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1. Introduction

One way to study the statistical evolution of rarefied gases of particles
consists in writing down kinetic equations. Let us denote f = f(¢,z,§) the
density of probability of presence of gas particles at time t and position x
with velocity £. In this paper, we are not interested in boundary or relativistic
effects, so we shall assume that (z,¢) € IR x IR? with N > 1.

When no interaction holds, the particles move with a constant velocity
& and the density f is solution of the free transport equation :

Of+&-0:f=0 . (1)

In a rarefied gas without external force, the interactions reduce to collisions
in which only two particles interact and one can assume at the first level
of approximation that these collisions are elastic. Denoting by (&, &) and
(€',£.) the velocities of the particles respectively before and after collision,
the conservation of momentum and energy gives

§+& =¢+&
€7 16 = ¢ + 1€

which can be solved in

§ =¢-(E-&)wuw
13 L+ —&)ww

where w denotes a unit vector of R? : w e SN-1,

Assuming that there was no correlation between particles before and
after collision, Boltzmann showed that equation (1) has to be modified as
follows :

of+&-0.f=Q(f, f) (2)
with :

QUN= [ [, BE—&)f L 1) dede

where B denotes the cross section and where we used the following notations :

f=ftz8  fi=ftaé&)  f=ftaf) fi=fEa )

Now, if we want to describe a gas of Fermi-Dirac particles satisfying Som-
merfeld’s degeneracy condition (see [C,C]), one has to modify the collision
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integral in order to take into account quantum effects. For example, it is
necessary for some light atoms at very low tmperature like 2H,, or for a gas
of electrons in a metall (but in this case, the gas is dense and of course, one
must add electromagnetic forces to get a realistic description). Two particles
which interact are not any more uncorrelated before and after collision (this
is a consequence of Pauli’s exclusion principle). One can show that equation
(2) has to be replaced by

Ohf+&-0:f =C(f) (3)

with
) = [ [ B S fl=ef)(1=ef)=F F.(1=e/)(1=2 L)) dgudo

where ¢ is a positive constant, proportional to h® (h is Planck’s constant).
Let us notice that (3) reduces to (2) when & = 0. In the general case (when
Sommerfeld’s degeneracy condition is not satisfied), equation (3) remains
true for gases of Fermi-Dirac particles (¢f is very small and therefore C(f)
is approximatively equal to Q(f, f)) : equation (3) provides a good approxi-
mation for the Boltzmann equation (2).

In this paper, we shall give existence and uniqueness results for the Cau-
chy problem associated to (3) in IRY. We shall study the conservation of
macroscopic quantities : mass, kinetic momentum and kinetic energy, and
also the evolution of the entropy; letting the small parameter € tend to O,
we shall prove that, up to the extraction of a subsequence, a sequence of
solutions of (3) indexed by ¢ gives at the limit a solution of (2) in the sense
of R. DiPerna and P-L. Lions.

Indeed, it is a natural assumption to ask that, when the quantic para-
meter tends to 0, we get at the limit a solution of the classical problem. The
interest of this method of approximation is due to the fact that every solu-
tion of (3) has a natural L°°—bound, which of course depends on &, while
the solutions of (2) do not have any natural L —estimate.

Finally, in the last section, we shall give some indications on equilibrium
states of equation (3).

Notations : In this paper, we denote the derivative with respect to the time
t by 9 and the gradient with respect to the position x by d,. We do not
specify the target space for the functional spaces when it is IR :

P(RY) = LP(RY, R). LP(R{ . x IR? x IR) means LP([0,T] x R? x RY) for
all T > 0. x4 is the characteristic function of the set A.
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2. Existence and uniqueness results

In this section, the parameter ¢ is assumed to be a strictly positive real
constant. We want to solve the Cauchy problem :

O f +&-0.f =CO(f)
fli=o = fo (4)

Let us assume that the following assumptions are satisfied :
(i) the cross section satisfies (this is a very strong assumption)

Be L'(RYx SN~ and B>0a.e. (5)
(ii) the initial data satisfies

foe L®(R% xRY) and 0< fy<e lae. (6)

Theorem 1 : Under assumptions (5) and (6), (4) has a unique solution f
satisfying

feLl*MRT"xRIxRY and 0< f<elae. (7)

Moreover, f is absolutely continuous with respect to t.

First, let us mention a classical result of linear transport theory (see
[DP,L 1)).

Lemma 1 : Let f,h € Llloc(IR x IR? x IRY). f is solution of

Of+&-0.f=h inD'(R xIR?x IRY)
if and only if for almost all (z,€¢) € R? x IR?, f(t,x,&)! is absolutely conti-
nuous with respect to t, h(t,z,£)* € Llloc(]R)’ and

f(t2,2,8) — f(t1,2,8) = /t2 h(s,x— (s —1)& &) ds V (t1,t2) € R?

t1

Here g* denotes, for any function g measurable on IR x IR? x IR¢, the following
measurable function :

gﬁ(t,w,f) = g(t,x - tgaé)
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Proof : It is enough to prove the theorem with € = 1. Indeed, if we replace
f by (ef), fo by (¢fo) and B by (¢7'B), the general case is reduced to the
case ¢ = 1. In the following, we shall assume that ¢ = 1.

