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Abstract: 

The Proton Exchange Membrane (PEM) fuel cell is an electrochemical device and its performance 

depends on the design and operating parameters. In this paper, optimization of various operating and design 

parameters on interdigitated flow channel with64cm
2
active area of the PEM fuel cell was considered. The 

modeling of Three Dimensional (3-D) PEM fuel cell, Analysis and optimization by Taguchi method was done 

by Creo Parametric 2.0, CFD Fluent 14.5and Minitab 17 software respectively. Based on the optimization study, 

the R: C- 1:2hasproduced 0.169 W/cm
2
 of power density on PEM fuel cell performance and square of response 

factor (R
2
) was achieved by Taguchi method as 99.93%.  

KeyWords: Interdigitated Flow Channel,CFD,Taguchi Method,Optimization,Design and Operating 

Parameters& PEM Fuel Cell. 

1. Introduction: 
The chemical energy of fuels (hydrogen and oxygen) is directlyconverting into electricity in Fuel cells 

without any intermediate stageslike classical combustion in the two and four stroke engine exhausting. The 

Proton Exchange Membrane (PEM) fuel cell is an environmentally friendly power source also it is suitable for 

powering both portable devices and mobile application due to their high energy density and lower operating 

temperature range [1]. The internal combustion engine can be replaced by PEMFC for transportation due to its 

high energy efficient, quick startup, quiet and clean. Since a PEMFC simultaneously involves electrochemical 

reactions, current distribution, water balance and heat transfer. The electrochemical reaction produces electricity 

along with byproducts of water and heat. Various flow channel designs have been used to obtain high current 

and peak power density, proper temperature distribution, and optimum water management. The influence of the 

flow channel path length on the PEMFC flow field design was addressed by Sukkee Um et al [2] and Shimpalee 

et al. [3]. The water management of PEM fuel cell has become an important task, because more water 

accumulation causes “flooding” or less water causes dryness of membrane can adversely affect the performance 

and lifetime of PEM fuel cells.  Sukkee Um [4] revealed in his study that the water transport in PEMFC was 

discussed to show various water transport regimes, such as anode side water loss, cathode side flooding and the 

equilibrium condition of water at the channel outlets. Hence, the effects of the flow channel, membrane 

thickness, and inlet gas humidity are important to enhance the performance of PEM fuel cell. Identifying the 

proper flow channel and the flow field design is also of importance as they also affect the performance of the 

fuel cell significantly [5].  

The effects of interdigitated flow channel with traditional flow channel, the effects of the flow area 

ratio and the baffle-blocked position of the interdigitated flow field on the performance of PEMFC were 

examined experimentally by Yan et al [6]. The results concluded that, the cell performance can be enhanced 

with an increased inlet flow rate of reactant and cathode humidification temperature. The interdigitated flow 

fields have better performance than conventional flow field design. Also the results showed that the 

interdigitated flow field has larger limiting current density, and the power output was about 1.4 times than the 

conventional flow field. The performance enhancement of the combined effect of design and operating 

parameters of serpentine and interdigitated flow channel with 25 cm
2
 active area of PEM fuel cell with four 

different parameters using optimization technique and CFD carried out by Lakshminarayanan and Karthikeyan 

[7]. The results revealed that the peak power density of interdigitated flow channel with landing to channel 

width (L:C) 1:2 showed better than the serpentine flow channel with L: C-1:2. Kanani et al. [8] investigated the 

effects of operating conditions on serpentine flow channel for the performance of the PEM fuel cell by using 

Design of Experiments. Response surface methodology was used to model the relationship between cell 

potential and power with various operating input parameters. The results revealed that the low and high 

stoichiometry of reactant on anode and cathode cause the minimum cell power. Whereas the optimum ranges of 

stoichiometry of fuel and oxidants on anode and cathode leads to the best performance. The maximum power 

density corresponding to Taguchi calculations were in good agreement with analysis software results indicating 

the compatibility of Taguchi method for PEMFC applications said by Sheng-Ju Wu et al [9]. The various 

literature reviews revealed the operating and design parameters are greatly affected the performance of PEM 

fuel cell. Hence the immediate attention is required foroptimizing the simultaneous influence of operating and 
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design parameters for the performance of the PEM fuel cell. In this paper has a detailed study about the 

optimization of operating parameters like operating pressure, temperature, stoichiometric ratio of inlet reactant 

mass flow rate and design parameters like various rib to channel width (R:C)-1:1,1:2,2:1&2:2 on interdigitated 

flow channel  of 64 cm
2
 active area of PEM fuel cell are to be studied and influence their performance are 

compared.  

2. Model Development: 

Three dimensional (3-D) PEM fuel cell model with interdigitated flow channel of various rib to 

channel width of 64 cm
2
 active area configurations were created by Creo Parametric 2.0 as shown in Fig.1.  

