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ABSTRACT 

This multidisciplinary work aims to investigate the 
problem of the computer music analysis. It is based on 
the analysis of a computer music piece: Winter leaves, 
created in 1980 by Mauro Graziani at the CSC in 
Padova, using Music360 software. Listening, sonogram 
analysis and digital score analysis, represent the 
counterpart of the attempt to automatic analysing a 
fragment of computer music, a music which is 
characterized by “polyphony” of sound objects, any 
regular rhythm nor melody or timbre. Two researches 
(one with a Morphological Descriptor, the other with an 
algorithm which works via audio content and similarity 
computation) enlighten the practical problems analysis 
faces when it has to evaluate the difficult nature of this 
music.  

1. INTRODUCTION 

The musicological analysis of computer music is still a 
very complex issue. This highly depends on the identity 
of computer music itself: the timbre, the variety of 
software, the lack of a common musical notation for 
scores, the absence or undecipherable presence – for 
non specialists – of computer data. This justifies the 
development of two opposite analytical methods in 
musicology: one is the so-called aesthesic analysis, 
which approaches music from the point of view of 
perception, the other one (considering the famous 
semiologic tripartite by Jean-Jacques Nattiez [1]) is the 
poietic analysis which pays attention to the creative 
process. Regarding the first approach we can mention 
the major studies by Denis Smalley [2], Simon 
Emmerson [3], Michel Imberty [4], François Delalande 
[5], Francesco Giomi and Marco Ligabue [6]. These are 
all inspired by the pioneer researcher Pierre Schaeffer 
[7] and discussed in a recent book by Sthéphane Roy 
[8]. Other studies aim to graphically represent the 
electro-acoustic music flux in multimedia contexts, 
starting from the musicologist’s personal  listening. All 
these works aim to describe the listening in order to 
understand the musical structure and/or timbre. They 
sometimes use acoustic representation tools (time-
amplitude representations, spectrograms, sonograms). 
The poietic analysis is a recent research trend which 
tries to contrast the inevitable individuality involved in 
the listening process. It studies the composition process 
[9] [10], or uses computer data as ‘objective’ material to 

be analysed; one of the first and rare studies was 
Lorrain’s analysis of Inharmonique by Jean-Claude 
Risset [11]. Nevertheless heterogeneity is the 
characteristics of these researches. 

We firmly think that all this variety could in part or 
completely be clarified by a multidisciplinary approach 
which combines musicology with computer science and 
perception. Our proposal is to begin to operate towards 
this research paradigm. We want to explore how feature 
extraction and audio content description studies can be 
useful to the needs of musicology. Up to now the 
research done in this area is applied, from one hand, to 
describe single sound objects, on the other hand to 
automatically transcribe traditional western music or 
popular music. It is time to work also in the field of 
electro-acoustic music. We think that automatic 
analysis is a useful tool to study the classification of 
electro-acoustic sounds, their description, the structure 
derived  from their polyphonic overlapping, the style of 
this music. Automatic analysis can help generating 
automatic segmentation and/or description of the 
sounds. All this study must be supported by the 
knowledge of the digital synthesis used by the author 
during the compositional process. This musicological 
competence aims to give further evidence of the 
musicologist’s personal listening.  

Our research focused on the analysis of a computer 
music piece: Winter leaves (EDIPAN-PRC-S20-16, 
1984), for tape, created in 1980 by Mauro Graziani at 
the CSC (http://www.dei.unipd.it/ricerca/ csc/) in 
Padova, using Music360 software (the piece was 
created with an IBM S7 connected to an IBM 370/158, 
duration: 8’26”). This work derives from a precedent 
analysis by Laura Zattra based on listening (description 
and graphic score) and analysis of the digital score 
[12]. The automatic analysis, starting from a reflection 
on the  sound objects, helps the listening and the 
identification of sound objects’ flow, and above all, it is 
an important means to study the problems of the 
computer music analysis. Winter leaves is therefore a 
case study. The validity of its research’s approach needs 
to be verified with other musical pieces in order to 
establish an analytical method for the analysis of 
electro-acoustic music.  

We are going to show the results focused on a 
fragment of Winter leaves, so that we illustrate the 
method which was tested on the whole piece. The 2nd 
section shows the results obtained by Savino 
Porcelluzzi; the 3rd section follows and describes the 
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research made by Francesca Nucibella; the 4th section, 
by Laura Zattra, compares these results with the 
musicological analysis.  