There exists 8 > 0 such that

8tf + § : 8xf = C(?)
fli=0o = fo ®)

has a unique solution f satisfying
fel®(0,)] xR'xRY) and 0< f<1ae. 9)

Here f is defined as follows :

f(tvxvf):f(t7$7€) if 0§f(t,$,f)§1 >

flt,z,&) =0 it f(t,z,&) <0 ,

flt,z, &) =1 it f(t,z,6) >1

Indeed, according to lemma 1, a function satisfying assumption (9) is solution
of (8) if and only if f is a fixed-point of the nonlinear operator 7" defined on
L>(]0, 0] x R? x IR?) by setting

T5(t,2,6) = folw ~ 6,6 + [ CPlo,z— (- 06, ds

for all t € [0,6] and for almost all (z,&) € IR? x IR%
The operator T is a Lipschitz operator. Indeed, let us consider hi, ho €
L([0,6] x R x IRY).

IThy = Thal| oo (0,6« R xR
=S Jutesos BE— &) (F(), G, () ()’
(). (b)) s (2). ) s [ ety
with
F(a', 22,2, 2Y) = 2% (1 — 2D(1 — 22) — 2'22(1 — 2¥)(1 — oY)
V= (2,22, 2%, 2% e [0, 1)
But

oF
sup |o— <2 Vi=1,23,4 ,
z€[0,1]* oz
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and therefore

[Thy = The | oo (0,0 xREx RS
< |

Jo ds [ Jpaxsy-1 B(E = &)
2([(h1) = (ha)[* + [(h1)« — (ho):[*+

() — (ho)' | + | (), — <h2>;|ﬁ) deude |1
S 80b . ||h1 - h2||L°°([O,0}><]Rd><]Rd)

with
b= ||Bl 1 (Rraxsn-1)
Finally if
o<~
8b '

T is a contracting operator.

Moreover, for all f in L°([0, 6] x IR? x IR?), we have

b F < () .
(-7 = b-(1-min(l,f)

—_

This ensures that

—b-max(f,0) < O(Tf)+&-0.(Tf) <

and

b- (1 —min(1,f))

O (rnax((Tf)ﬁ,o) et) >0

at((1 —min(1,(T)#)-e*) >0

Finally, for all ¢t € [0, 6] and for almost all (z,¢) € IR? x IR, we have :
0< folw—16,&) - e < (THH(t2,6) <1— (1 - folz —t£,€)) e

The set { f € L=([0,0] x R¢ x RY) | 0 < f < 1 a.e. } is stable under the

action of T'. This proves that (8) has a unique solution satisfying assumption
(9), and we have :

. (10)

(60,6 = fole — 16,6+ [ (s~ (s~ 06, ds

Vte0,0] (x,¢)eRxRae.
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According to lemma 1, the solution of (8) is absolutely continuous with
respect to ¢ : f(0,.,.) is making sense and verifies the same conditions as fj
because of inequalities (10). Iterating the previous method, we get a solution
of equation (8) in L>®(IR* xIR% x IR?) which is also a solution of (4) satisfying
(7) because (10) ensures that f = f. Theorem 1 is therefore proved and we
have

t
ft2,6) = foe =169+ [ C(Psa— (=g ds ()
VteRT (z,6) € RY x R? ace.
Remark 1 : One can notice that f and (¢~! — f) play the same role : if f

solves (4) with initial data fo, (e~ — f) solves (4) with initial data (=1 — fp).
This explains why 0 and e~! are natural bounds.

3. Conservation of mass, kinetic momentum and kinetic energy

We are now interested in conserved integral quantities associated to (4).
Physical cross sections are generally supposed to verify

B(&,w) = q(€],|Ew]) V(& w) e R x SV T ae. (12)

where ¢ is a function defined on IRT x IR*. As in section 2, the conservation
of mass, kinetic momentum and kinetic energy is essentially a fixed-point
result.

3.1 Conservation of mass

Proposition 1 : Let us assume that the initial data fy satisfies (6), belongs
to L' (IR? xIR?), and that the cross-section satisfies assumptions (5) and (12).
Then the solution of (4) given in theorem 1 belongs to C°(IR*, L' (IR? x IR%))
and satisfies

//]RdX]R (t,x,§) ded§ //]Rd folz, &) dedé ViteR*
(13)
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Proof : As for the proof of theorem 1, let us assume that € = 1 and consider
the operator T'. For all hq, ho in

{ feL>(0,0] x R x RN C([0,6], YR x RY)) |0< f<lae } |,
equation (11) ensures that the following estimate holds

sup [|[Thi(t,.,.) — Tha(t,., .)HLl(RdXRd)
te[0,0]

< 80b- sup [[ha(t,...) = ha(t, . ) pmixmey - (14)
te(0,6]

which proves that the solution of equation (4) given in theorem 1 belongs
to CO(IR*, L'(IRY x IRY)). Let us denote by f this solution. If f belongs to
CoURT, L' (IR? x RY)), C(f) belongs also to CO(IRF, L'(IR¢ x IR?)), and by
Fubini’s theorem, we get for all ¢ € [0, 6]

[ Jraxme f(t,2,€8) ded§ = [ [ray g fo(z,§) dedE
+ fg ds [ fff(le)stNfl B(§ - & w)
(f = nQ—f) =1 £ =)~ fL) ) dzdEdésdw.

Using the change of variables (£, &) — (£,&.) and according to (12), we get
for all ¢ € [0, 6]

/ds/// B(§ —&w) (/' 1L0-1) =L~ £.0-1) (1 11) )dwdE dEdw = 0,

]Rd)3><SN

which proves (13).

