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Abstract: Let G be a simple, undirected and connected graph. Defined by M1(G) and

RMTI(G) the first Zagreb index and the reciprocal Schultz molecular topological index of

G, respectively. In this paper, we determined the graphs with maximal M1 among all graphs

having prescribed vertex-connectivity and minimum degree, vertex-connectivity and biparti-

tion, vertex-connectivity and vertex-independent number, respectively. As applications, all

maximal elements with respect to RMTI are also determined among the above mentioned

graph families, respectively.
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§1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). The degree of a vertex v is

the number of edges incident to v and denoted by d(v). One of the most important topological

indices is the well-known Zagreb indices introduced in [8, 10], the first and second Zagreb indices

M1 and M2 of G, respectively, are defined as follows:

M1(G) =
∑

v∈V (G)

d(v)2,M2(G) =
∑

uv∈E(G)

d(u)d(v).

They reflect the extent of branching of the underlying molecular structure [8, 10, 20]. Their

main properties were recently summarized in [1, 4, 6, 7, 9, 11, 12, 13, 15, 16, 23, 24, 25, 26].

Let G be a connected graph with n vertices. The distance matrix D = (Dij)n×n
of G is

an n×n matrix such that Dij is the distance between vertices i and j in G [18]. The reciprocal

distance matrix R, also called the Harary matrix (see [14, 18]), is defined as an n× n matrix

R = (Rij) such that Rij = 1
Dij

if i 6= j and 0 otherwise. Let Ri =
∑n

j=1 Rij . Then the
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reciprocal molecular topological index RMTI [20] of G is defined as

RMTI(G) =

n∑

i=1

R2
i +

n∑

i=1

diRi.

Some formulations of reciprocal and constant-interval reciprocal Schultz-type topological

indices, included RMTI, have been discussed in [20], and they were illustrated by the QSPR,

which studied on physical constants of alkanes and cycloalkanes.

Recently, Zhou and Trinajstić [27] reported some properties of the reciprocal molecular

topological index RMTI. They also derived the upper bounds for RMTI in terms of the number

of vertices and the number of edges for various classes of graphs under some restricted conditions.

In this paper, we determined, respectively, the graphs with maximal value of M1 among all

graphs having prescribed graph invariants, such as, vertex-connectivity and minimum degree,

vertex-connectivity and vertex-independent number. As applications, all maximum elements

with respect to RMTI(G) are also determined among the above mentioned graph families,

respectively.

§2. Preliminaries

Denoted by δ(G) the minimum degree of G, and by Diam(G) the diameter of a graph G, i.e.,

the maximum cardinality among all distance of any one pair of vertices in G. Let Kn be the

complete graph with n vertices. Suppose that G1 and G2 are graphs with V (G1)∩ V (G2) = ∅.
Denoted by G1 ∪G2 the new graph with vertex set V (G1 ∪G2) = V (G1)∪ V (G2) and edge set

E(G1∪G2) = E(G1)∪E(G2). The join of G1 and G2, denoted by G1∨G2, is the new graph with

vertex set V (G1 ∪G2) = V (G1)∪ V (G2) and edge set E(G1 ∪G2) = E(G1)∪E(G2)∪ {xy|x ∈
V (G1) and y ∈ V (G2)}.

For S, S′ ⊆ V (G), the induced subgraph of S, denoted by G[S], is the graph whose vertex

set is S and edge set is composed of those edges with both ends in S. The induced subgraph of

S and S′, denoted by G[S, S′], is the graph whose vertex set is S1∪S2 and edge set is composed

of those edges with one end in S and another end in S′.

The bipartite graph is the graph whose vertices can be divided into two disjoint sets U

and V , such that every edge connects a vertex in U to one in V . Vertex sets U and V usually

called the parts of the graph. A vertex cut of a connected graph G is a set of vertices whose

removal renders G disconnected. The vertex-connectivity κ(G) is the size of a minimal vertex

cut. An independent set of G is a set of vertices in a graph G, no two of which are adjacent.

A maximum independent set is an independent set of largest possible size for a given graph G.