2. ANALYSIS OF COMPUTER MUSIC WITH 
MORPHOLOGICAL DESCRIPTOR TITLE 

2.1. The Morphological Descriptor 
The tool that we first experimented to automatically 
analyze Winter leaves is called “Morphological 
Descriptor” (from now MD), designed at Music 
Technology Group in the UPF of Barcelona by Julien 
Ricard and Perfecto Herrera [13][14]. It is based on the 
morphological theory of sounds objects by Pierre 
Schaeffer [7]. The choice of the MD is due to its 
performance in the analysis of singles sounds objects. 
The Schaeffer’s typo-morphology and his computational 
implementation seems to describe quite well a sound 
object, so we decide to use an automatic approach to 
analyze a piece of electroacustic-music. Nevertheless, in 
order to adapt the MD to the analysis of an entire piece 
of music, to pass from the theory to the practice, we 
need to introduce some simplification and changes. In 
fact  the MD could analyze only the following criteria:   
 
• Dynamic profile: describes the shape of the temporal  
envelope. 
• Pitchness profile: discriminates sounds with one  
predominant pitch (called Pitched), sounds with several 
pitches (called Complex) and sounds with no pitch 
(called  Noisy). 
• Pitchness profile: describes whether the pitchness is  
constant or varies in function of time (in that case, 
pitchness is the mean value). 
• Pitch profile: describe the variation of the pitch, only  
specified for pitched sounds. For sounds with unvarying 
pitch, the pitch is given. Pitch-varying sounds are 
classified according to the type of variation (continuous 
or stepped) as well as the global envelope of the pitch 
(e.g. ascending, descending...). 
• Harmonic timbre criteria, specified by a numerical 
value of brightness. 
• Roughness, described by a numerical value. 
 
According to these criteria, a piano phrase of several 
low-frequency ascending notes, for instance, would be 
described as follows: dynamic profile = 'iterative', 
pitchness profile = 'pitched', pitchness profile = 
'unvarying', pitch variation type = 'varyingstepped', 
pitch  envelope = 'ascending', a low brightness value 
and a low  roughness value.  

2.2. Procedure of Analysis with MD 
Our procedure of analysis needs  3 steps procedure: 
1) Execution of the program (give the file.wav in input 
and receive a file.txt in output) 
2) analysis of the results given by MD on the file.txt 
and confrontation with a listening analysis made with 
an audio editor. 
3) if needed, re-compile the program varying threshold 
values and restart the procedure of analysis. 
 

We list here the problems we encountered and the 
solutions we found:  
• The Morphological Descriptors MD needs a heavy 
execution time. It needs more or less 3 hours for 
analyzing a fragment of 2 minutes, so we had to divide 
the piece in several tracks to reach a reasonable amount 
of execution time. 
• The MD cannot analyze stereophonic tracks, so we 
had to mix-down every single track from stereo to mono 
with a balance of 50% between the right and left 
channel. 
• It cannot point out sounds with a frequency over 5 
Khz, but luckily in this piece there is any sounds over 
this frequency. 
• The MD was designed to analyze singles sounds 
objects, but in this piece there is a lot of polyphony. So 
the only thing that we could do, was to put a higher 
threshold value. In this way the MD thought to observe 
less objects but with a good dynamic value. This allowed 
to take a description more efficient for objects which 
could not merge in the sound stream. 

2.3. Results 
We show here the results of the analysis of a fragment 
of Winter Leaves in table 1 (it begins at 3’02’’ of the 
piece and ends at 4’02’’). This is a list of the output 
description given by the MD.  

The first 2 columns express the time of beginning 
and ending of  the sound objects detected. The other 
columns indicate: pitchness, pitch profile, pitchness 
profile. In the last one a double slash indicates objects 
with a very short duration (< 1 sec.). This means that in 
this case we have not verified if the description was 
correct, because it is not possible for to ear  to hear and 
manually describe a sound so short. 

We point out some particular these detections: 
• 0,0,9755(s) 8,7592(s)  Pitched  Varying_Other  
Varying_Stepped Varying Decreasing = this is a good 
detection, in fact it is the beginning of a fragment with a 
high dynamic and not so much polyphony. 
• 37,4261 38,8384 Pitched Varying_Delta Unvarying 
Unvarying Undefined = the analysis detects a pitched 
sound but any percussive, iterative sound. 



  

 

Table1.  Description of sound objects detected 

PITCHNESS PROFILE  

T.B. T.E. 