3.2 Comnservation of kinetic momentum

Proposition 2 : Let us assume that the initial data fy satisfies (6) and

// &)1z + ¢?) dzde < +oo (15)
R*x

Let us assume also that the cross-section satisfies (5) and (12).
Then the solution of equation (4) given in theorem 1 is such that the
function

(t,z,€) = f(t,2,8).|2)?
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belongs to CO(IR*, LY (IRY x IR?)) and satisfies

//lex]Rd (t,2,8).Ja|” dudg = // fo(z, &).|x +t&|? dedé YVt eIRT.

Proof : The proof follows that of proposition 1 (we assume that ¢ = 1). It
is based on inequality (16), which replaces inequality (14) :

subeiog | (Thi(t,.,.) = Tha(t, . )) x|l raxre

16
< 800 suprcioqy | (it = halty o DJ2P gy o O

for convenient hi, hs. Once again we use the change of variables (§,&.) —
(&', &) and property (12) to conclude.

3.3 Conservation of kinetic energy

Proposition 3 : Let us assume that the initial data fy satisfies (6) and

o e deds < o

Let us assume also that the cross-section satisfies assumptions (5) and (12).
Then the solution of equation (4) given in theorem 1 is such that the
function

(t,2,€) = f(t,2,€) ¢
belongs to CO(IR*, L' (IR¢ x IR?)) and satisfies

[t dede= [ [ o) dud iR,
(17)

Once again, the proof follows that of proposition 1 (in th following, we
assume that ¢ = 1). Only the fixed-point inequality is a little more difficult
to establish (see lemma 2). The proof is a straightforward consequence of
the following lemmata :

Lemma 2 : Let us consider an initial data fy satisfying (6) and

-//]Rd (1+|§|)da:d§ < 4oo

403



and assume that the cross-section satisfies (5) and (12), and

N //]RdXsN,lB(&w)-KP dédw < o0

Then the solution of equation (4) given in theorem 1 is such that the function

(t,2,€) = f(t,2,€).[¢]
belongs to CO(IR*, L' (IR¢ x IR?)) and satisfies

//md RY F(t,2,€).[¢]* dadg = // fo(z,€).|€* dede VteRT.

Lemma 3 : Let us consider (f§)neN and (B™)new such that for all n € IN,
f§ and B™ satisfy assumptions (5) and (6), and denote f™ the solution of

Of" + &0 f" =C"(f")
[ =0 = [

where C" is the collision kernel associated to B".

If (ff)nen converges to fo in L'(IRY x IRY) and (B™),eN converges to
B in L'(IRY x SN=1), then f™ converges in C’O(IRfBC,Ll(IRd x IRY)) to the
solution f of equation (4) with initial data fy, where C is the collision kernel
associated to B.

Proof of proposition 3 : Let us define (B"),en by setting

B" =B Xj¢l<n

and assume
fo = fo

According to lemma 2,we have

[ L. el = [ [ o) leR dads

According to lemma 3, we can assume that, after extraction of a subsequence
if necessary,

it 2, 6). €12 — ft,x,8) ¢ ae.
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and by Fatou’s lemma

[ Jraxwa [ (2, x,€)~|§!2 dxdg
= ff]Rdx]Rd fo($,€)’§|2 dl‘df

As a consequence, the function
(t,2,) = €7 - C()(t, ,€)
belongs to L®(IRT, L' (IR x IR?)). Indeed
EP.Co (Nt < [EP- [ Sppagw s Ble—esw) (1,2, ) dude - &~

e (2,6 bt
EPCLN(E2.6) < 6P [ fparswor Ble—tow) ['f] dEudo

J fraxgn-1 Ble—gew) (F'IE']P + fLIEN?) déudw - £,

IAIAIAIA

because

€1 < [€ + 161" = €17 + 1L
Using the change of variables (£, &) — (&/,&L), we get

[as] [, c@on-seol s = o

and according to (11), we get (17).

Proof of lemma 2 : Let us consider hi,hy € L>®(]0,0] x R¢ x RY) N
([0, 6], LY (IR? x IRY)) such that

/A@ hilt,z,€). €2 dzdé < oo Vie[0,6] (i=1,2)

We have

|(Thy ~Ths) [P |
<40 ] fapsros BE— Eesw) - (1 — ] + |(ha)l, — ()]
ha = h] + | (ho)s — (h1)a]).J€[? deudo ¥ ¢ € [0,6]

Using the changes of variables

(6,60 = (68 (6,8) — (£.8) (§&)—(&.¢) (18)
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we get successively

ST T Jmaysxsv-1 B(E = &, w) - (Jhy — hi[ + |(h2)i — (h1)L]
+lho — ha| + | (h2)s — (h1)«]) - [€]? dadEd.dw
=5 J [ [ fmeysssv—1 B(E = & w) - ([hy = Bi| + [(ha)i — (ha).]
+lha = ha| + [(h2)« — (h1)]) - (I + |&4]?) dadEdé.dw
= ffff(]destfl B(§ — & w)
(Jha = ha| + [(Ra)« = (h1)s]) - (€7 + |&4]?) dudEd.dw
=2[ [ [ Jigaysxsn-1 B(§ = &ew) - [ha — ha| - (|€]7 + [&[*) dwd€dédw .