This size is called the independence number of G, and denoted by α(G).

For other notations and terminology not defined here, see [5].

By the definition of the first Zagreb index, the lemma follows immediately.

Lemma 2.1 Let G be a simple graph with u, v ∈ V (G) and uv 6∈ E(G). Then

M1(G+ uv) > M1(G).
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Lemma 2.2([27]) Let G be a connected simple graph with n vertices and m edges. Then

RMTI(G) ≤ 3

2
M1(G) + (n− 1)m,

with equality holds if and if Diam(G) ≤ 2.

§3. Graphs with Given Connectivity and Minimum Degree

Let n, k and δ be integers such that n ≥ δ ≥ k ≥ 1. Denoted by G(n, k, δ) the set of n-vertex

connected graphs with vertex-connectivity k and minimum degree δ, where 1 ≤ k ≤ δ and

2 ≤ δ ≤ n.

Theorem 3.1 If G ∈ G(n, k, δ) with k ≤ δ ≤ n− 1. Then

M1(G) ≤ n(n− 1)2 + (n− k)(k + δ − 2n+ 3)(k + δ + 1)

with equality holds if and only if G = Kk ∨ (Kδ−k+1

⋃
Kn−δ−1).

Proof If n = k+1, then k = δ = n−1, i.e., G(n, k, δ) = {Kk+1}. Suppose that n ≥ k+2. Let

Gmax be graph in G(n, k, δ) with maximal M1− value in G(n, k, δ), that is, M1(G) ≤M1(Gmax)

for all G ∈ G(n, k, δ). Denoted by S ⊂ V (Gmax) the vertex cut and |S| = k. We will prove the

three claims as follows.

Claim 1. Gmax − S contain exactly two components.

Proof of Claim 1: Suppose by contrary that Gmax − S contain at least three components.

Denoted two components of Gmax−S by C1 and C2. There exist vertices u ∈ V (C1), v ∈ V (C2)

such that Gmax + uv ∈ G(n, k, δ). By Lemma 2.1, M1(Gmax + uv) > M1(Gmax), which

contradicts the choice of Gmax. This completes the proof of Claim 1.

Therefore, we assume that Gmax − S contain exactly two connected components, denoted

by C1 and C2. Denoted by |V (C1)| = n1, |V (C2)| = n2. Since δ ≤ d(u) ≤ n1 − 1 + k and

δ ≤ d(v) ≤ n2 − 1 + k for u ∈ V (C1), v ∈ V (C2), we have n1, n2 ≥ δ − k + 1.

Claim 2. Gmax[S ∪ V (C1)] and Gmax[S ∪ V (C2)] are cliques.

Proof of Claim 2: Without loss of generality, suppose by contrary that Gmax[S
⋃
V (C1)] is

not a clique. There are two cases as follows:

Case 1. There exists nonadjacent vertices u, v ∈ S⋃V (C1) such that Gmax + uv ∈ G(n, k, δ),
then by Lemma 2.1, M1(Gmax + uv) > M1(Gmax), which contradicts the choice of Gmax.

Case 2. Otherwise, adding a new edge to Gmax will increase the minimum degree of G. From

Eqn.(1) in the proof of Claim 3, we have

M1(Gmax) < M1(Ks ∨ (Kn1

⋃
Kn2

)) ≤M1(Kk ∨ (Kδ−k+1

⋃
Kn−δ−1)),
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which contradicts the choice of Gmax since Kk ∨ (Kδ−k+1

⋃
Kn−δ−1) ∈ G(n, k, δ).

This complete the proof of Claim 2.

From Claim 2, we suppose that Gmax = Kk∨(Kn1

⋃
Kn2

), where n1, n2 ≥ 1 and n1 +n2 =

n− k.

Claim 3. n1 = δ − k + 1 or n2 = δ − k + 1.