PITCHNESS 
P=Pitched 

C= Complex 
N= Noisy DYNAMIC PROFILE PITCH PROFILE 

U= Unvarying 
V=Varying 
 

I=Increasing 
D=Decreasing 
O=Other 
Und=Undefined    

0 0,3714 P Varyng_Decrescendo Varying_Stepped U I -1 0,10221  

0,3714 0,9755 P Varying_Other Varying_Stepped U O -1 0,23769  

0,9755 8,7592 P Varying_Other Varying_Stepped V D -1 0,37963  

8,7592 8,9510 C Varying_Delta Unvarying U Und -1 0,31655  

8,9510 27,2735 P Varying_Other Varying_Stepped V I -1 0,26064  

27,2735 27,4245 C Varying_Delta Unvarying V Und -1 0,53926  

27,4245 29,7800 C Varying_Delta Unvarying V Und -1 0,36321  

29,78 30,0616 N Varying_Crescendo Unvarying V Und -1 0,69028 // 

30,0616 30,2167 C Varying_Delta Unvarying V Und -1 0,42656 // 

30,2167 30,6167 P Varying_Delta Unvarying U Und 1225 0,23060 // 

30,6167 32,0738 C Varying_Decrescendo Unvarying V Und -1 0,36687  

32,0738 33,1024 P Varying_Delta Unvarying U Und 1188 0,39163  

33,1024 33,5228 C Varying_Other Unvarying U Und -1 0,20126 // 

33,5228 34,0208 P Varying_Other Unvarying U Und 393 0,27205 // 

34,0208 35,0004 P Varying_Decrescendo Varying_Continuous U O -1 0,17695  

35,0004 35,5024 P Varying_Decrescendo Unvarying U Und 1157 0,09849 // 

35,5024 35,5881 P Varying_Crescendo Unvarying U Und 291 0,70269 // 

35,5881 35,9881 C Varying_Delta Unvarying U Und -1 0,13035 // 

35,9881 36,1187 C Varying_Delta Unvarying U Und -1 0,43168 // 

36,1187 36,2412 C Varying_Delta Unvarying V Und -1 0,49766 // 

36,2412 36,3555 C Varying_Delta Unvarying U Und -1 0,34555 // 

36,3555 36,4861 C Varying_Delta Unvarying U Und -1 0,44900 // 

36,4861 36,6126 C Varying_Delta Unvarying V Und -1 0,46434 // 

36,6126 36,7391 C Varying_Delta Unvarying U Und -1 0,49512 // 

36,7391 36,8575 C Unvarying Unvarying V Und -1 0,41123 // 

36,8575 37,1065 C Varying_Other Unvarying U Und -1 0,21969 // 

37,1065 37,6004 C Varying_Delta Unvarying U Und -1 0,13153  

37,6004 37,8371 C Varying_Delta Unvarying V Und -1 0,19252 // 

37,8371 38,0942 C Varying_Delta Unvarying U Und -1 0,27311 // 

38,0942 38,3391 C Varying_Delta Unvarying U Und -1 0,16201 // 

38,3391 38,7351 C Varying_Decrescendo Varying U Und -1 0,15142 // 

38,7351 40,4861 P Varying_Other Unvarying U Und 1188 0,15177  

40,4861 41,8984 P Varying_Delta Unvarying U Und 1181 0,20247  

41,8984 42,8780 P Varying_Delta Unvarying V Und 192 0,20836  

42,8780 42,9922 C Varying_Crescendo Unvarying U Und -1 0,57216 // 

42,9922 43,0861 C Unvarying Unvarying U Und -1 0,46519 // 

43,0861 43,2576 C Varying_Delta Unvarying U Und -1 0,38774 // 

43,2576 43,8290 C Varying_Delta Varying V Und -1 0,43035 //   

43,8290 44,8616 P Varying_Other Unvarying U Und 1208 0,23120  

44,8616 47,6657 P Varying_Other Varying_Stepped U I -1 0,33272  

47,6657 48,4820 P Varying_Other Unvarying U Und 1181 0,48413  

48,4820 48,8208 P Varying_Other Unvarying U Und 1204 0,55355 // 

48,8208 49,3024 P Varying_Other Unvarying V Und 1168 0,48615 //  

49,3024 49,7106 P Varying_Other Unvarying V Und 1166 0,38821 //   

49,7106 50,1229 C Varying_Delta Unvarying U Und -1 0,43948 // 
50,1229 50,5351 P Varying_Decrescendo Unvarying U Und 1177 0,41058 // 

50,5351 51,7555 P Varying_Other Unvarying U Und 1168 0,37407  
51,7555 55,2127 P Varying_Other Unvarying V Und 1366 0,43397  

