in bulk solids fraction from the poured state after 10 minutes of 

vibration. These vibration parameters corresponded to relative accelerations gfa 2)2(   
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between 0.94 and 11.54. A principal finding is presented in Fig. 2, which shows the variation 

of solids fraction with relative acceleration. For each fixed value of a/d, data points were 

obtained by varying the frequency. In general, for amplitudes a/d less than approximately 0.1, 

an increase in relative acceleration produced densification within the bed, with each curve 

exhibiting a different maximum value depending on .  

0.6

0.61

0.62

0.63

0.64

0 2 4 6 8 10 12

Relative Acceleration (g)

S
o

li
d

s
 F

ra
c

ti
o

n

a/d = 0.0375

a/d = 0.06

a/d= 0.08

a/d = 0.1

a/d = 0.24

 

We have carried out several preliminary discrete element studies (Rosato and Yacoub 

2000) of the densification process in a narrow computational cell whose dimensions were 

chosen so as to promote the development of an orthorhombic structure, which has a maximum 

solids fraction of 0.6046. The initial packing was obtained by allowing particles to settle under 

gravity until a stable assembly formed having a height of approximately 7.5d and solids 

fraction 53.0o  . Densification was achieved through the application of two minutes of 

vertical sinusoidal vibrations to the floor with a/d = 0.1 so that no mean motion occurred in the 

bed.  Two case studies ( = 1.02 and 6.4) were selected corresponding to f = 20 and 50 Hz, 

respectively. Figure 3 presents the evolution of the solids fraction, which is fundamentally in 

agreement with the phenomenology reported in (Nowak 1997). 

4. Convection and Segregation 

Depending on the nature of the particle flow, certain segregation mechanisms may become 

dominant while others remain latent in some sense (Bates 1997; Desilva, Dyroy et al. 2000). In 

the case of vibrated beds of particles, there has been some controversy concerning the 

relationship between segregation and convection, particularly on the mechanism responsible 

Fig. 2: Densification behavior depicted by solids fraction versus relative acceleration. Lines are 

drawn to indicate trends. 
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for the rise of a large particle to the surface (Jullien, Meakin et al. 1992; Knight, Jaeger et al. 

1993; Dippel and Luding 1995; Gallas, Herrmann et al. 1996; Brone and Muzzio 1997; Lan 

and Rosato 1997; Vanel, Rosato et al. 1997). Perhaps part of the difficulty lies in the fact that 

often the terms segregation and convection are associated with each other in a manner that 

implies one cannot exist without the other (See for example (Poschel and Herrmann 1995). 

However, it is essential to make a clear distinction between those mechanisms that actually 

promote size sorting, and those that enhance mixing. Here we address the question of whether 

or not convection is an essential ingredient for vibration induced size segregation. 
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 In the 1980’s, it was (Rosato, Prinz et al. 1986; Rosato, Strandburg et al. 1997) deduced 

from Monte Carlo computer simulations that the rising of a large particle in a vibrated bed was 

due to a void created beneath the large particle that could easily be filled by smaller particles. 

Thus the larger particle could only move down if many smaller particles simultaneously were 

displaced from beneath it, an event of low probability1. In 1993, experimental findings 

(Knight, Jaeger et al. 1993) were reported that pointed to another mechanism responsible for 

the upward motion of the large particle. A 35 mm cylindrical vessel filled with 2 mm glass 

spheres was subjected to oscillations, each consisting of a vertical 30 Hz sinusoidal “tap”, 

followed by a one second relaxation period. From the results, it was deduced that the observed 

rise of a large sphere from the bottom of the bed, which depended on the sphere’s depth below 

the surface, was controlled by convection cycles.  They also found that small particles rose at 

the same mean rate as the large sphere. Upon reaching the surface, the large sphere migrated to 

the cylinder walls where it was either trapped or re-entrained in the flow depending on its size 

relative to the downward flowing stream near the wall. Consequently, the authors conclude that 

                                                 
1 This is commonly known as the ‘Brazil Nuts’ theory.  

Fig. 3: Evolution of the solids fraction in the bed’s center for = 1.02 (“x” f = 20 Hz) and  = 6.4 

(“” f = 50 Hz). Solids lines are least square fits to the phenomenological model of Knight et al. 

(Knight, Frandrich, Lau, Jaeger & Nagel 1995) (Reprinted from Rosato & Yacoub 2000 with 

permission from Elsevier Science). 
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the motion of the large particle was principally due to convection and that for the conditions 

investigated in their experiment, the filling of voids and/or internal particle rearrangements did 

not play a major role in the particle’s upward ascent.  However, they also observe that 

separation of a sufficiently large particle from the bulk occurred at the bed’s surface due to its 

ability to move down the narrow stream adjacent to the cylinder wall. We conjecture that this 

was due to the same void-filling mechanism previously reported. That is, spheres move down 

the side of the container, making way for others to follow them. However, it is relatively 

improbable for the spaces opened up (i.e., space made available to allow other spheres to move 

down) to be of sufficient size to accommodate the large sphere. Consequently, the small 

spheres move beneath the large sphere, which then remains at the surface. 

 

The viewpoint that convection is in effect a mechanism that promotes mixing rather than 

separation is supported by experiments (Brone and Muzzio 1997) in which systems of glass 

spheres vibrated in cylindrical vessel experienced either radial segregation or mixing 

depending on the frequency f of vibration. At frequencies less than approximately 19 Hz, radial 

segregation was commensurate with surface heaping, while a mixed state was attained in the 

absence of surface heaping at 22f  Hz. Additionally, the system could be reversibly driven 

between radially segregated and mixed states by simply adjusting the frequency in an 

appropriate manner. Their results demonstrate that the ability of the system to re-entrain large 

particles from the surface depends on the width of the downward flow stream near the walls.  