But
&7 <216 — &P +2[¢17
therefore
ffff(]Rd)SXstl B(f - f*aw) ) |h2 - h1| : |§*‘2 dxd§d§dw
<2a [ [rayga |h2 — ha| dzd€ +2b [ [gayga [he — hal - &]? dade
and finally

SUD¢el0,0] ff]Rdled | (Thy —Tha).(1 + |f|2) | dzdg
166a - ff]RdX]Rd |ho — hi| dzd€ + 1260 - ffIRdXIRd |ho — h1|.|§|2 dxd§

<
< 80max(2a,3b) - [ [rawga | ho - (L+[€7) —ha - (1 + [€]?) | dadé.

Once again we use the change of variables (£,&,) — (£,€&.) and property
(12) to conclude.

Proof of lemma 3 : According to (11), let us compute directly ||f™ —
fHLOO([O,G],Ll(IRdX]Rd))
SUP¢e(0,6] il fleled |f* = fl dxd§

< S Jrasme |15 = fol dadg
+20 - ||B" — BHLl(]Rdst—l) ) Jraxge folz, &) dzd§

+86 (b +[|B" — B||L1(]Rd><SN1)> -Supefo,0) | Jraxme [/ — f] dzdg,

If" —f”Loo([o,a],Ll(Rded))

< 1 ) n_
_ 1789(b+HanBHL1(]RdXSN—l)) (”fO fOHLl(IRdeRd)

+20[|B" = Bll 1 gaxsn-1) - J Jraxre fo(2;€) d;vdg)
-0
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when n goes to infinity (for 6 small enough). It is not difficult to iterate the
method and prove for all M € IN that

||fn _fHLOO([O,MQLLl(IRdXIRd))

M
< 1 . no_
>~ <189(b+BnB”L1(Rdst1))> (Hf() ‘foHLl(IRdX]Rd)

B = Bllys sy | Jtges fole ) dd
-0

when n goes to infinity.

Remark 2 : Using the same methods as in the proofs of propositions 2 and
3, one can prove (under assumptions of proposition 2) that

//]Rd f(t 2,8).(x.€) dzdé = //le )(z+t€.€) dede Vit e RY,

and then

//]Rd iy F(t,z,8). |z — t&)? dade = // fole.€)Jal? dede Vte R
(19)

4. Decrease of the entropy : the H theorem

In this section, we give some results about the entropy s(f) where s is a real
function defined by setting

s(r) =7logT + é(l —e7)log(l —eT)
Let us define e(f) by setting
e(f) =1 [ Jraxgn-1 B(E —&w)  (f fi—ef)(Amefo)—Ffe(1—cf')(1—2fL))

f f—ef)(1-efs)
Fa e e )d&«dw

-log<

Proposition 4 : Let us assume that assumptions (5), (6), (12) and (15) are
satisfied, as in proposition 2. Then the solution given in theorem 1 satisfies

ffRXmRd |f(t,x,€)log f(t,z,€)| dvd€
< YWy s ga fo(a, €)-([loge| + |2 + [€?) dade ¥t € RY,
(20)
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where C(N) is a nonnegative constant which depends only on N. As a conse-
quence,

s(f) e L®(R*, LY (RY x RY)) . (21)

Moreover
s(f) € CO(RY, LY(RY x RY)) . (22)
e(f) e '(RT x R x RY) (23)

and we have the following assertion :

[ Jrasma s(F)(t,2,€) dzdé + [ [ fraxpa e(f)(s,2,€) dsdwdg (24)
= [ Jriyre $(fo)(x, &) dedé Ve RT

Proof : First, let us prove (20) and (21). The basic tool is the following
classical lemma :

Lemma 4 : Let us consider h € L(IR¢ x IR?) such that

[ [ h@ o)l + 1P deds < 400
R4 xR?
and
0<h(z,6) <1  (2,6) e RExR? ae.
Then hlogh € L'(IR? x IRY) and for all t € R, we have
ffIRdx]Rd ‘h(x7§) 10gh<1‘,§)| d$d§
< O(N)+ [ Jrayme Mz, €)-(Jx — t&]* + [€?) dwdg

Let us notice that in this lemma, ¢ is only a real parameter.
Let us choose t € IR™ and apply lemma 4 with

h(l‘,g) = Ef(t7x7£)

J Iraxma  1(ef)(@,€)log(ef)(x, £)| ddg
< CN) + [ Jraxme(ef) (@, €)-(Jo — t&]* + [¢[) dwd

ff]Rdx]Rd ‘f(t7x7€) log f(t,l‘,f)’ dxdg
< SN p e pa Pt 2,€).(|loge| + o — t€]? + [€]2) dadg .

(20) is a straightforward consequence of (13), (17) and (19).
Now, for all 7 €]0,e71[, we have

Tlogr —7<s(r)<7logt ,
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and therefore
s(7)] < |rlogT|+7T

which, according to (20), proves (21).

Let us prove (23) and (24). First, let us assume that
e (D <cfo(e ) <1-n V(@ eRIxRT  (25)

for some > 0. (10) ensures that for all t+ € IR™, for almost all (z,&) €
R? x R?, we have

ne (e tPHEP D) < o f(tw6) <1—me

bt
| log( )IS|10g77|+(!$—t§|2+|£|2+g)+|10g6| - (26)

f
1—¢f

It is then easy to prove that s(f) is solution of

0us(f) + & - us(f) = C(f) -log(L5)
s(f)e=0 = s(fo)

and we have for all t € IR™, for almost all (z,¢) € RY x IR?