55,2127 56,7678 P Varying_Other Unvarying U Und 1158 0,76217  

56,7678 59,1229 N Varying_Other Unvarying V Und -1 0,43566  

59,1229 59,5229 N Varying_Crescendo Unvarying U Und -1 0,51220 // 

59,5229 59,6371 N Varying_Crescendo Unvarying U Und -1 0,58347 // 

59,6371 59,7514 N Varying_Other Unvarying U Und -1 0,53471 // 

59,7514 59,8739 N Varying_Delta Unvarying U Und -1 0,57636 // 

59,8739 60 N Varying_Impulsive Unvarying U Und -1 0,33112 //end 



  

 

2.3. Discussion 
When the sound stream shows single sounds objects 
(not polyphonic) or a dominant pitch the MD is almost 
exact. When there is polyphony, that is most of the 
time, the MD makes several mistakes and gives 
nonsense descriptions.  It is easy to see, in Table 1, that 
many descriptions are too generic and useless. 

To resolve the polyphony-problem we decided, as we 
said before, to rise the threshold level. However, with 
this choice the MD could not detect many objects like, 
for example, the glissando effect. On the other hand, 
setting the threshold lower, the MD would have find too 
many detections of less than 0.5 second, that – as we 
have seen – are useless for our purpose. 

The most important result of this automatic-analysis 
is therefore not a good description but a good time-
segmentation  With the MD and the computational 
reliable criteria given by Schaeffer’s Theory it is 
possible to focus on discontinuity and radical changing 
of the sound stream. 
 

 

IncreasingUnvaryingVarying_SteppedVarying_DecrescendoPitched29,291 s27,124 s

UndefinedVaryingUnvaryingVarying_OtherPitched27,124 s25,144 s

DecreasingVaryingVarying_SteppedVarying_OtherPitched25,144 s22,181 s

UndefinedVaryingVaryingVarying_OtherComplex22,181 s15,491 s

UndefinedUnvaryingVaryingVarying_OtherNoisy15,491 s14,903 s

IncreasingUnvaryingVarying_SteppedVarying_DecrescendoPitched29,291 s27,124 s

UndefinedVaryingUnvaryingVarying_OtherPitched27,124 s25,144 s

DecreasingVaryingVarying_SteppedVarying_OtherPitched25,144 s22,181 s

UndefinedVaryingVaryingVarying_OtherComplex22,181 s15,491 s

UndefinedUnvaryingVaryingVarying_OtherNoisy15,491 s14,903 s

Figure 1. Example of segmentation. The black line 
shows the beginning of a new object detected. 

In this time/amplitude graph we show the results of 
the segmentation. We can see that a visual variation is 
separated from the other like the times of MD advise. 

3. A TWO-PHASED APPROACH BASED ON 
AUDIO CONTENT AND SIMILARITY 
COMPUTATION 

3.1. Basic approach  
This chapter follows Savino Pocelluzzi’s results and 
problems  and tries another, we hope useful, approach. 
It describes the application of a previous research in 
music segmentation of an electro-acoustic music piece. 
This experiment has been carried out with the method 
proposed  by the study partially  funded  by  the  project 
SIMAC (Semantic Interaction with Music Audio 
Contents), developed by the researchers Bee Suan Ong 

and Perfecto Herrera at the Music Technology Group in 
the UPF of Barcelona [15]. It’s a novel, two-phased 
approach to detect structural changes in music audio 
signals based on audio content analysis and similarity 
computation. 
The method is based on the assumption that, although 
music structure creates the uniqueness identity for each 
music piece, it is possible to detect non-
trivial/significant structural changes in music audio 
signals. In order to obtain appropriate musical content 
descriptions to detect structural changes, a combination 
set of low-level descriptors are proposed to be extracted 
from music audio signal [17][18]. In this way, it is 
addressed the problem of finding acceptable structural 
boundaries, without prior knowledge about musical 
structure.  

The application of this segmentation tool through 
repeated adjustments of analytical parameters, due to 
the problematic timbre of such a music, leads 
encouraging results. Manual segmentation is take as a 
reference for the estimation. Until now this approach 
has been evaluated positively on a database of  “60’s pop 
music” audio files, providing a way to separate the 
different .sections. of a piece, such as .intro., .verse., 
.chorus., etc. The attempt of testing the performance of 
a different music genre, such as electro-acoustic one, 
represents a novelty. For the application of the 
algorithm we chose an audio segment of Winter leaves 
by Mauro Graziani which corresponds to the section 
analysed by S.Porcelluzzi.  

