

Optical follow-up of galaxy cluster candidates ULL detected by Planck satellite in the PSZ catalogues

10.4m GTC

2.5m INT

3.5m TNG

Group members: J.A. Rubiño-Martín R. Barrena A. Streblyanska A. Ferragamo

Alejandro Aguado 13th July 2017 – Aix en Provence Inverse Compton scattering

ν' > ν High energy e- initially e- loses energy

SUNYAEV-ZEL'DOVICH (SZ) EFFECT AND CLUSTER IDENTIFICATION WITH PLANCK

CMB Photons

Hot gas / electrons

Blue shifted CMB photons

- Distortion of the CMB through inverse Compton scattering by high energy electrons
- Spectrum is shifted
- Drop at low frequencies and increase at higher ones

PLANCK SZ CLUSTER CATALOGUES

PSZ1

Planck 2013 results. XXVIII Planck 2013 results. XXXII

Sample	PSZ1 2013	PSZ1 2015	PSZ2	Common	New PSZ2
Union	1227	1227	1653	937	716
	546	546	827	502	325
Confirmed Candidates Low reliability	861	947	1203	820	383
	366	292	546	99	447
	142	131	143	39	104
Total X-ray	501	501	603	477	126
MCXC	455	455	551	427	124
SZ clusters	82	82	110	79	31

Planck 2015 results. XXVII

Total = 1943 Confirmed = 1330Unknown = 748

Approximately 450 accesible from the La Palma Observatory with $\delta > -20^{\circ}$

WHY AN OPTICAL FOLLOW-UP?

• Cluster counts are very usefull to constraint cosmological parameters $(\Omega_m, \sigma_8, ...)$

$$\frac{dN}{dzdq} = \int d\Omega_{\text{mask}} \int dM_{500} \frac{dN}{dzdM_{500}d\Omega} P[q|\bar{q}_{\text{m}}(M_{500}, z, l, b)]$$

• Cosmology is very sensitive to the survey selection function

• Need for mass scaling law
$$(M_{500} - M_{SZ})$$
, understanding possible biases

$$M_{500}^{HE} = (1 - b)M_{500}^{true}$$
$$(1 - b) = 0.8$$

MOTIVATION FOR OUR OPTICAL FOLLOW-UP

- The SZ-observable (Y) does not depend on redshift
- Does the mass bias depend on z and/or mass?
- Systematic aproach to obtain a complete selection function
- Understand the tension in cosmological parameters derived from the CMB and cluster counts, mostly in σ_8

MOTIVATION FOR OUR OPTICAL FOLLOW-UP

- The SZ-observable (Y) does not depend on redshift
- Does the mass bias depend on z and/or mass?
- Systematic aproach to obtain a complete selection function
- Understand the tension in cosmological parameters derived from the CMB and cluster counts, mostly in σ_8

AIM OF OUR OPTICAL FOLLOW-UP

- Validate unknown candidates
- Obtain dynamical masses
- Use these confirmed candidates to improve uncertainty in mass scaling law. $M_{Dyn} = B \cdot M_{SZ}$
- Do cosmology with the same clusters used for the scaling law

OBSERVATIONAL PROGRAMMES

PSZ1

- ITP (13B-15A)
 - Imaging
 - ✓ 2.5m INT
 - ✓ 4.2m WHT
 - Spectroscopy
 - ✓ 3.5m TNG
 - ✓ 4.2m WHT
 - ✓ 10.4m GTC

PSZ2

- LT (15B-17A)
 - Imaging
 - ✓ 2.5m INT
 - Spectroscopy
 - ✓ 3.5m TNG
 - ✓ 10.4m GTC

OBSERVATIONAL PROGRAMMES

		TELESCOPE-	DIAMETER	501/	t _{ern /}	LIM					
			INSTRUMENT	(m)	FUV	band	g-band	r-band	i-band		
		פואפ	WHT- ACAM	4.2	8′ x 8′	~900 s	24.6	23.7	23.2		
		IMA	INT-WFC	2.5	34' x 34'	~1500 s	24.5	22.7	22.0		
PSZ1						t _{exp}	RESOLUTION	S/N	MAGNITUD r-band	PSZ2	
ITP (13B-15A)	SPECTROSCOPY	AOS	TNG- DOLORES	3.5	8′ x 8′	~4000 s	600	~5	~21	(15B-17A)	
		CTROSC		GTC- OSIRIS	10.4	7.5' x 3'	~3500 s	300	~5	~23	
		LS	WHT- ACAM	4.2	8′ x 8′	~3500 s	450	~5	~20		

OBSERVATIONAL PROGRAMMES

SUMMARY

PSZ1										
Telescope	Mode	Instrument	# Nights	# Clusters			Redshift range			
INT	Imaging	WFC	21	86	`		04	-		
	IIIIagiiig		~15	118		204		-		
		ACAIVI	~9	37	0-	_		<i>z</i> < 0.3		
СТС	LS		68 hours	50	100		87		107	$0.1 \le z \le 0.85$
GIC	MOG	USIRIS	37 hours	27			191	$0.4 \le z \le 0.9$		
TNG	IVIUS	DOLORES	26	73				$0.1 \le z < 0.4$		
PSZ2										
Telescope	Mode	Instrument	# Nights	# Clusters		Redshift range				
INT	Imaging	WFC	20 (+2)	174 (+ 14)		74 (+ 14)		-		
TNG		DOLORES	7 (+2)	16 (+	9)			$0.1 \le z < 0.4$		
GTC	MOS	OSIRIS	67 (+2) hours	54 (+	2)		~81	$0.4 \le z \le 0.9$		