H e G-ne9 as

(27)
According to (26), the function (¢, z,&) — C(f). log(%)(t, x, &) belongs to
Ll(]RfBC x IR? x IRY). Using the changes of variables (18)

()6, €) = s(o)a— t6,)+ [ C(f)-log

(6:6) = (68), (&80 (£,€), (§,&) = (£,8),

we get

J g dzdé [3 C(f) -log(L7) (s, — (s = 1)§,€) ds
= =3Il fonx metys xsn-1B(E = &, W) (' fL(—ep)(1=ef)=f£.(1=c ) (1-e10)

f f(—ef)(1-ef)
. 1Og(ff*(1—si")(1—§fi)> dsdxdéd€.dw

=~ Jids [ fyptges () (s, ,6) dads

J Jrasma sU) (2, 8) dedé + [y ds [ [paygae(f)(s,,€) dadE (28)
= [ Jpaxpe s(fo)(@,€) ded VteRT .
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Now, we go back to the general case and consider the sequence (f™),>2,
where f™ is solution of

O f" + &0 f™ = C(f")
=0 = f&

and where f' is defined by setting

1 (2,€) = fe*'““ﬁm +(1- %)fou,f) ¥ (2,€) € RY xR

According to lemma 3, the sequence (f™),en converges to the solution f of
(4) with initial data fy. For all n € IN, we have

s(f)] < for+ | folog fl < (14 |a|? + |€[)e (=P
+(1 +1og(1+eY)fo € LY(IRY x IRY) .

Lebesgue’s theorem ensures that

Jim [ st deds= [ [ s (a,g) dud

s is a convex function and (z,y) — (z — y)log() is convex on R* xR* :
for all t € IRT, we have

//]Rdmd )(t, 2, &) dede <1£112£//Rdmd s(f)(t, 2, ) dude

0< f(f ds [ Jraxpee(f)(s,z— (t = $)¢,§) dwdf
< liminf,sio0 fo d5 [ [Rasyge €(f™) (8,2 — (t — 8)€,€) dwdE

Finally

[ Jrasma s(f)(t,2,€) dedé+ [T ds [ [raygae(f)(s,z,€) dsdrdg
< [ friwre $(fo)(x, &) dzdé VteRT

Let us notice that e(f) is nonnegative, and that for all + € IR, we have,
according to (20),

Jods [ fraxgae(f)(s,2,€) dudé
< [ frama(s(F)] + [s(fo)]) dude
< W) 49 [ e fol@, €).(|loge| + ]2 + [¢2) dude |

which proves assertion (23). The function (¢, z,§) — C .log(%)(t, z,§)

(f)
belongs therefore to L'(IR* x IR? x IRY) . Assumption (25) is not any more
necessary to get (27) and (28) : this proves assertions (22) and (24).
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Proof of lemma 4 : We have
TlogT < 2¢/7 V71 €0,1]

f f]Rdx]Rd ’h(l‘, ‘5) log h(x, 5)’ d.%'df

= [ Jraxme M@, €) log(%) dxdg

< [ Jochceta—te+ie) 2v'h dwdg

[ Jotosezrie) <y P(2 E) (|2 — t€]* + 1€]?)
< C(N) + [ fgayge Mz, ) (|lz — t&* + |£?) dwdE
with
_ —L(lz—te2+¢?
C(N) = 2//]Rd><]Rd e~ 3 (le—tePHER) gy e

C(N) = 2N+1// e~ (2P HIEP) grde
RIxXR?

Finally, let us mention a result which is useful to get a limit for (f€).<; when
¢ tends to zero (see section 5).

Proposition 5 : Under assumptions of proposition 4, we have, for allt € R™

ff]Rdx]Rd ’f(t,.%',f) log f(t,.’E,f)’ d[Edf
< 2C(N) + [ fragma fo(@,€)-(1 + 2[z[* + 2I¢|* + |log fo(x, €)]) dad§

Proof :

ffIRdx]Rd |f10gf(tax7‘£)| dl’d{
= ffIRdx]Rd flng(t,.’L’,g) dl’d£ - 2fff§1 flOg f(t,$,§) dl’d{
= ff]Rdx]Rd flng(tamvg) de‘d& + 2fff§1 ‘flng(ta:L‘agﬂ dl'dg

Using lemma 4, we get

fffgl |f(t,ﬂ?,f) 10g f(t7$7§)| d$d§
< CWN)+ [ Jraxme f(82,€).(Je = #° + [€]%) dwdg

ff]Rdx]Rd ’f(t,:(},f) log f(t7$7£)’ dl‘dé

< ff]Rdx]Rd f(t,$,§> lng(t,(E,f) dxdg
+20(N) 42 [ [pasga fo(z,&).(|z]* + [¢]*) dwdE
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But identity (24) ensures that

Jfrixme f(t,2,8)log f(t,x,€) dvd§ < [[ra ga(s(f)+ f)(t,x,§) dvd§
< [fraxre(s(fo) + fo)(w,§) dvd§
< [frixri(folog fo + fo)(z, &) dxdg,

and proposition 5 is proved.