3.2. Basic idea of the algorithm 

This section describes the basic idea of the proposed  
algorithm as well as its strong points to better 
understand  obtained results in the subsequent section. It 
gives the whole picture without going to much detail. To 
go deeper in details about its implementations procedure 
, please refer to [16].  

In order to detect boundaries candidates of segment 
changes of music audio this novel approach proceeds  
computing significant audio descriptors for fixed-length 
audio frames (i.e. MFCC).  

The algorithm works selecting the most significant 
segment boundaries from the similarity representations  
computed from each one of the used features. Similarity 
matrix [19] is a non-parametric technique for studying 
the global structure of time-ordered streams. It is done 
by measuring the distance measure between feature 
vectors using Euclidean distance or the cosine angle 
between the parameter vectors. It’s a two-dimensional 
representation that contains all the distance measures 
for all the possibilities of frame combinations. As every 
frame will be maximally similar to itself, the similarity 
matrix will have a maximum value along its diagonal. 
The segment process considers the time instant of audio 
novelty, which is useful for identifying the immediate 
changes of audio structure. 



  

 
Segment boundaries are extracted by detecting peaks 

where the novelty score exceeds a local or global 
threshold. In order to obtain the final segment 
boundaries,it further refines the obtained boudaries by 
using some dynamics features. It computes the 
similarity measures between each segment and its 
neighbouring segment. The adjoint segments with high 
similarities measure will be merged while those with 
low similaries measure will be treated as significant 
segment boundaries. 

3.3. Procedure of analysis  
The algorithm is applied to a fragment sampled at 44.1 
kHz, 16-bit mono. The section lasts 1’00” sec (extracted 
from 2’55” to 3’55” within the piece) and it is quite 
meaningful for our purpose: first, it considers events  
which come slowly one after the other, followed by a 
change of timbre at 29,76” with a set of percussive 
sounds and small metal objects. It is therefore an 
excerpt which concerns different sound typologies. 

Once the algorithm has processed the section, the 
output text file reports the boundaries detected in 
seconds. L.Zattra supervised results in order to evaluate 
the algorithm’s accuracy. The resulting manual 
segmentation is taken as a reference for the evaluation. 

Table 2 exhibits the segments automatically found, 
as well as the resulting improvement following the 
comparison with a naïf listening. 
 

Number of 
segments 

Output text file 
(sec) 

 

Corrections 
(sec) 

1 0.0  1.63 none 
2 1.63  10.22 Detection at 8,48 
3 10.22  23.8 Glissando at 18.19 
4 23.8  38.89 Detection at 29,76 
5 38.89  46.09 New segmentation 

38,40 - 41,54 
41,54 - 43,49 

6 46.09  56.31 New segmentation 
45.59  - 51.43 
51.43  - 53..38 
53.38 - 55.00 
55.00 - 56.31 

7 56.31  60.00 none 

Table 2. Output text file and manual segmentation. 
 
At first glance, it is clearly visible that the algorithm 
better detects evident audio variations when they are 
enough separated: this  confirms the original purpose  
for  
which the algorithm was created, that is separate 
different  “sections” of a western tonal piece.  

It also seems to work appropriately with objects that 
come slowly one after the other. Hence, the first three 
segmentations show satisfying results. On the other 
hand, the dynamics change at 29,76 sec but the 
algorithm seems unable to separate events since they 
are too close.  

To further improve the results of the detection 
algorithm it has not been done any optimization, rather 
it looked convenient working over on the method of 

selection. In fact, we chose to bring down the threshold 
of selection in order to increase the detail of choice and 
finding more boundaries. 

This evaluation line is based on the computed 
distance measure between segment and it is useful for 
selecting significant segment boundaries finding the 
peaks in the novelty score. 

For initialization, our adaptive threshold holds a 
default value of 0.5. It means that we would only 
consider similarity measures with values more or equal 
to 0.5.  This is the normal value for popular music for 
which the algorithm provides a way to separate the 
different “sections” of a piece.  We decide to lower the 
threshold down to 0,02. 

 Figure 2 shows the (dis)similarity representation   
computed  for the  fragment, whereas the graph of 
Figure 3 represents the novelty measures computed from 
the (dis)similarity representations between segments.   
It is based on the similarity matrix showed above. In 
these figures  the number of segments is 30 which 
means that the highest local maxima found from 
novelty measure plot are less than 40, so they are all 
selected, (please refer to [19]). 

In Figure 3 large peaks are detected in the segment 
number-indexed correlation and labelled as segment 
boundaries. 

 

 
 
Figure 2. The (dis)similarity representations between 
detected segments. Axes comprise the number of 
segments. 
 