 
Figure 1: VariousR: Cof (a)1:1 (b)1:2 (c)2:1 and (d)2:2 with interdigitated flow channel of 64 cm

2
 active area of 

PEM fuel cell 

The modeling was done by creating all individual parts of the PEM fuel cell and the dimensions of individual 

parts such as the anode and cathode GDL, solid polymer electrolyte membrane, the anode and cathode catalyst 

layers as given below. The dimensions of fuel cell as mentioned below. 

 Anode & Cathode Flow field - 8cm x8cm x 1cm 

 Anode & Cathode catalyst - 8cm x8cm x 0.008 cm 

 GDL anode & cathode - 8cm x8cm x 0.0127cm 

 Membrane - 8cm x8cm x 0.03 cm 

The Anode & Cathode Flow field has been assigned as solid zone type remaining parts has assigned as fluid 

type. After geometry modeling, the next step was discretization of PEM fuel cell done by ANSYS 14.5 ICEM 

software. The various geometrical models (R: C-1:1, 1:2, 2:1 and 2:2) of interdigitated flow channel were 

meshed by using ICEM 14.5 (a module of Ansys 14.5). The Cartesian grid meshing method was used, which is 

used in the formation of hexahedral mesh to attain accurate results. Split block method used for blocking. Body 

fitted mesh was used and projection factor was set to 1. The projection factor determines how closely the edges 

of the mesh match up with the grid.  

2.1 Numerical Modeling: The simulation of PEM fuel cell was solved by simultaneous equations like 

conservation of mass, momentum, energy, species concentration, butler–Volmer equation, Joule heating 

reaction and the Nernst equation to obtain reaction kinetics. The model used to consider the system as 3-D, 

steady state and inlet gases as ideal condition, system as an isothermal and flow as laminar, fluid as 

incompressible, thermo physical properties as constant and the porous GDL, two catalyst layers and the 

membrane as an isotropic. A commercial solver (FLUENT software) based on control volume approach used to 

solve the various governing equations. Three-dimensional, double precision and serial processing were used for 

this model. The species concentration on anode side of H2, O2, and H2O were 0.8, 0, and 0.2 respectively. 

Similar way, on the cathode side was 0, 0.2 and 0.1 respectively. The porosity at anode and cathode side was 

0.5. Open circuit voltage was set at 0.95 V on the cathode and the anode was grounded. The cathode voltage has 

been varied from 0.05 V to 0.95 V used for solving kinetics reaction in order to get the current flux density, H2, 

O2, and H2O fractions along with the flow field design. Multigrid settings were modified as F-Cycle for all the 

equations and entered termination restriction value was set as 0.001 for H2, O2, H2O and water saturation. The 

electric and proton potential values were set at 0.0001. The Anode and Cathode reference current density was 

set to be 10000 A/cm
2
 and 20 A/cm

2
 respectively 0.1 kmol/m

3
 was set to anode and cathode reference 
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concentration, Anode and cathode exchange coefficient was set to be 2. The Reference diffusivity of H2, O2 and 

H2O was set to as 3E-5. Stabilization method BCGSTAB was selected for H2, O2, H2O, water saturation, electric 

and proton potential. Optimization by Taguchi method was used to find out the most optimum combination 

among the input parameters which would result in getting the maximum possible output which cause the 

performance enhancement of PEM fuel cell. The standard orthogonal array of L16 with 4-level and 4-factors 

was used and the parameters were considered as low, high and medium range values. When L16 orthogonal 

array was used, significance of factors and optimum combination can be found in 16 runs itself. The theoretical 

value of hydrogen in the anode side was 4.33E-07 kg/s and oxygen in the cathode side was 3.33E-06 kg/s. The 

factors considered for the analysis were rib to channel width ratios on interdigitated flow field design (R: C-1:1, 

1:2, 2:1 and 2:2), operating pressure (1, 1.5, 2 and 2.5 bar), temperature (313, 323, 333 and 343 K), anode and 

cathode reactants as stoichiometric ratios (S/F) of 3, 3.5, 4 and 4.5.  

3. Results and Discussion: 
As per L16 orthogonal array, the optimized inputs were given to the Ansys CFD Fluent analysis 

software and considered all other parameters was constant. The power densities for all 16 runs, obtained from 

analysis software and the corresponding Signal/Noise (S/N) ratios were found from MINITAB 17 software 

itself as shown in the Table 1. The R: C - 1:1 of interdigitated flow field has shown maximum power densities 

of 0.169 W/cm
2
 and minimum power densities of 0.111 W/cm

2
respectively. Similarly the R: C- 1:2 and 2:1 

having maximum power density of 0.162 W/cm
2
 and 0.126 W/cm

2 
respectively. The minimum power densities 

for the same R: C ratios have 0.126 W/cm
2
 and 0.101 W/cm

2
 respectively. For the rib to channel width ratio of 

2:2 has shown maximum power density of 0.157 W/cm
2
 and power density of 0.129 W/cm

2
. The power output 

of PEM fuel cell must be maximized hence optimization was performed for “Larger the Better” type of Taguchi 

method. The S/N ratio plot for the same were obtained using Minitab 17 software and the corresponding 

maximum S/N ratio gives better performance as analyzed based on larger the better as shown in the Fig.2. 

