The First Zagreb Index, Vertex-Connectivity, Minimum Degree And Independent Number in Graphs

Zhongzhu Liu, Yizhi Chen and Siyan Li
(Department of Mathematics, Huizhou University, Huizhou, Guangdong, 516007, China)

E-mail: zhongzhuliu@126.com, yizhichen1980@126.com, lsy@hzu.edu.cn

Abstract

Let G be a simple, undirected and connected graph. Defined by $M_{1}(G)$ and $R M T I(G)$ the first Zagreb index and the reciprocal Schultz molecular topological index of G, respectively. In this paper, we determined the graphs with maximal M_{1} among all graphs having prescribed vertex-connectivity and minimum degree, vertex-connectivity and bipartition, vertex-connectivity and vertex-independent number, respectively. As applications, all maximal elements with respect to $R M T I$ are also determined among the above mentioned graph families, respectively.

Key Words: Zagreb index, reciprocal molecular topological index, vertex connectivity, bipartite graph, independent number.

AMS(2010): 05C12.

§1. Introduction

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The degree of a vertex v is the number of edges incident to v and denoted by $d(v)$. One of the most important topological indices is the well-known Zagreb indices introduced in [8, 10], the first and second Zagreb indices M_{1} and M_{2} of G, respectively, are defined as follows:

$$
M_{1}(G)=\sum_{v \in V(G)} d(v)^{2}, M_{2}(G)=\sum_{u v \in E(G)} d(u) d(v) .
$$

They reflect the extent of branching of the underlying molecular structure [8, 10, 20]. Their main properties were recently summarized in $[1,4,6,7,9,11,12,13,15,16,23,24,25,26]$.

Let G be a connected graph with n vertices. The distance matrix $\mathbf{D}=\left(D_{i j}\right)_{n \times n}$ of G is an $n \times n$ matrix such that $D_{i j}$ is the distance between vertices i and j in G [18]. The reciprocal distance matrix \mathbf{R}, also called the Harary matrix (see [14, 18]), is defined as an $n \times n$ matrix $R=\left(R_{i j}\right)$ such that $R_{i j}=\frac{1}{D_{i j}}$ if $i \neq j$ and 0 otherwise. Let $R_{i}=\sum_{j=1}^{n} R_{i j}$. Then the

[^0]reciprocal molecular topological index $R M T I$ [20] of G is defined as
$$
R M T I(G)=\sum_{i=1}^{n} R_{i}^{2}+\sum_{i=1}^{n} d_{i} R_{i}
$$

Some formulations of reciprocal and constant-interval reciprocal Schultz-type topological indices, included RMTI, have been discussed in [20], and they were illustrated by the QSPR, which studied on physical constants of alkanes and cycloalkanes.

Recently, Zhou and Trinajstić [27] reported some properties of the reciprocal molecular topological index RMTI. They also derived the upper bounds for RMTI in terms of the number of vertices and the number of edges for various classes of graphs under some restricted conditions.

In this paper, we determined, respectively, the graphs with maximal value of M_{1} among all graphs having prescribed graph invariants, such as, vertex-connectivity and minimum degree, vertex-connectivity and vertex-independent number. As applications, all maximum elements with respect to $\operatorname{RMTI}(G)$ are also determined among the above mentioned graph families, respectively.

§2. Preliminaries

Denoted by $\delta(G)$ the minimum degree of G, and by $\operatorname{Diam}(G)$ the diameter of a graph G, i.e., the maximum cardinality among all distance of any one pair of vertices in G. Let K_{n} be the complete graph with n vertices. Suppose that G_{1} and G_{2} are graphs with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$. Denoted by $G_{1} \cup G_{2}$ the new graph with vertex set $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The join of G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is the new graph with vertex set $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\{x y \mid x \in$ $V\left(G_{1}\right)$ and $\left.y \in V\left(G_{2}\right)\right\}$.