  

 

 
 

Figure 3. Distance measure vs. Segment Number. 
Segmentation is performed by detecting peaks over the 
threshold. Bringing down the threshold to 0.02 means to 
select basically everything. 
Therefore the new results are quoted in Table 3, as well 
as in Figure 4. 

 
Segments New results 

(sec) 
 

Detections 
(sec) 

1 0.0   2.09 1,63 is detected 
2 2.09  3.02 3.02 is detected 
3 3.02  3.37  
4 3.37  8.48 8,48 is perfectly 

detected 
5 8.48  18.69 18.19 is  detected 
6 18.69  30.19 29,76 is detected 
7 30.19  35.99  
8 35.99  39.71 38,39 is detected 
9 39.71  47.02  

10 47.02  50.74  
11 50.74  53.06 53.38 is detected 
12 53.06  55.5 55.00 is detected 
13 55.5  60.00  

Table 3. New results and annotation of detections. 
While in the first part of section boundaries are all 
revealed, the second one give imprecise results. 
 

 
Figure 4.Manually labelled segment boundaries (top 
line), detected segment boundaries by the algorithm 
(second line), , post-processed results (third  line).and 
total number of boundaries (final line). 
 
As  in  this  first  interaction  of  the  algorith when  
slow transformations of the  flux of  sound objects 
(layers,  beats, glissando) are well marked, the detection 
process is more accurate. This is the case of the 
beginning of the fragments then timbre differences 
make analysis inevitably imprecise.  

 

The correct position of a segment boundary is not 
exactly defined. Any segment boundary within the 
silence period should be regarded as correct. Therefore, 
a tolerance t∆ is defined. In evaluating the identified 
segments, the algorithm normally works with a 
tolerance deviation of ± 3 seconds from the manually 
labelled boundaries, tested with popular music pieces of 
about 3 minutes. If a segment boundary is hypothesized 
within the time interval ttttt ∆+<<∆− 00

of the 

reference boundary, 
0t   it is judged correct. For our 

experiment, a reasonable choice seems to be a setting 
t∆  = 500ms. In fact, even if this setting is too high for 

the analysed piece, it could not find encouraging results 
with a lower deviation. 

The final step consists in combining both results of 
the first run and of the re-run of the algorithm together, 
considering the significant segment boundaries founded 
in both steps. 
 
3.3. Recall and Precision Measure 
The result of a segmentation can contain two possible 
types of errors [20]. Type-I-errors occur if a true 
segment boundary has not been spotted by the 
segmenter (deletion). Type-II-errors occur if a found 
segment boundary does not correspond to a segment 
boundary in the reference (false alarm, or segment 
insertion). The information retrieval community uses 
two closely related numbers, precision (PRC) and recall 
(RCL). Precision and recall can be expressed by Type-I-
error rate and Type-II-error rate, and vice versa. They 
are defined as: 
•  RCL = number of correctly found boundaries/ total 

number of boundaries 
•  PRC =  number of correctly found boundaries/ 

number of hypothesized boundaries 
 
Sometimes it is desirable to have one single number for 
the performance of an algorithm instead of two. In such 
cases, the Fmeasure is frequently used. This measures 
overall effectiveness of detection by combining recall 
and precision with an equal weight. 
F is defined as: 

RCLPRC

RCLPRC
F

+
= **2

  .     

 
Like RCL and PRC, it is bounded between 0 and 1. In 
order to evaluate quantitatively the detected segments 
from the proposed algorithm against the ground truth, 
we calculate the precision, recall and F-measure 
measures of the test.  
After a tool.s further interaction the percentage of the 
boundaries the algorithm returns that are correct has 
fallen to 0.66% , due to the  increase  of the proportion 
of  false alarms, namely  segments insertions; 
meanwhile the rate  of correct segments’ identification  
is considerably grow up  to 0.88%. The overall F-



  

 
measure reached almost 73% after the re-run of the 
algorithm, while  in the  first step of this approach  it 
was at least 60%. In another words, post processing 
results revealed that with 10 detected segment 
boundaries about 6 of them are correctly detected 
compared to a ground truth data. Whilst 2 out of 10 
manually labelled boundaries are missed by our 
automatic boundaries detector. Reprocess of data lead 
accurate results: neighbouring sound events are almost  
revealed.  
 