Proof of Claim 3: Consider the graph Kk ∨ (Kn1

⋃
Kn2

). Suppose by contrary that n1 ≥
n2 > δ − k + 1, by direct calculation, we have

M1(Kk ∨ (Kn1+1

⋃
Kn2−1)) > M1(Kk ∨ (Kn1

⋃
Kn2

)) (1)

= k(n− 1)2 + n1(k + n1 − 1)2 + (n− k − n1)(n− n1 − 1)2,

which implies that M1(Kk∨(Kδ−k+1

⋃
Kn−δ−1)) > M1(Kk∨(Kn1

⋃
Kn2

)) if n1, n2 > min{δ−
k + 1, n− δ − 1}. This complete the proof of Claim 3.

By combine above claims, we have Gmax = Kk ∨ (Kδ−k+1

⋃
Kn−δ−1). Then the result

holds. 2
Corollary 3.1 Let G ∈ G(n, k, δ) with m edges and k ≤ δ ≤ n− 1. Then

RMTI(G) ≤ 3

2
n(n− 1)2 +

3

2
n(n− k)(k + δ − 2n+ 3)(k + δ + 1) + (n− 1)m

with equality if and only if k = n− 1 and G = Kk+1.

§4. Bipartite Graphs with Given Connectivity

Let B(n, k) be the set of bipartite graphs with n vertices and κ(G) = k, and Bn,x the graph

obtained from Kx,n−x−1 by adding a new vertex v to k vertices of degree x of Kx,n−x−1.

Theorem 4.1 Let G ∈ B(n, k) with 1 ≤ k ≤ n− 1. Then

M1(G) ≤ max{f(a), f(b)},

with equality if and only if G ∈ {Bn,a, Bn,b}, where

f(x) = nx(n− x)− x(2n+ 2k + 1) + k(k − 1),

a =

⌊
(n− 1)2 − 2(k + 1)

2n

⌋
and

b =

⌈
(n− 1)2 − 2(k + 1)

2n

⌉
.

Proof If k = 1, then B(n, k) = {K1,n−1} . Suppose that 1 < k ≤ n
2 , let Gmax be the graph

with the maximal M1− value in B(n, k), and S a k−vertex cut of Gmax. Let A,B be vertex

parts of V (Gmax) such that A ∪B = V (Gmax). Denoted by SA = S ∩A,SB = S ∩B. We will
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prove the four claims as follows.

Claim 1. Gmax[S] and Gmax[C ∪ S] are complete bipartite graphs, where C is one of compo-

nents in Gmax − S.

Proof of Claim 1: Suppose by contrary that Gmax[S] or Gmax[C ∪ S] is not a complete

bipartite graph. There exist vertices u, v ∈ V (Gmax) and uv 6∈ E(Gmax) such that Gmax +uv ∈
B(n, k). By Lemma 2.1, we have M1(Gmax + uv) > M1(Gmax), which contradicts the choice of

Gmax. This complete the proof of Claim 1.

Claim 2. If SA 6= ∅ and SB 6= ∅, then Gmax − S have exactly two components.

Proof of Claim 2: Suppose by contrary that Gmax − S contain at least three components.

Let C1 and C2 be two components of Gmax − S. Then there exist vertices u ∈ V (C1) ∩ A,

v ∈ V (C2) ∩B such that Gmax + uv ∈ B(n, k) and S is also a k−vertex cut of Gmax + uv. By

Lemma 2.1, M1(Gmax + uv) > M1(Gmax), which contradicts the choice of Gmax. Thus Claim

2 holds.

Claim 3. SA = ∅ or SB = ∅.

Proof of Claim 3: Suppose by contrary that SA 6= ∅ and SB 6= ∅. From Claim 2, Gmax − S
contain exactly two components, denoted by C1, C2. Let u ∈ V (C1) ∩ A and v ∈ V (C2) ∩ A.

Without loss of generality, we assume that a = d(u) ≥ d(v) = b > 0 and |NC2
(v)| = c > 0.

Taking transformations on Gmax as follows.