For $S, S^{\prime} \subseteq V(G)$, the induced subgraph of S, denoted by $G[S]$, is the graph whose vertex set is S and edge set is composed of those edges with both ends in S. The induced subgraph of S and S^{\prime}, denoted by $G\left[S, S^{\prime}\right]$, is the graph whose vertex set is $S_{1} \cup S_{2}$ and edge set is composed of those edges with one end in S and another end in S^{\prime}.

The bipartite graph is the graph whose vertices can be divided into two disjoint sets U and V, such that every edge connects a vertex in U to one in V. Vertex sets U and V usually called the parts of the graph. A vertex cut of a connected graph G is a set of vertices whose removal renders G disconnected. The vertex-connectivity $\kappa(G)$ is the size of a minimal vertex cut. An independent set of G is a set of vertices in a graph G, no two of which are adjacent. A maximum independent set is an independent set of largest possible size for a given graph G. This size is called the independence number of G , and denoted by $\alpha(G)$.

For other notations and terminology not defined here, see [5].
By the definition of the first Zagreb index, the lemma follows immediately.

Lemma 2.1 Let G be a simple graph with $u, v \in V(G)$ and $u v \notin E(G)$. Then

$$
M_{1}(G+u v)>M_{1}(G)
$$

Lemma $2.2([27])$ Let G be a connected simple graph with n vertices and m edges. Then

$$
R M T I(G) \leq \frac{3}{2} M_{1}(G)+(n-1) m
$$

with equality holds if and if $\operatorname{Diam}(G) \leq 2$.

§3. Graphs with Given Connectivity and Minimum Degree

Let n, k and δ be integers such that $n \geq \delta \geq k \geq 1$. Denoted by $\mathcal{G}(n, k, \delta)$ the set of n-vertex connected graphs with vertex-connectivity k and minimum degree δ, where $1 \leq k \leq \delta$ and $2 \leq \delta \leq n$.

Theorem 3.1 If $G \in \mathcal{G}(n, k, \delta)$ with $k \leq \delta \leq n-1$. Then

$$
M_{1}(G) \leq n(n-1)^{2}+(n-k)(k+\delta-2 n+3)(k+\delta+1)
$$

with equality holds if and only if $G=K_{k} \vee\left(K_{\delta-k+1} \bigcup K_{n-\delta-1}\right)$.
Proof If $n=k+1$, then $k=\delta=n-1$, i.e., $\mathcal{G}(n, k, \delta)=\left\{K_{k+1}\right\}$. Suppose that $n \geq k+2$. Let $G_{\max }$ be graph in $\mathcal{G}(n, k, \delta)$ with maximal M_{1} - value in $\mathcal{G}(n, k, \delta)$, that is, $M_{1}(G) \leq M_{1}\left(G_{\max }\right)$ for all $G \in \mathcal{G}(n, k, \delta)$. Denoted by $S \subset V\left(G_{\max }\right)$ the vertex cut and $|S|=k$. We will prove the three claims as follows.

Claim 1. $G_{\max }-S$ contain exactly two components.
Proof of Claim 1: Suppose by contrary that $G_{\max }-S$ contain at least three components. Denoted two components of $G_{\max }-S$ by C_{1} and C_{2}. There exist vertices $u \in V\left(C_{1}\right), v \in V\left(C_{2}\right)$ such that $G_{\max }+u v \in \mathcal{G}(n, k, \delta)$. By Lemma 2.1, $M_{1}\left(G_{\max }+u v\right)>M_{1}\left(G_{\max }\right)$, which contradicts the choice of $G_{\max }$. This completes the proof of Claim 1.

Therefore, we assume that $G_{\max }-S$ contain exactly two connected components, denoted by C_{1} and C_{2}. Denoted by $\left|V\left(C_{1}\right)\right|=n_{1},\left|V\left(C_{2}\right)\right|=n_{2}$. Since $\delta \leq d(u) \leq n_{1}-1+k$ and $\delta \leq d(v) \leq n_{2}-1+k$ for $u \in V\left(C_{1}\right), v \in V\left(C_{2}\right)$, we have $n_{1}, n_{2} \geq \delta-k+1$.