3.4. Discussions  
Evaluation results have shown an important validity of 
the performance of this application. The results obtained 
are encouraging; they show that this approach has 
achieved almost 70% in accuracy and reliability in 
identifying structural boundaries. Although the 
algorithm has been previously tested on a database of 
popular music audio files, it seems working well for 
shorter fragment which does not show a repetitiveness 
structure, as it is in Winter leaves. The algorithm 
reaches an appropriate evaluation especially in the first 
part of the section we analysed, where the sound stream 
is characterized by slowness and division of singles 
sounds objects, whereas the fast and brief transitions in 
the second part of the fragment gives nonsense results. 
For this reason this approach makes assumptions 
regarding the content or structure of the source: analysis 
results depend also on the choice of the analysed section 
as well as the nature of  the changes in the fragment. 
Self-similarity analysis approach has the advantage of 
providing a clear and intelligibility view of audio 
structure,but  it is not efficient for spotting repetition 
with certain degree of tempo change.  Another problem 
with this approach is its threshold dependency in 
reducing noise for line segment detection. Threshold 
setting may vary from one song to another,thus, a 
general setting threshold may not be valid for a wide 
range of audio.   
Perhaps the integration of some previously disregarded 
lower-level feature attributes could further improve the 
detection algorithm, as well as the improvement of the 
selection’s detail in the analysis of fragments shorter 
than 4 seconds. 
However evaluation results of this approach can give an 
overlook on the possible applications of this work, such as 
automatic labelly and sound classification. 

4. A MUSICOLOGICAL LOOK: THE 
LISTENING AND THE SYNTESIS PROGRAM 
USED IN WINTER LEAVES  

4.1. Aesthesic analysis 
We present here the musicological analysis of the 
musical fragment taken from Winter leaves, served as a 
basis to the automatic analysis’ work [12]. Through the 
course of our research, we have compared automatic 
analysis’s results with this musicological view.  

The first type of material which can be useful for 
setting an algorithm of automatic analysis, is the 
listening process and its effects. The Aesthesic Analysis 
of the electro-acoustic music affirms that this music 
does not have, and probably never will have, a neutral 
level, a musical text with a strict connection between its 
graphical representation and its sound text. So, the 
listener becomes the only element of the musical 
electro-acoustic phenomenon that it is possible to study. 
We will see that this cannot be the only approach.  

However, when listening to Winter leaves, we have 
the impression of hearing a flux of sound objects 
(layers, beats, glissando) which change slowly and 
transform themselves into one another. The whole piece 
can be divided into three parts: a first part in which 
“chords” are slowly transforming themselves, a second 
more complex part (from which we took the fragment 
that we have automatically analysed), which is made up 
of short sound objects, and a last part in which the 
chords seem to reappear, enriched by short objects.  

 

 
Figure 5. Graphical Score of the fragment 2’55”-

3’58” 
 
In this fragment, our listening finds long percussive 

sounds (dots), inharmonic “chords” (horizontal lines), 
glissandi. Sonogram (Figure 6) confirms our listening 
and helps in tracking down accurate tempos (most 
evident objects: glissandi at 18”, sudden change in 
timbre at 30”; chord at 41’57” and 43’56”, oscillating 
glissandi at 49’50”). Evidently, original sonogram is 
stereo, whereas automatic analysis needs a mono file.  

 

 
Figure 6. Sonogram of the 1-minute fragment 
(Hamming window, a FFT size of 8,192 tapes and a 
dynamic range of visualisation of 120 dB). 
 

Frequencies are seen to range from 0 to 5,000 or 
6,000 Hz. So, it can be understood that the piece is 
made up of synthesized sounds going from 0 to 5,000 or 



  

 
6,000 Hz, which also gives us information about the 
sampling frequency of the work.  
 
4.2. Music360 score 
Only via the analysis of the computer score can the 
composition totally be explained and the listening 
precisely analysed. This is our new contribution to the 
musicological analysis of the electro-acoustic music. 
The musicological analysis cannot avoid to admit that 
computer music pieces have scores, even if they are not 
evidently understandable. In the case of Winter leaves, 
we own the complete output of the Music360 score, 
printed on 24 January 1980. It is divided into three 
parts: in the first (29 pages) we find the score of the 
Music360 orchestra; in the second, we find two sub-
routines (3 pp.) written in the FORTRAN language; in 
the third we can see the event lists of the score (68 pp.). 
We cannot find instructions for the final mix of the 
work, or the sub-routines (Macro) created by Graziani, 
which in Winter leaves are indicated by ZGx, even if 
we can understand them from the expansions that 
appear in the orchestra score (instructions beginning 
with the symbol +). 