5. The classical limit

In this section, we deal with the classsical limit. We prove that we can
find a solution of the renormalized Boltzmann equation through the use
of a sequence (f¢).<1 of solutions of equation (3). Let us assume that the
following assumptions are satisfied (these are the assumptions of R. DiPerna
and P-L. Lions in [DP-L])

foe LYRExRY), fo>0 ae. |, (29)
[ Jola @+ o+ [g) dads <400, (30)
RIxR?
[ [, ot &)log folw, )] dede < +oo (31)
R4xR?
B e Llloc(IRd xRY and B>0 ae. |, (32)
B(&,w) = q(lél, [€w]) (&w) e RTx SN Tae. (33)
J L AC—E)de =o(l+[eP) when [l too . (34
«|<1
where ¢ is a function defined on IRT x IR* and A4 € Llloc(IRd) verifies
V¢ e RY A(g):/N Blew)dw (35)
GN—
Now, let us define (f§)s<1 and (B).<1 by setting
f5 =min(fo,e™") (36)
B*=B. X|£|<€71 . (37)
f¢ is the unique solution (see theorem 1) in LOO(IRIJE)C’ LY(RY x IRY)) of
Of+&-0.f=C (f) (38)
fli=o = fo
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with

Ce(f) = B (§ — &, w) - (f fl(i—ef)(1—efu)—F fu(l—ef)(1—efl))dEsdw .
RIxSN-1

According to propositions 1-4, we have )
fee CO(RY, LY(R? x RY))
0< ff<elae |
JIrasme F2(6 2, €)1+ |2 + [€]?) dwdg (40)

< [ Jraxwa Jo(z, €).(1+2z|* + (2t + 1)|¢]?) ddE

I Jraxma |5 (t 2, €) log f(t, 2, )| dud
< 20(N) + [ Jrayga fo(x,€).(1+2|z|* + 2/¢]* + |log fo(x,£)]) dﬂ:df( |
41
[ Jrasme 85 (f5)(t, 2,€) dedé + [ ds [ fpayge € (F5)(s,2, &) dvdg
= ff]Rdx]Rd ss(fo)(x,f) dxd§
where
sT(f°) = flog f*+e '(1—ef)log(l —ef?) |
e (f%) =1 [ Jraxsv-1 B(E— & w)
(e f (e f) (A—ef2)—fofe(1—ef<) (1 f2"))

S (—efe)(1—eft
-log( Ie ff(l(—eji’))((l—:ff/g ) ddw

Theorem 2 : Under assumptions (29)-(39), there exists a sequence (€y,)neN,
with lim, o €, = 0 such that

for—f in LY(RJ xR x RY)—weak

where f is a function of CO(IR*, L'(IR¢ x IRY)), solution in the renormalized
sense of the Boltzmann equation

Of +&- 0.0 =Q(f, f)
fli=o = fo (42)

such that, for all t € R

[ Jragma f(t 2, €).(L+ |2 + [£]%) dadg
< [ Jrayma fo(z,€).(1 4 2|z + (262 4+ 1)[¢]?) dadé
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ffIRdled f(ta x7§) log f(ta x?ﬁ) dzd§ + f(;: ds ff]Rdx]Rd E(f)(s7w7§) dzdg
< J Jraxma fo(z,€)log fo(x, §) dudS
(43)
where
f'f
[«

B =5 [ [ o BE— o) f= FL) log(F) deude

According to the definition of R. DiPerna and P-L. Lions, we say that f
solves (42) in the renormalized sense if and only if

Qx(f, f)
1i+7f € Ll J(R* xR? x RY) |

and [S(f) verifies, in the sense of the distributions, the equation

(1) + - 0u5(5) = AL

with
B(t) = log(1 +1)

Here

QN = [ | BE & T e

Q1) = [, | BE— €SS desds

and of course

Q(fvf):Q-l-(f?f)_Q—(f?f)

According to (40) and (41), it is clear that (f¢).<1 is weakly relatively com-
pact in LI(IRﬁ)C x IR? x IR?) : there exists a function f € CO(IR*, L}(IRY x

IRY)) and a sequence (e, )nen tending to zero, such that

for—=f in LY(RE L x RY x IRY)—weak

We will not reproduce the arguments given in [DP,L 1]. We shall only give
the most important modifications that are necessary to adapt their proof.
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1%* modification : One has to prove that 0;f° + & - 0, f¢ is bounded in
Ll(IRfr x IR% x IRY). In the proof of DiPerna and Lions, a crucial ingredient
is the following identity :

4
Qx(f, f) SK-Q;(f,f)+@-E(f) VK >1

Let us define C%(f¢) by setting

L= [ [ e Sw) L (L= ) (L= ) dedes

C U= [ [ BE— G L (L = ef (1 = ef2) deude

Then we have the inequality

Ci(f) < K-CL(f) + e(ff) VE>1 . (44)

Indeed, for a given ¢ in [0, +o00[

CL(f) < K- [ Joe B*(§ = &, w)(ff2(1 — e(f)) (1 — &(f9)5)) dEsdw
+ [ Jiaeye BE(E = &, ) () (f9)u(1 —efF)(1 — f)) déudw

where

O ={ (2,9 e R"xRT| (f)(f)(L—ef)(1—cfi)(t,2

§)
> K- fefi(—e(f9)) (A —e(f))