Claim 2. $G_{\max }\left[S \cup V\left(C_{1}\right)\right]$ and $G_{\max }\left[S \cup V\left(C_{2}\right)\right]$ are cliques.
Proof of Claim 2: Without loss of generality, suppose by contrary that $G_{\max }\left[S \bigcup V\left(C_{1}\right)\right]$ is not a clique. There are two cases as follows:

Case 1. There exists nonadjacent vertices $u, v \in S \bigcup V\left(C_{1}\right)$ such that $G_{\max }+u v \in \mathcal{G}(n, k, \delta)$, then by Lemma 2.1, $M_{1}\left(G_{\max }+u v\right)>M_{1}\left(G_{\max }\right)$, which contradicts the choice of $G_{\max }$.

Case 2. Otherwise, adding a new edge to $G_{\max }$ will increase the minimum degree of G. From Eqn.(1) in the proof of Claim 3, we have

$$
M_{1}\left(G_{\max }\right)<M_{1}\left(K_{s} \vee\left(K_{n_{1}} \bigcup K_{n_{2}}\right)\right) \leq M_{1}\left(K_{k} \vee\left(K_{\delta-k+1} \bigcup K_{n-\delta-1}\right)\right)
$$

which contradicts the choice of $G_{\max }$ since $K_{k} \vee\left(K_{\delta-k+1} \bigcup K_{n-\delta-1}\right) \in \mathcal{G}(n, k, \delta)$.
This complete the proof of Claim 2.
From Claim 2, we suppose that $G_{\max }=K_{k} \vee\left(K_{n_{1}} \bigcup K_{n_{2}}\right)$, where $n_{1}, n_{2} \geq 1$ and $n_{1}+n_{2}=$ $n-k$.

Claim 3. $n_{1}=\delta-k+1$ or $n_{2}=\delta-k+1$.
Proof of Claim 3: Consider the graph $K_{k} \vee\left(K_{n_{1}} \cup K_{n_{2}}\right)$. Suppose by contrary that $n_{1} \geq$ $n_{2}>\delta-k+1$, by direct calculation, we have

$$
\begin{align*}
& M_{1}\left(K_{k} \vee\left(K_{n_{1}+1} \bigcup K_{n_{2}-1}\right)\right)>M_{1}\left(K_{k} \vee\left(K_{n_{1}} \bigcup K_{n_{2}}\right)\right) \tag{1}\\
& =k(n-1)^{2}+n_{1}\left(k+n_{1}-1\right)^{2}+\left(n-k-n_{1}\right)\left(n-n_{1}-1\right)^{2},
\end{align*}
$$

which implies that $M_{1}\left(K_{k} \vee\left(K_{\delta-k+1} \bigcup K_{n-\delta-1}\right)\right)>M_{1}\left(K_{k} \vee\left(K_{n_{1}} \cup K_{n_{2}}\right)\right)$ if $n_{1}, n_{2}>\min \{\delta-$ $k+1, n-\delta-1\}$. This complete the proof of Claim 3.

By combine above claims, we have $G_{\max }=K_{k} \vee\left(K_{\delta-k+1} \bigcup K_{n-\delta-1}\right)$. Then the result holds.

Corollary 3.1 Let $G \in \mathcal{G}(n, k, \delta)$ with m edges and $k \leq \delta \leq n-1$. Then

$$
R M T I(G) \leq \frac{3}{2} n(n-1)^{2}+\frac{3}{2} n(n-k)(k+\delta-2 n+3)(k+\delta+1)+(n-1) m
$$

with equality if and only if $k=n-1$ and $G=K_{k+1}$.

§4. Bipartite Graphs with Given Connectivity

Let $\mathcal{B}(n, k)$ be the set of bipartite graphs with n vertices and $\kappa(G)=k$, and $B_{n, x}$ the graph obtained from $K_{x, n-x-1}$ by adding a new vertex v to k vertices of degree x of $K_{x, n-x-1}$.