Fig. 4: Projected trajectory of the center of the large particle from discrete element simulations 

(Lan &Rosato 1997) for (a) width = 6d, and (b) width = 20d.  
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Discrete element studies (Lan and Rosato 1997) have provided further confirmation of the 

latter experimental observations with regards to the filling of voids beneath a larger particle 

trapped at the surface as well as the importance of the width of the downward streams near the 

walls. In Fig. 4a,b the projected trajectory of the center of a large sphere (D/d = 3) is shown, 

corresponding to the long time averaged velocity fields of Fig. 5a,b. In the presence of 

convection, surface trapping is evident in the narrow cell, while re-entrainment of the large 

particle occurs in the wider cell. During the large particle’s ascent to the surface, results 

revealed a strong correlation between its coordination number (i.e., number of near neighbor 

contacts) and velocity. Consequently, an upward displacement of this particle occurred when it 

was closely surrounded by small particles. A careful inspection of the process showed the large 

particle undergoing a sequence of up and down displacements, having a net upward tendency 

over a time period during which it reached the surface. There appeared to be somewhat of a 

ratchet-like motion, reminiscent of the arching effect model proposed by Duran et al. (Duran, 

Rajchenbach et al. 1993). Further evidence that this might occur was found from an analysis of 

the motion of particles using modern dynamical systems theory: (Blackmore, Samulyak et al. 

1999) showed that the dynamical system of a two species granular mixture in a vibrating bed 

exhibits chaotic mixing regimes for certain amplitude and frequency ranges. They conclude 

that this leads to a tendency for the smaller particles to occupy gaps that evolve beneath the 

large particle, thereby causing the larger particles to migrate upward in the bed. The above 

discussion suggests that void filling may be an important contributor to the ascent of the large 

particle, although a more detailed simulation study is needed to link the kinematics and 

dynamics of the process.   

In the absence of convection, a large particle will rise to the free surface, albeit much more 

slowly than when convection is present. This was reported by Duran et al. (Duran, 

Rajchenbach et al. 1993) who carried out experiments with disks, from which they developed 

an “arching effect” model to explain their observations. Subsequently, Vanel et al. (Vanel, 

Rosato et al. 1997) performed full three dimensional experiments using 3 mm acrylic spheres 

in a cylindrical container that was agitated through sinusoidal oscillations of a floor piston at 

displacement amplitude a and vibration frequency f.  The dimensionless time Tf required for a 

large intruder particle of diameter dD 8 to rise to the surface from the floor was measured. 

Three behavioral regimes characterized by the piston vibration parameters were identified. For 

Fig. 5: Long time velocity field spatially averaged through the thickness of the rectangular 

computational cell for (a) width = 6d and (b) width = 20d. (Lan & Rosato 1997). 
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frequencies below Hz  15crf , strong convection and surface heaping was evident for which 

feTf ~ . In the second regime ( Hz 40Hz 15  f ), surface heaping was not observed and 

]1[)( ~
2)/(-   cff

c e-Tf , where 2 , and 1c . The latter scaling predicts a variation 

of Tf with  at fixed frequencies consistent with earlier observations (Ahmad and Smalley 

1973). Most interesting is the last regime, where at small relative amplitudes ( 25.0/ da ) and 

frequencies between approximately 40 and 75 Hz (corresponding to 4 ), there is a minimal 

dependence of Tf on .  In this range, the bed experiences an increase in bulk density, and no 

convection occurs. The large intruder slowly rises to the surface at a rate that depends on 

dD as shown in Fig. 6 (Vanel, Rosato et al. 1997), in striking contrast to the rate 

independent behavior that occurs in the presence of convection. Such a dependence on  is a 

consequence of the extent of the disturbance of the particle structure in the vicinity of the large 

particle. These results tend to support the early hypothesis of Brown (Brown 1939) who 

suggested that segregation under vibration occurred due to locally abnormal packing 

conditions in the neighborhood of a large particle. The latter results provide evidence that 

segregation can occur even when convection is absent. 
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5. Summary and Conclusions 

Segregation of homogeneous mixtures of granular materials due to vibrations is an important 

and not well-understood phenomenon. A large particle will rise to the surface of a vibrated 

vessel of particles with or without convection, although at drastically different rates. In both 

cases, the filling of voids beneath the intruder appears to be an essential mechanism during the 

process. In the situation where vibrations are such as to cause an increase in bulk density and 

Fig. 6: Mean rise velocity (x10-6 m/s) of the large sphere as a function of  (f = 50 Hz, a/d = 0.1) 

(Vanel, Rosato & Dave 1997). 
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no mean bulk flow (i.e., at small amplitudes a/d < 0.1 and large frequencies), a large particle 

ascends very slowly to the surface at a rate that depends strongly on the size ratio D/d. 

Here the movement of smaller particles into cavities formed beneath the intruder plays a 

dominant role in the overall process. In contrast, when vibrations are sufficiently energetic to 

induce an upward current in the center and a descending stream near the wall, experiments and 

discrete element simulations reveal that the rise velocity is independent of . We suggest that 

since convection causes the large and small particles to rise at the same rate, it can’t be a 

mechanism that is responsible for a large particle to move away from smaller granules. At the 

surface, a large particle may be re-entrained in the flow, or it may be trapped at the wall 

depending on its size relative to the width of the downward stream. In this case, smaller 

spheres easily move down under the large particle, thereby causing it to remain at the surface. 

During the ascent process itself, discrete element simulations and dynamical systems models 

have provided evidence that the filling of voids beneath the large particle may also be 

operative even when a strong convective flow exists. Clearly, a great deal more research is 

needed in order to resolve some of the issues addressed in this paper.     
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