More than 9000 spectra

IMAGING

g-, r-, i-band images in order to make RGB images and color-magnitude diagrams

Substructures

Double detections

IMAGING

g-, r-, i-band images in order to make RGB images and color-magnitude diagrams

Fossil systems

High-z clusters

IMAGING

g-, r-, i-band images in order to make RGB images and color-magnitude diagrams

Non-detections

Dust contamination

IMAGING

g-, r-, i-band images in order to make RGB images and color-magnitude diagrams

Estimation of photo-z from CMDs

 $\begin{aligned} z_{\text{phot}} &\approx 0.361(g'-r') - 0.278, & \text{if } (r'-i') \lesssim 0.75\\ z_{\text{phot}} &\approx 0.364(r'-i') + 0.182, & \text{if } (r'-i') \gtrsim 0.75 \end{aligned}$

Planck intermediate results. XXXVI

 $z_{phot} < 0.4 \rightarrow DOLORES/TNG$ $z_{phot} > 0.4 \rightarrow OSIRIS/GTC$

MOS SPECTROSCOPY

• Identification of posible members in the RGB images

- Identification of posible members in the RGB images
- Ask for preimaging

- Identification of posible members in the RGB images
- Ask for preimaging
- Design one mask per cluster based on the preimage, RGBs and CMDs

- Identification of posible members in the RGB images
- Ask for preimaging
- Design one mask per cluster based on the preimage, RGBs and CMDs
- Obtain the spectra

- Identification of posible members in the RGB images
- Ask for preimaging
- Design one mask per cluster based on the preimage, RGBs and CMDs
- Obtain the spectra
- Reduce the spectra

- Identification of posible members in the RGB images
- Ask for preimaging
- Design one mask per cluster based on the preimage, RGBs and CMDs
- Obtain the spectra
- Reduce the spectra
- Adquire radial velocity and therefore the redshift
 - Using cross-correlation (*xcsao* in IRAF) with Kennicutt (1992) templates

MEMBER SELECTION

- Galaxies are selected as members of a cluster if they lay within ±2500 km/s in rest frame from the mean velocity
- Then we check one by one for special cases such as low mass clusters, substructures, posible interlopers...

- We make use of 3 estimators (standard deviation, biweight & gapper) for the calculation of the velocity dispersion
- Currently studying with simulations which one is the most precise and accurate
- We are also implementing various corrections

- We make use of 3 estimators (standard deviation, biweight & gapper) for the calculation of the velocity dispersion
- Currently studying with simulations which one is the most precise and accurate
- We are also implementing various corrections

FOR FURTHER DETAILS SEE A.FERRAGAMO'S POSTER

- We make use of 3 estimators (standard deviation, biweight & gapper) for the calculation of the velocity dispersion
- Currently studying with simulations which one is the most precise and accurate
- We are also implementing various corrections

FOR FURTHER DETAILS SEE A.FERRAGAMO'S POSTER DYNAMICAL MASS ESTIMATION

• We use the relation $\sigma_{1D} - M_{200}$ by Munari et al. 2013 \Box Hydrodynamical simulation accounting for AGN feedback & star formation

$$M_{200} = \left[\frac{\sigma_{200}}{A \times h(z)}\right]^{1/\alpha} 10^{15} M_{\odot}$$

 $A = 1177 \pm 4.2$ $\alpha = 0.364 \pm 0.0021$

PSZ1 PRELIMINARY RESULTS

• Scaling relation:

 $\langle M_{500}^{dyn} \rangle = \beta \langle M_{500}^{true} \rangle$

 $\left\langle M_{500}^{SZ} \right\rangle = (1 - b) \left\langle M_{500}^{true} \right\rangle$

$$- B = \frac{\beta}{1 - b} = \frac{\langle M_{500}^{dyn} \rangle}{\langle M_{500}^{SZ} \rangle}$$

Our spectroscopic sample consists of 107 clusters but we only use 35 for this preliminary analysis with the following characteristics:

- More than 8 members
- $\sigma \geq 500 \, km/s$
- $SNR \ge 5$ in *Planck* catalogues

$B = 1.00 \pm 0.15$

PSZ1 PRELIMINARY RESULTS

• Scaling relation:

ACT data (21 clusters) Sifon et al. (2016)

 $\frac{(1-b_{\rm SZ})}{\beta_{\rm dyn}} = 1.10 \pm 0.13.$

Our spectroscopic sample consists of 107 clusters but we only use 35 for this preliminary analysis with the following characteristics:

+ Cosmo

- More than 8 members
- $\sigma \geq 500 \, km/s$
- $SNR \ge 5$ in *Planck* catalogues

$B = 1.00 \pm 0.15$

SUMMARY

- We have observed around 400 candidates for both PSZ1 and PSZ2 catalogues
- We have officially confirmed more than 150 new clusters from PSZ1
- PSZ2 catalogue follow-up still ongoing work

> The observational programme will be finished by August 2017

• We have performed a preliminary analysis with PSZ1 data obtaining a bias value of:

$B = 1.00 \pm 0.15$

COMING SOON...

- Calculate the B-value and implement the corrections on the velocity dispersion and mass estimations for PSZ2 data
- Estimate Ω_m and σ_8 using this B-value