Theorem 4.1 Let $G \in \mathcal{B}(n, k)$ with $1 \leq k \leq n-1$. Then

$$
M_{1}(G) \leq \max \{f(a), f(b)\}
$$

with equality if and only if $G \in\left\{B_{n, a}, B_{n, b}\right\}$, where

$$
\begin{aligned}
f(x) & =n x(n-x)-x(2 n+2 k+1)+k(k-1), \\
a & =\left\lfloor\left.\frac{(n-1)^{2}-2(k+1)}{2 n} \right\rvert\,\right. \text { and } \\
b & =\left\lceil\frac{(n-1)^{2}-2(k+1)}{2 n}\right\rceil .
\end{aligned}
$$

Proof If $k=1$, then $\mathcal{B}(n, k)=\left\{K_{1, n-1}\right\}$. Suppose that $1<k \leq \frac{n}{2}$, let $G_{\text {max }}$ be the graph with the maximal M_{1} - value in $\mathcal{B}(n, k)$, and S a k-vertex cut of $G_{\text {max }}$. Let A, B be vertex parts of $V\left(G_{\max }\right)$ such that $A \cup B=V\left(G_{\max }\right)$. Denoted by $S_{A}=S \cap A, S_{B}=S \cap B$. We will
prove the four claims as follows.
Claim 1. $G_{\max }[S]$ and $G_{\max }[C \cup S]$ are complete bipartite graphs, where C is one of components in $G_{\max }-S$.

Proof of Claim 1: Suppose by contrary that $G_{\max }[S]$ or $G_{\max }[C \cup S]$ is not a complete bipartite graph. There exist vertices $u, v \in V\left(G_{\max }\right)$ and $u v \notin E\left(G_{\max }\right)$ such that $G_{\max }+u v \in$ $\mathcal{B}(n, k)$. By Lemma 2.1, we have $M_{1}\left(G_{\max }+u v\right)>M_{1}\left(G_{\max }\right)$, which contradicts the choice of $G_{\max }$. This complete the proof of Claim 1.

Claim 2. If $S_{A} \neq \emptyset$ and $S_{B} \neq \emptyset$, then $G_{\max }-S$ have exactly two components.
Proof of Claim 2: Suppose by contrary that $G_{\max }-S$ contain at least three components. Let C_{1} and C_{2} be two components of $G_{\max }-S$. Then there exist vertices $u \in V\left(C_{1}\right) \cap A$, $v \in V\left(C_{2}\right) \cap B$ such that $G_{\max }+u v \in \mathcal{B}(n, k)$ and S is also a k-vertex cut of $G_{\max }+u v$. By Lemma 2.1, $M_{1}\left(G_{\max }+u v\right)>M_{1}\left(G_{\max }\right)$, which contradicts the choice of $G_{\max }$. Thus Claim 2 holds.

Claim 3. $\quad S_{A}=\emptyset$ or $S_{B}=\emptyset$.
Proof of Claim 3: Suppose by contrary that $S_{A} \neq \emptyset$ and $S_{B} \neq \emptyset$. From Claim 2, $G_{\max }-S$ contain exactly two components, denoted by C_{1}, C_{2}. Let $u \in V\left(C_{1}\right) \cap A$ and $v \in V\left(C_{2}\right) \cap A$. Without loss of generality, we assume that $a=d(u) \geq d(v)=b>0$ and $\left|N_{C_{2}}(v)\right|=c>0$. Taking transformations on $G_{\max }$ as follows.
(1) Let $G_{1}=G_{\max }-\left\{w v: w \in N_{C_{2}}(v)\right\}+\left\{w u: w \in N_{C_{2}}(v)\right\}$. Then

$$
M_{1}\left(G_{1}\right)-M_{1}\left(G_{\max }\right)=(b+c)^{2}+(a-c)^{2}-\left(b^{2}+a^{2}\right)=2 c(b-a+c)>0
$$