(1) Let G1 = Gmax − {wv : w ∈ NC2
(v)} + {wu : w ∈ NC2

(v)}. Then

M1(G1)−M1(Gmax) = (b+ c)2 + (a− c)2 − (b2 + a2) = 2c(b− a+ c) > 0,

(2) Consider the graph G1. Using the definitions from Gmax. Let |SB| = s, and choose

arbitrary vertices v1, v2, · · · , vk−s ∈ B − S. Let G2 be the graph obtained from G1 by adding

more edges between A− {v} and B as possible, and then adding edges v1v, v2v, · · · , vk−sv. It

is obviously that NG2
(v) is the vertex cut of G2 and |NG2

(v)| = k, i.e., G2 ∈ B(n, k). From 1)

of Claim 3 and Lemma 2.1, we have

M1(G2) > M1(Gmax),

which contradicts the choice of Gmax. Thus Claim 3 holds.

From Claim 3, without loss of generality, let S ⊂ A be the k−vertex cut of Gmax.

Claim 4. Gmax − S contains a isolated vertex.

Proof of Claim 4: From Claim 1, suppose by contrary that the components of Gmax − S,

denoted by C1, C2, are complete bipartite graphs. Let V (C1) = A1 ∪B1 and V (C2) = A2 ∪B2,

where Ai, Bi are vertex parts of Ci, i.e., Ai ⊂ A,Bi ⊂ B, i = 1, 2.

Without loss of generality, suppose that S ⊂ A. Let u ∈ B1. Let G∗ be the graph obtained

from Gmax by deleting the edges connecting u and vertices in A1, and adding more edges

between A−S and B−{u} as possible, i.e., G∗ = Gmax−{xu : x ∈ A1}+ {xy : x ∈ A−S, y ∈
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B − {u}, xy 6∈ E(Gmax)}. Then S is also a k−vertex cut of G2, and G2 ∈ B(n, k). Similar to

Claim 3(1), we have

M1(G
∗)−M1(Gmax) > 0,

which contradicts the choice of Gmax. Thus Gmax = Bn,x.

By calculation, we have

f(x) = M1(Bn,x) = nx(n− x)− x(2n+ 2k + 1) + k(k − 1)

and x = (n−1)2−2(k+1)
2n

, and can obtains its maximal value by differentiating f(x) on x. Since

k ≤ (n−1)2−2(k+1)
2n

≤ n− 2, let

a =

⌊
(n− 1)2 − 2(k + 1)

2n

⌋
and b =

⌈
(n− 1)2 − 2(k + 1)

2n

⌉
.

Then by Claim 4, we have Gmax ∈ {Bn,a, Bn,b}. This completes the proof. 2
Corollary 4.1 Let G ∈ B(n, k) with m edges and 1 ≤ k ≤ n− 1. Then

RMTI(G) ≤ 3

2
T + (n− 1)m,

where

T = max{f(a), f(b)}, f(x) = nx(n− x)− x(2n+ 2k + 1) + k(k − 1),

a =

⌊
(n− 1)2 − 2(k + 1)

2n

⌋
and

b =

⌈
(n− 1)2 − 2(k + 1)

2n

⌉
.

§5. Graphs with Given Connectivity and Independent Number

Let D(n, k, r) be the set of n-vertex graphs with κ(G) = k and α(G) = r.

Theorem 5.1 Let G ∈ D(n, k, r) with r ≥ 1 and 1 ≤ k ≤ n− 1. Then

M1(G) ≤ (r − 1)(n− r)2 + (n− r)(n − 2)2 + k2 + k(2n− 3),

with equalities hold if and only if G = Kk ∨ (K1 ∪ (Kn−k−r ∨ (r − 1)K1)).

Proof If r = 2, then M1(G) ≤ M1(Kk ∨ (K1 ∪ Kn−k−1)) from [11]. We assume that

2 ≤ r ≤ n− 1, let Gmax be the graph with the maximal M1− value in D(n, k, r). Denoted by

S the k−vertex cut of Gmax, and by D the maximum independent set of Gmax. We will prove

three claims as follows.
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Claim 1. Gmax[C] = Ka ∨ (c − a)K1, Gmax[S] = Kb ∨ (k − b)K1 and Gmax[S ∪ V (C)] =

Ka+b∪(k+c−a−b)K1, where C is one of components of Gmax−S, |V (C)| = c, |V (C)−D| = a

and |S −D| = b.