Table 1: Factors, levels, power density and S/N ratio for 16 runs of optimization 

Run R:C Pressure Temperature Stoi. Ratio Power Density (W/cm
2
) S/N Ratio 

1 

1x1 

1 323 3 0.111434 -19.0596 

2 1.5 333 3.5 0.127461 -17.8924 

3 2 343 4 0.143895 -16.8391 

4 2.5 353 4.5 0.169293 -15.4272 

5 

1x2 

1 333 4 0.138699 -17.1585 

6 1.5 323 4.5 0.126788 -17.9385 

7 2 353 3 0.158838 -15.9809 

8 2.5 343 3.5 0.162842 -15.7647 

9 

2x1 

1 343 4.5 0.111884 -19.0246 

10 1.5 353 4 0.126812 -17.9368 

11 2 323 3.5 0.101586 -19.8633 

12 2.5 333 3 0.110231 -19.1539 

13 

2x2 

1 353 3.5 0.157823 -16.0366 

14 1.5 343 3 0.154425 -16.2257 

15 2 333 4.5 0.142812 -16.9047 

16 2.5 323 4 0.129129 -17.7795 

Average S/N Ratio -17.437 

 
Figure 2: Mean S/N ratio plot for R: C (W1-W4), Pressure (X1-X4), Temperature (Y1-Y4), Stoi.Ratio (Z1-Z4) 
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It was revealed from the Fig.3 that the design parameter likeR:Cof interdigitated flow channel having -

1:2 as W2, and the operating parameters such like pressure - 2.5 bar mentioned as X4, temperature - 343 K 

noted as Y4, Stoichiometric ratio of inlet mass flow rate - 4.5 as Z4 were the optimum parameters to show the 

better performance of PEM fuel cell. Delta value of each factor available on the Minitab 17 software itself has 

been shown in Table 2. The optimization results of various parameters were based on S/N ratios and the 

significance of each factor by ranking them according to their performance. The factor with highest delta value 

indicates higher significance factor. It was found that operating temperature was the predominant factor 

affecting the performance of PEM fuel cell followed by rib to channel width (R:C) of interdigitated flow 

channel, operating pressure and stoichiometric ratio of inlet mass flow rate respectively. The percentage 

contribution of individual parameters on overall performance of the PEM fuel cell, P-test and F-test on the 

interdigitated flow fields has been shown in the Table 3. 

Table 2: Delta and Rank for each level of factors 

Factors Level 1 Level 2 Level 3 Level 4 Delta Rank 

Rib to Channel width (R:C) -17.3 -16.71 -18.99 -16.74 2.28 2 

Pressure (bar) -17.82 -17.5 -17.4 -17.03 0.79 3 

Temperature (K) -18.66 -17.78 -16.96 -16.35 2.31 1 

Stoi. Ratio -17.61 -17.39 -17.43 -17.32 0.28 4 

It was observed from the Table 3, rib to channel width ratio has been contributed to be 87.68 % , operating 

temperature was 9.88 %, the stoichiometric ratio of the reactants and R:C has contributed 0.43 % and 0.36 % 

respectively of the PEM fuel cell overall performance. Also the combined effect of combination of temperature 

with pressure and pressure with R:C has shown 1.23 % and 0.15 % respectively contributing to peak power 

performance of the PEM fuel cell.   

Table 3: The individual parameters percentage contribution ofinterdigitated flow channel 

Factors DOF 
Sum of 

Squares 
Variance F-Test P-Test Contribution (%) 

Pressure 2 0.000251 0.00012550 147.41 0.301 9.88 

Temperature 2 0.00001 0.00000500 162.72 0.236 0.36 

Stoichiometric ratio 2 0.000012 0.00000600 26.19 0.643 0.43 

R:C 3 0.003329 0.00110967 398.11 0.003 87.68 

Pressure &  

Temperature 
1 0.000016 0.00001600 45.88 0.021 1.23 

Pressure & R:C 3 0.000007 0.00000233 13.96 0.068 0.15 

Error 2 0.000001 0.00000050   0.28 

Total 15 0.006958 0.001265 794.27 1.272 100 

4. Conclusion: 

Based on optimizing study of four different parameters, design parameter like R:C-1:2 ,operating 

parameters like operating pressure of 2.5 bar, temperature as 353 and stoichiometric ratio of inlet reactant gases 

as 4.5 exhibited 0.169 W/cm
2
 of maximum power density on interdigitated flow channel with 64 cm

2
 active area 

of PEM fuel cell and R
2
 value was arrived 99.93  %. The rib to channel width ratio has been contributed 87.68 

% of overall performance of the PEM fuel cell. The combined effect of all the parameters exhibited a different 

response compared to their individual effects. The effect of operating and design parameters was affecting the 

performance of PEM fuel cell significantly. 
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