(2) Consider the graph G_{1}. Using the definitions from $G_{\max }$. Let $\left|S_{B}\right|=s$, and choose arbitrary vertices $v_{1}, v_{2}, \cdots, v_{k-s} \in B-S$. Let G_{2} be the graph obtained from G_{1} by adding more edges between $A-\{v\}$ and B as possible, and then adding edges $v_{1} v, v_{2} v, \cdots, v_{k-s} v$. It is obviously that $N_{G_{2}}(v)$ is the vertex cut of G_{2} and $\left|N_{G_{2}}(v)\right|=k$, i.e., $G_{2} \in \mathcal{B}(n, k)$. From 1) of Claim 3 and Lemma 2.1, we have

$$
M_{1}\left(G_{2}\right)>M_{1}\left(G_{\max }\right)
$$

which contradicts the choice of $G_{\max }$. Thus Claim 3 holds.
From Claim 3, without loss of generality, let $S \subset A$ be the k-vertex cut of $G_{\max }$.
Claim 4. $G_{\max }-S$ contains a isolated vertex.
Proof of Claim 4: From Claim 1, suppose by contrary that the components of $G_{\max }-S$, denoted by C_{1}, C_{2}, are complete bipartite graphs. Let $V\left(C_{1}\right)=A_{1} \cup B_{1}$ and $V\left(C_{2}\right)=A_{2} \cup B_{2}$, where A_{i}, B_{i} are vertex parts of C_{i}, i.e., $A_{i} \subset A, B_{i} \subset B, i=1,2$.

Without loss of generality, suppose that $S \subset A$. Let $u \in B_{1}$. Let G^{*} be the graph obtained from $G_{\max }$ by deleting the edges connecting u and vertices in A_{1}, and adding more edges between $A-S$ and $B-\{u\}$ as possible, i.e., $G^{*}=G_{\max }-\left\{x u: x \in A_{1}\right\}+\{x y: x \in A-S, y \in$
$\left.B-\{u\}, x y \notin E\left(G_{\max }\right)\right\}$. Then S is also a k-vertex cut of G_{2}, and $G_{2} \in \mathcal{B}(n, k)$. Similar to Claim 3(1), we have

$$
M_{1}\left(G^{*}\right)-M_{1}\left(G_{\max }\right)>0
$$

which contradicts the choice of $G_{\max }$. Thus $G_{\max }=B_{n, x}$.
By calculation, we have

$$
f(x)=M_{1}\left(B_{n, x}\right)=n x(n-x)-x(2 n+2 k+1)+k(k-1)
$$

and $x=\frac{(n-1)^{2}-2(k+1)}{2 n}$, and can obtains its maximal value by differentiating $f(x)$ on x. Since $k \leq \frac{(n-1)^{2}-2(k+1)}{2 n} \leq n-2$, let

$$
a=\left\lfloor\frac{(n-1)^{2}-2(k+1)}{2 n}\right\rfloor \text { and } b=\left\lceil\frac{(n-1)^{2}-2(k+1)}{2 n}\right\rceil .
$$

Then by Claim 4, we have $G_{\max } \in\left\{B_{n, a}, B_{n, b}\right\}$. This completes the proof.

Corollary 4.1 Let $G \in \mathcal{B}(n, k)$ with m edges and $1 \leq k \leq n-1$. Then

$$
R M T I(G) \leq \frac{3}{2} T+(n-1) m
$$

where

$$
\begin{aligned}
T & =\max \{f(a), f(b)\}, \quad f(x)=n x(n-x)-x(2 n+2 k+1)+k(k-1) \\
a & =\left\lfloor\frac{(n-1)^{2}-2(k+1)}{2 n}\right] \text { and } \\
b & =\left\lceil\frac{(n-1)^{2}-2(k+1)}{2 n}\right\rceil
\end{aligned}
$$

§5. Graphs with Given Connectivity and Independent Number

Let $\mathcal{D}(n, k, r)$ be the set of n-vertex graphs with $\kappa(G)=k$ and $\alpha(G)=r$.