(t,2,8) } .
On (Q°)¢, we have
((f) (f)ed—ef)A—ef))(t, 2, ) K (ff:(1—e(f*) ) A—e(f*))) (2, §),
L (f)'(f)ed —ef)A —ff)
log & g(fsf*( E(fa)’)(l—f(fg);)> =t

ff(ga (€ = &, w) (o) (F9),(Amefo) (Amef)— f2 f2 (1—e(f2) ) 1—e(f9)L)) dEsdw
< e J Ji0e)e B (€ = €, ) (5 (F9)L(1=2 ) (1—e f2)— £ F5 (1=e(f5) ) (1-2(°).)
() (f)L(—ef*)(1—ef) ) . dew

log| Feri=zn =),
S 10g4 K es(f )
because e°(f) is nonnegative almost everywhere. We can exchange C% (f*)

and C%(f¢), and the same arguments lead to the other case : equation (44)
is proved.
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274 modification : We must prove that

1
1+ f°

(Q(f, f5) — C°(f°)) = 0 weakly in Ll(IRﬁ)C x R? x RY) |

or, equivalently, that

1
1+ /¢

(Q-(f%, %) = C=(f)) = 0 weakly in L' (IR} . x R x RY)
Proving that

// B (=&, w) (f)u(f) déudw — 0 weakly in L' (IRj  xIR?xIR?)
SN—1 R4

//S BF(£—&4,w) ()£ (f°) déwdw — 0 weakly in Ll(lRl*OCledeRd)

Nl]Rd

is enough, but this is clear since

/ /szv—lmd B (€ = &u, ) (f%)x désdw

is bounded in LOO(IRK) o X R? x IRY) and since f¢ is contained in a weakly
relatively compact set of Ll(IRfBC x IR? x IR?) :

e (f). =0 in L' (R xR xR

3" modification : Let us prove inequality (43). According to (24)

ff]Rdx]Rd(fE(t’xag) log fa(t,ll,‘,f) - fa(ta $,£)) dl‘dg
+ Jo ds [ s € (f°)(s, 2,€) ddg
< [ Jrtma s°(F) (¢, 2, €) dadé + [§ds [ fpa,ge e (f°)(s,2,8) dwdé
= | Jraxra 5°(fo)(@,§) dwd < [ [rayga f5(@, §)log f§(x, &) dwds.

The function 7 — 7log T is convex :

liminf, o [ [raygma(fE(t, 2,&)log fo(t, 2, &) — fo(t, 2, &)) duedg
> ff]Rdx]Rd(f(t?x7§) IOg f(t7$7£) - f(t,x,f)) dxdf y

and Lebesgue’ s theorem of dominated convergence ensures that

limeo [ Jragge f6(x, &) log f§(x, &) duedg
= [ Jraxma Jo(z,§)log fo(z, &) duds .
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Let us prove that

liminf.o [y ds [ [raspe € (f5)(s,2,€) dudE

> [lds [ oo B(F) (s, €) dode Vi€ 0,400 )

BEE = & w)(fFf (A —ef) (L —eff) = ffE(1—ef)(1 —ef)
) S (A—ef) (1€ f5)
lOg(fsff(l_Elfs/)(l_laff];)) ) o
—eff 1—¢ f _efel 1—¢ f/
= BE(S - 5*7 W)(gslgi/ 1_2}{5 1—6hi - gegi 1_?});/ ?hi/)
er er1—ef® 1_5fi:
9" 9% T—che T—cht
log(——— o)
9~ 9= 1—eh®’/ 1—5hi’

where
B¢ =B*.(1—¢eh®)(1 —¢ehS)(1 —eh®)(1 —ehf)
h® = min(f*,1)
9 = 171sh6

It is obvious that
g — f in Ll(]RrOC x IR? x RY)—weak

1—epfer 1 —enfon

- + dond —— =1 a.e.
1 — e, hen HLOO(]RIOCX]R xR*) 1 — g, hen

Therefore, for all § > 0, we have, as in [DP,L 1] :

prgmgin  l—enft'l-enfit . Bff
1+ 0 Jpagon dé1 —ephey’ 1 —ehS " 148 Jga f dE

in LRy > (RT)? x S7 1) —weak
Benggnlggn*/ L—enfml—enfim _ Bf/fi
1406 [ragsn dé1 —ephfn 1 —ephi™ 146 [ga fdE
in Ll(IRf:)C x (RH)? x SN~1)—weak

The function (z,y) — (x — y)log(}) is convex on R™ xRT:

liminfy, o0 fo ds [ [paypga € (f) (s, 2, €) dxdE

e (fom) (s,2,€) drdg

> liminf, 4 fé ds ff]Rdled 146 [ g g5n dé
R

> Jlds ffRdXﬂdW dede
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which proves assertion (45).

6. Equilibrium states

In this section, we give some indications about stationary states and
equilibrium states of the modified Boltzmann equation :

Wf+&-0uf =C(f)
We look only for solutions satisfying the following L°°-bounds :
0< f<elae |,

which are natural in view of assertion (10). We shall say that a solution is
stationary if it does not depend on t. More generally, we define equilibrium
solutions as solutions such that their entropy is constant :

dt// )(t,x, &) ded =0 |

or equivalently, such that the corresponding term of decrease of entropy is
equal to zero :

// )(s,2,6) dwedé =0 VseR"

Equilibrium solutions appear naturally in the long time asymptotic problem
associated to the modified Boltzmann equation (see [De,Do], and also remark
3).