Proof of Claim 1: By Lemma 2.1 and the definition of Gmax, it clear that Gmax = Gmax[S]∨
Gmax[V (G) − S]. Now suppose by contrary that Gmax[C] 6= Ka ∨ (c − a)K1. There exist

u, v ∈ V (C) −D and w ∈ V (C) ∩ D, such that uv 6∈ E(Gmax) or uw 6∈ E(Gmax). It is clear

that Gmax +uv,Gmax +uw ∈ D(n, k, r). By Lemma 2.1, we have M1(Gmax +uv) > M1(Gmax)

or M1(Gmax + uw) > M1(Gmax), which contradicts the choice of Gmax. Similarly to S, we

have Gmax[S] = Kb ∨ (k − b)K1. Thus Claim 1 holds.

Claim 2. Gmax − S contain exactly two components.

Proof of Claim 2: Suppose by contrary that Gmax − S contain at least three components.

Let C1 and C2 be two of components, and u ∈ V (C1)−D, v ∈ V (C2)−D. Then Gmax + uv ∈
D(n, k, r). By Lemma 2.1, M1(Gmax +uv) > M1(Gmax), which contradicts the choice of Gmax.

Thus Claim 2 holds.

By Claim 2, Gmax − S = C1 ∪ C2, where C1 and C2 are components of Gmax − S.

Claim 3. If V (C1) ≥ V (C2), then |V (C2)| = 1.

Proof of Claim 3: Suppose by contrary that |V (C2)| ≥ 2. If V (C2)−D = ∅, then |V (C2)| =
1 since C2 is a connected components. Suppose that V (C2) − D 6= ∅, then V (C2)

⋂
D 6=

∅. Otherwise, V (C2)
⋂
D = ∅, choose u ∈ V (C2), and D

⋃{u} is a independent set, which

contradicts the definition of D.

Using the definitions from Gmax and constructing a new graph G∗ as follows. Let v ∈
V (C2) ∩D. Then

G∗ = Gmax − {xv : x ∈ V (C2)−D}+ {xy : x ∈ V (C2)− {v}, y ∈ V (C1)},

it is clear that S and D are also minimal vertex cut and maximal independent set of G∗,

respectively. Thus G∗ ∈ D(n, k, r).

Let u ∈ V (Gmax)− S − {v} and w ∈ V (C1)−D. Then dG∗(u) > dGmax
(u) and

M1(G
∗)−M1(Gmax) > dG∗(w)2 + dG∗(v)2 − dGmax

(w)2 − dGmax
(v)2 > 0,

which contradicts the choice of Gmax. Thus Claim 3 holds.

By combine above claims, we have

Gmax ∈ {G′ : G′ = (Kn−r ∨ (r − 1)K1) ∪ {v} ∪ {uiv : ui ∈ S, i = 1, 2, · · · , k},

where v is a isolated vertex of Gmax − S. Let |S ∩D| = a. Then

M1(G
′) = a(n− r + 1)2 + (r − a− 1)(n− r)2 + (k − a)(n− 1)3

+(n− r − k + a)(n− 2)2 + k2

= (r − 1)(n− r)2 + (n− r)(n− 2)2 + k2 + k(2n− 3)− a(2r − 4),
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and the point a = 0 attains the maximal value of M1(G). Therefore, M1(Gmax) = (r − 1)(n−
r)2 + (n − r)(n − 2)2 + k2 + k(2n − 3) and Gmax = Kk ∨ (K1 ∪ (Kn−k−1 ∨ (r − 1)K1)). This

complete the proof. 2
Corollary 5.1 Let G ∈ D(n, k, r) with m edges, r ≥ 1 and 1 ≤ k ≤ n− 1. Then

RMTI(G) ≤ 3

2

[
(r − 1)(n− r)2 + (n− r)(n − 2)2 + k2 + k(2n− 3)

]
+ (n− 1)m.
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