Theorem 5.1 Let $G \in \mathcal{D}(n, k, r)$ with $r \geq 1$ and $1 \leq k \leq n-1$. Then

$$
M_{1}(G) \leq(r-1)(n-r)^{2}+(n-r)(n-2)^{2}+k^{2}+k(2 n-3)
$$

with equalities hold if and only if $G=K_{k} \vee\left(K_{1} \cup\left(K_{n-k-r} \vee(r-1) K_{1}\right)\right)$.
Proof If $r=2$, then $M_{1}(G) \leq M_{1}\left(K_{k} \vee\left(K_{1} \cup K_{n-k-1}\right)\right)$ from [11]. We assume that $2 \leq r \leq n-1$, let $G_{\max }$ be the graph with the maximal $M_{1}-$ value in $\mathcal{D}(n, k, r)$. Denoted by S the k-vertex cut of $G_{\max }$, and by D the maximum independent set of $G_{\max }$. We will prove three claims as follows.

Claim 1. $\quad G_{\max }[C]=K_{a} \vee(c-a) K_{1}, G_{\max }[S]=K_{b} \vee(k-b) K_{1}$ and $G_{\max }[S \cup V(C)]=$ $K_{a+b} \cup(k+c-a-b) K_{1}$, where C is one of components of $G_{\max }-S,|V(C)|=c,|V(C)-D|=a$ and $|S-D|=b$.

Proof of Claim 1: By Lemma 2.1 and the definition of $G_{\max }$, it clear that $G_{\max }=G_{\max }[S] \vee$ $G_{\max }[V(G)-S]$. Now suppose by contrary that $G_{\max }[C] \neq K_{a} \vee(c-a) K_{1}$. There exist $u, v \in V(C)-D$ and $w \in V(C) \cap D$, such that $u v \notin E\left(G_{\max }\right)$ or $u w \notin E\left(G_{\max }\right)$. It is clear that $G_{\max }+u v, G_{\max }+u w \in \mathcal{D}(n, k, r)$. By Lemma 2.1, we have $M_{1}\left(G_{\max }+u v\right)>M_{1}\left(G_{\max }\right)$ or $M_{1}\left(G_{\max }+u w\right)>M_{1}\left(G_{\max }\right)$, which contradicts the choice of $G_{\max }$. Similarly to S, we have $G_{\max }[S]=K_{b} \vee(k-b) K_{1}$. Thus Claim 1 holds.

Claim 2. $G_{\max }-S$ contain exactly two components.
Proof of Claim 2: Suppose by contrary that $G_{\max }-S$ contain at least three components. Let C_{1} and C_{2} be two of components, and $u \in V\left(C_{1}\right)-D, v \in V\left(C_{2}\right)-D$. Then $G_{\max }+u v \in$ $\mathcal{D}(n, k, r)$. By Lemma 2.1, $M_{1}\left(G_{\max }+u v\right)>M_{1}\left(G_{\max }\right)$, which contradicts the choice of $G_{\max }$. Thus Claim 2 holds.

By Claim 2, $G_{\max }-S=C_{1} \cup C_{2}$, where C_{1} and C_{2} are components of $G_{\max }-S$.
Claim 3. If $V\left(C_{1}\right) \geq V\left(C_{2}\right)$, then $\left|V\left(C_{2}\right)\right|=1$.
Proof of Claim 3: Suppose by contrary that $\left|V\left(C_{2}\right)\right| \geq 2$. If $V\left(C_{2}\right)-D=\emptyset$, then $\left|V\left(C_{2}\right)\right|=$ 1 since C_{2} is a connected components. Suppose that $V\left(C_{2}\right)-D \neq \emptyset$, then $V\left(C_{2}\right) \cap D \neq$ \emptyset. Otherwise, $V\left(C_{2}\right) \bigcap D=\emptyset$, choose $u \in V\left(C_{2}\right)$, and $D \bigcup\{u\}$ is a independent set, which contradicts the definition of D.