We can see from the Music360 score that the piece is 
dived into eight sections each having one minute 
duration (the 8th section is in its turn divided in 4 
shorter sections). The composer says that the mixing 
simply makes one section follow its precedent. As the 
score does not present any other value, the sampling 
frequency can be seen to be 10,000 Hz, i.e. the lowest 
possible sampling frequency for good audio quality at 
that time. According to Shannon theorem, the piece’s 
sharpest frequency is 5,000 Hz.  

Eleven instruments, often controlled by macros 
(indicated as ZDx), create spectra born of 3 ratios (2, 
2.24, 2.8856).  
•  A, B, C and F instruments realize additive 

synthesis via the subroutine ZGSEL (this modifies 
a basic frequency, according to different 
parameters indicated in the event list);  

•  D (ZGADD performs the additive synthesis) and H 
instruments are similar, but H have the amplitude 
of each components dependent to the input 
frequency;  

•  E creates additive synthesis (25 components) 
modified by a resonator filter;  

•  G produces pulses;  
•  I generates glissandi;  
•  L and M transform other instruments (delay and 

reverb).  
 

Music360 score shows an instruction “I” for each of 
the synthesised sounds. So it is clear that, beyond the 
complexity of each instrument (e.g. additive synthesis 
with 4 or more components), the program can 
synthesise more instructions I at the same time (as 
Musis360 could not produce lots of ‘notes’ I from the 

same instrument at the very same time, each instrument 
is used with several numbers: 1, 2, 3, 4, 5, 6, etc.). 

 A plan has been conceived for each section showing 
the temporal development (init time) of the 
instruments. This representation can only be read from 
a temporal point of view, one-dimensionally and not as 
a time/frequency relation. Figure 7 shows the plan of 
the fragment we analysed and correspond to the 4th 
section generated by Music360 program (p. 17 of the 
score).  

 
Figure 7. Plan of init-time of I instructions in section 4. 

  
This section contains instructions only for the 

following instruments: I (glissandi), H (additive 
synthesis, 5 comp. depending on the basic frequency), 
G (pulses) and D (additive synthesis, 5 comp.).  
 
4.3. Comparison between the data 
Listening is useful to translate the digital data and 
understand the timbre. In fact, the pure reading of the 
score sometimes is hard to be related to the real effect. 
Thanks to the collection and analysis of all the data 
collected, we can trace the different instrumental effect 
in the following figure.  
 

 
Figure 8. Comparison between the data collected in 
Figure 5, 6 and 7.  



  

 
 

This comparison permits to go very deep inside the 
listening of the fragment, to understand the 
initialization time of each timbre and to relate each 
effect to its digital instrument.  

We can also see that the very detailed, even if 
sometimes imprecise, analysis obtained in the table 1 
(through MD algorithm) tended to track down each 
single input of sounds. Nevertheless, what we can easily 
find through the listening and the score, does not 
always correspond to the automatic analysis of 
pitchness and dynamics.  

The automatic analysis is more accurate with the 
algorithm which functions via audio content and 
similarity computation. We can compare Table 3 with 
the following Table 4.  

 
Sections Detections 

(sec) 
(Table 3) 

 

Music 360 
score 

(Figure 7) 

Listening (Figure 
5) 

1 0.0 - 2.09 D Percussive sounds 
2 2.09 - 3.02 DH Chords 
3 3.02 - 3.37  Chords 
4 3.37 - 8.48  Chords 
5 8.48 - 18.69 D Chords 
6 18.69 - 29.76 I Glissandi (followed 

by chords) 
7 29.76 - 35.99 DGH Percussive sounds 
8 35.99 - 39.71 G+HID Percussive sounds 
9 39.71 - 47.02  Glissandi 
10 47.02 - 50.74 G Silence 
11 50.74 - 53.06 I  
12 53.06 - 55.5 H  
13 55.5 - 60.89 Silence in the 

audio file 
Silence in the audio 

file 

Table 4. Comparison between Table 3, figure 5, 7 and 
8. 

 
Some inaccuracies still happen: the automatic 

analysis is sometimes more precise than the listening or 
vice-versa. Nevertheless, the high number of 
coincidences let us know that the results of this step of 
research is positive.   

5. CONCLUSIONS 

This was meant to be a proposal for a new 
multidisciplinary paradigm in the electro-acoustic music 
analysis domain. Automatic analysis can be an excellent 
tool for the musicological analysis.  

The positioning of the analysis of computer scores as a 
counterpart to listening and sonogram analysis grows from the 
observation that it is possible to check the results of our own 
perception when listening to a computer piece by reading the 
calculation data. Automatic analysis can help and justify the 
listening. Using features extraction it would be possible to 
classify sound objects which characterize electro-acoustic 
music and make therefore possible different classifications 
and style studies.  
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