Of course, if we do not assume that the position x remains in a bounded
set, the only long time asymptotic solution is zero. Indeed, let us consider a
solution f. For a given Ry €]0, 00|, we have, according to proposition 2

[ femedede < [ ) deds

//x—t§|>Rf(t’$’§) dxd§

//|<R f(t,z,6) dede < s_1|SN_1|2-RéV(R+RO)N-t‘N
x 0

b [ [ el e)IeP dedg
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for all R > 0, and therefore
ft,z,&) =0 (2,6) e RYx RYa.e. whent — +oo

To avoid some technicalities to deal with the boundary conditions, we shall
assume in the following that f is periodic in z (see [A]) : f is defined on
R x (IR?/ZN) x IRY. This is a natural assumption if we look at the Cauchy
problem for the modified Boltzmann equation with an initial data fo such
that

fo,§) = folw+7,8) VrezN, (2,60, ]V xR ae.
0< folm,&) <t (2,8 €[0,1]V x R ae.

Indeed, looking at the proof of theorem 1, we can see that there exists a
unique solution f, which is also periodic in x, such that

0< flt,x, &) <e ! VrezN, (2,6 €0,V xR%ae.

and it is not difficult to prove that the results of sections 3 and 4 can be
adapted to this case.
Let us assume that

B>0 ae onlR?x gVN-1

and try to exhibit the equilibrium solutions. It is not difficult to see that

[ ] S € 5,2:8) dade =0

implies for almost all (t,z, &, &,,w) € RT x [0,1]Y x R x IRY x §V—1

frA—ef)1—ef) =ff(1—ef)(1—efl)

with standard notations, because for all stricly positive real numbers z, y

(z — y)log(*) = 0
Yy
if and only if 2 = y. Difficulties arise when f = e~!, and we are not able to
deal with the general case. We will give the expressions of the solutions for
two cases
first case : f is an equilibrium solution such that 1 —ef > 0 a.e.
second case : f is stationary and continuous.
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Let us notice that the limit - when the time goes to infinity - of a uniformly
continuous solution is a continuous equilibrium solution (see remark 3).

1%t case : Let us assume that 1 —f > 0 a.e. and define m by setting

I
1—¢f

We have

! /
mm, = mm,

which ensures (see [T,M]) that m is a maxwellian. Therefore (see [De]) the
solution f (and also m) solves the free transport equation

Of+E&-0.f=0
and
_ m(t,z,§) d ., md
f(t,l',g)—m VtGIR+ (IE,&)GIR, x IR® a.e.

The case of x belonging to an open set with specified boundary conditions can
be treated in a similar way (see [De] for a detailed study of the maxwellian
solutions of the free transport equation).

274 case : Let us assume that f does not depend on t and belongs to
C0([0, 1]V x IR?). Then one of the following assertions is satisfied

(i) 1—ef(x,&)>0 V(2,6 €[0,1]Y x RY
(i) f(z,&) =e ' V(2,6 €[0,1]V x R?

If (i) is satisfied, the results of the first case apply : m = % is a maxwellian

solution of the free transport equation. Conversly, let us asssume that
I(x0,€) € [0,1)Y x R?  such that f(xzp,&) =&
If there exists (z,€) € [0,1]Y x IR? such that
fla,&) <&t (H)
then

(a1, &) € [0,1]Y x R such that  f(x1,&1) €]0,7']
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because f is continuous. But f~1(]0,e7![) is an open set :
JR>0 V(z,¢) € B(z1,R) x B(&, R)  f(x,&) €]0,e71]
The equation for f isnow &-9,f =0 :
fl+16,8) = f(@,&) VIR V(2,9 €[0,1]" xR
We can therefore find 7 € [0,1]" and &, € B(&1, R) such that
f@&=e" and f(z.&) €067

Using the continuity of & — f(Z,£), it is clear that there exists p > 0 such
that

Vé* € B(E?/)) f(Taé*) 6]07671[
Let w € SN~ With the notations

£ =¢
¢ ={-((-&Jww
§>/k :€*+(£*§*)'ww

we have, for x =7 :
fRA—ef)1—efl) =0
and if & € B(&,, p) and &, € B(&,, p), then

f@e)=e" |
which proves that for all ¢ € B(€, p)
f@g)=¢"

Finally, f(z,.)"1({e71}) is a non empty open set :
f@.) He 'y =R
(H) is not possible, which proves assertion (ii).

Remark 3 : First, let us notice that the solution of the modified Boltzmann
equation is continuous if the initial data is continuous. Indeed, looking at
the proof of theorem 1, one can see that the sequence (fy)nen defined by
setting

=1 (¥YnelN)
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converges uniformly for all M € IN on every compact set of [M6, (M +1)6] x
[0,1]Y x R? to f : f is continuous.

Now, if f is a uniformly continuous solution, let us consider the family
(f7)r>0 defined for all 7 > 0 by setting

frt,z,6) = ft+7,2,6 YteRT ¥V (z,¢) €[0,1]Y x R?

(f7)r>o0is obviously equicontinuous and bounded : according to Ascoli’ s
theorem, there exists a sequence (7,,)nen going to infinity and a continuous
function g such that f™ converges uniformly to g on every compact set of
R* x [0,1]Y x IR%, and g is an equilibrium solution.

Indeed, for all (t,z,£) € R x [0,1]Y x R?

My oo [ I (1L —ef™)(1 —efi") = g'g:"(1 —eg)(1 — £g.)
iy, o0 ffI1 (1 —ef™) (1 —efi"') = gg«(1 — eg')(1 — egs”)
which ensures that

0 =limpio0 [°°ds [ fig v xme e(f)(s,2,€) dudé
= [0 ds [ fgavma () (s, 2, &) dadE
= OJFOO ds ff[o,1]N><]Rd e(g)(s,z,§) dud§
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