Using the definitions from $G_{\max }$ and constructing a new graph G^{*} as follows. Let $v \in$ $V\left(C_{2}\right) \cap D$. Then

$$
G^{*}=G_{\max }-\left\{x v: x \in V\left(C_{2}\right)-D\right\}+\left\{x y: x \in V\left(C_{2}\right)-\{v\}, y \in V\left(C_{1}\right)\right\}
$$

it is clear that S and D are also minimal vertex cut and maximal independent set of G^{*}, respectively. Thus $G^{*} \in \mathcal{D}(n, k, r)$.

Let $u \in V\left(G_{\max }\right)-S-\{v\}$ and $w \in V\left(C_{1}\right)-D$. Then $d_{G^{*}}(u)>d_{G_{\max }}(u)$ and

$$
M_{1}\left(G^{*}\right)-M_{1}\left(G_{\max }\right)>d_{G^{*}}(w)^{2}+d_{G^{*}}(v)^{2}-d_{G_{\max }}(w)^{2}-d_{G_{\max }}(v)^{2}>0
$$

which contradicts the choice of $G_{\max }$. Thus Claim 3 holds.
By combine above claims, we have

$$
G_{\max } \in\left\{G^{\prime}: G^{\prime}=\left(K_{n-r} \vee(r-1) K_{1}\right) \cup\{v\} \cup\left\{u_{i} v: u_{i} \in S, i=1,2, \cdots, k\right\}\right.
$$

where v is a isolated vertex of $G_{\max }-S$. Let $|S \cap D|=a$. Then

$$
\begin{aligned}
M_{1}\left(G^{\prime}\right)= & a(n-r+1)^{2}+(r-a-1)(n-r)^{2}+(k-a)(n-1)^{3} \\
& +(n-r-k+a)(n-2)^{2}+k^{2} \\
= & (r-1)(n-r)^{2}+(n-r)(n-2)^{2}+k^{2}+k(2 n-3)-a(2 r-4)
\end{aligned}
$$

and the point $a=0$ attains the maximal value of $M_{1}(G)$. Therefore, $M_{1}\left(G_{\max }\right)=(r-1)(n-$ $r)^{2}+(n-r)(n-2)^{2}+k^{2}+k(2 n-3)$ and $G_{\max }=K_{k} \vee\left(K_{1} \cup\left(K_{n-k-1} \vee(r-1) K_{1}\right)\right)$. This complete the proof.

Corollary 5.1 Let $G \in \mathcal{D}(n, k, r)$ with m edges, $r \geq 1$ and $1 \leq k \leq n-1$. Then

$$
R M T I(G) \leq \frac{3}{2}\left[(r-1)(n-r)^{2}+(n-r)(n-2)^{2}+k^{2}+k(2 n-3)\right]+(n-1) m
$$

Acknowledgement

This work was supported by NSF of Guangdong Province of China (2015A030313574,2014A030310119, 2014B020004027), the Outstanding Young Teacher Training Program in Guangdong Universities (YQ2015155), the National Social Science Fund in China (15BTJ024) and the Scientific research innovation team Project of Huizhou University (HZUXl201523)

References

[1] B. B. Anin, On the extremal Zagreb indices of trees with given number of segments or given number of branching vertices, MATCH Commun. Math. Comput. Chem., 74 (2015) 57-79.
[2] B. B. Anin, T. A.Lampert, On the maximum and minimum Zagreb indices of trees with a given number of vertices of maximum degree, MATCH Commun. Math. Comput. Chem., 74 (2015) 81-96.
[3] A. Behtoei, M. Jannesari, B.Taeri, Maximum Zagreb index, minimum hyper-Wiener index and graph connectivity, Applied Mathematics Letters, 22 (2009) 1571-1576.
[4] M.Bianchi, A.Cornaro, J.L.Palacios, A.Torriero,New bounds of degree-based topological indices for some classes of c -cyclic graphs, Discr. Appl. Math. , 194 (2015) 62-75.
[5] J. A. Bondy, U. S. Murty, Graph theory with applications, Macmillan, London and Elsevier, New York, 1976.
[6] S. Chen, W. Liu, Tricyclic graphs with minimum modified Schultz index and maximum Zagreb indices, Ars Comb., 122 (2015) 379-397.
[7] H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem., 57 (2007) 597-616.
[8] I. Gutman, N. Trinajstic,Graph theory and molecular orbitals. Total-electron energy of alternant hydrocarbons, Chem Phys. Lett. , 17 (1972) 535-538.
[9] I.Gutman, M.K.Jamil,N.Akhter, Graphs with fixed number of pendent vertices and minimal first Zagreb index, Trans. Comb., 4 (2015) 43-48.
[10] I. Gutman, B.Ruscic, N. Trinajstiic, C.F.Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 62 (1975), 3399-3405.
[11] H. Hua, Zagreb M_{1} index, independence number and connectivity in graphs, MATCH Commun. Math. Comput. Chem., 60 (2008) 45-56.
[12] S. M. Hosamani, B. Basavanagoud, New upper bounds for the first Zagreb index, MATCH

Commun. Math. Comput. Chem., 74 (2015) 97-101.
[13] P. Hansen, D. Vukičevic, Comparing Zagreb indices, Croat. Chem. Acta, 80 (2007), 165168.
[14] O. Ivanciuc, T. S. Balaban, A. T. Balaban, Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem., 12 (1993) 309-318.
[15] S. Li, M. Zhang, Sharp upper bounds for Zagreb indices of bipartite graphs with a given diameter, Applied Math. Lett., 24 (2011)131-137.
[16] S. Li, H. Zhou, On the maximum and minimum Zagreb indices of graphs with connectivity at most k, Applied Math. Lett., 23 (2010) 128-132.
[17] H. Lu, Y. Lin, Maximum spectral radius of graphs with given connectivity, minimum degree and independence number, J. Discr. Algorithms, 31 (2015) 113-119.
[18] Z. Mihalić, D. Veljan, D. Amić, S. Nikolić, D. Plavšić, N. Trinajstić, The distance matrix in chemistry, J. Math. Chem., 11 (1992) 223-258.
[9] S. Nikolic, G. Kovačevic, A. Milicevic, N. Trinajstic, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003) 113-124.
[20] H. P. Schultz, T. P. Schultz, Topological organic chemistry. 11. Graph theory and reciprocal Schultz-type molecular topological indices of alkanes and cycloalkanes, J. Chem. Inf. Comput. Sci., 38 (1998) 853-857.
[21] D. Vukičevic, Comparing variable Zagreb indices, MATCH Commun. Math. Comput. Chem., 57 (2007) 633-641.
[22] D. Vukičevic, A. Graovac, Comparing Zagreb M_{1} and M_{2} indices for acyclic molecules, MATCH Commun. Math. Comput. Chem., 57 (2007) 587-590.
[23] J. F. Wang, F. Belardo, A lower bound for the first Zagreb index and its application, MATCH Commun. Math. Comput. Chem., 74 (2015) 35-56.
[24] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem., 52 (2004) 113-118.
[25] B. Zhou, Upper bounds for the Zagreb indices and the spectral radius of series-parallel graphs, Int. J. Quantum Chem., 107 (2007) 875-878 .
[26] B. Zhou, D. Stevanović, A note on Zagreb indices, MATCH Commun. Math. Comput. Chem. ,56 (2006) 571-578.
[27] B. Zhou, N. Trinajstić, On reciprocal molecular topological index, J. Math. Chem., 44 (2008) 235-243.
[28] B. Zhou, N. Trinajstić, Some properties of the reformulated Zagreb index, J. Math. Chem., 48 (2010) 714-719.

[^0]: ${ }^{1}$ Received October 12, 2016, Accepted May 14, 2017.

