
Guided improvisation as dynamic calls to an offline model

Jérôme Nika1,2, Dimitri Bouche1,2, Jean Bresson1,2, Marc Chemillier3, Gérard Assayag1,2
1 IRCAM, UMR STMS 9912 CNRS, 2 Sorbonne Universités UPMC,

3 Cams, Ecole des Hautes Etudes en Sciences Sociales
{jnika,bouche,bresson} @ircam.fr, chemilli@ehess.fr, assayag@ircam.fr

ABSTRACT

This paper describes a reactive architecture handling the
hybrid temporality of guided human-computer music im-
provisation. It aims at combining reactivity and anticipa-
tion in the music generation processes steered by a “sce-
nario”. The machine improvisation takes advantage of the
temporal structure of this scenario to generate short-term
anticipations ahead of the performance time, and reacts to
external controls by refining or rewriting these anticipa-
tions over time. To achieve this in the framework of an
interactive software, guided improvisation is modeled as
embedding a compositional process into a reactive archi-
tecture. This architecture is instantiated in the improvisa-
tion system ImproteK and implemented in OpenMusic.

1. INTRODUCTION

Human-computer improvisation systems generate music
on the fly from a model and external inputs (typically the
output of an “analog” musician’s live improvisation). In-
troducing authoring and control in this process means com-
bining the ability to react to dynamic controls with that of
maintaining conformity to fixed or dynamic specifications.

This paper describes an architecture model (instantiated
in the improvisation software ImproteK) where the spec-
ification is a formal structure, called scenario, that has to
be followed during the performance. The scenario enables
to anticipate the future and to generate music ahead of
the current time. In this context, the system reactions to
changes and external controls should use this knowledge
of what is expected to generate an updated future. In addi-
tion, if the initial specification itself gets modified during
the performance, the system may have to ensure a continu-
ity with the past generated material at critical times.

To achieve this, a scenario/memory generation model is
embedded in a reactive agent called improvisation handler
which translates dynamic controls from the environment
into music generation processes. This agent is in contin-
uous interaction with an improvisation renderer designed
as a scheduling module managing the connection with the
real performance time.

Copyright: c©2015 Jérôme Nika et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

After briefly discussing the existing approaches in guided
improvisation systems in section 2, section 3 describes the
scenario/memory generation model and gives some musi-
cal directions related to guided (or composed) improvisa-
tion. Then, section 4 describes how anticipation and dy-
namic controls are combined by embedding this genera-
tion model into the reactive improvisation handler. Finally,
section 5 presents the improvisation renderer interweaving
calls to the improvisation handler, scheduling and render-
ing of the generated material.

2. RELATED WORK

A number of existing improvisation systems drive the mu-
sic generation processes by involving a user steering their
parameters. In a first approach this user control can con-
cern (low-level) system-specific parameters. This is for ex-
ample the case of OMax [1, 2] or Mimi4x [3].

We refer here to guided improvisation when the control
on music generation follows a more “declarative” approach,
i.e. specifying targetted outputs or behaviours using an aes-
thetic, musical, or audio vocabulary independent of the
system implementation. On the one hand, guiding is seen
as a purely reactive and step by step process. SoMax [4]
for instance translates the musical stream coming from an
improviser into activations of specific zones of the musi-
cal memory in regards to a chosen dimension (for example
the harmonic background). VirtualBand [5] and Reflexive
Looper [6] also extract multimodal observations from the
musician’s playing to retrieve the most appropriate musical
segment in the memory in accordance to previously learnt
associations.

On the other hand, guiding means defining upstream tem-
poral structures or descriptions driving the generation
process of a whole improvisation sequence. Pachet and
Roy [7] for instance use constraints in such generation pro-
cess. In the works of Donzé et al. [8] the concept of “con-
trol improvisation” [9] applied to music also introduces a
guiding structure via a reference sequence and a number
of other specifications. This structure is conceptually close
to the scenario used in our approach. PyOracle [10] pro-
poses to create behaviour rules or scripts for controlling
the generation parameters of an improvisation generation
using “hot spots” (single event targets). Wang and Dub-
nov [11] extend this work in an offline architecture using
sequences instead of single events as query targets. This
idea of mid-term temporal queries is close to the musical
issues raised with the notion of dynamic scenario in this
paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144846752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jnika@ircam.fr
mailto:bouche@ircam.fr
mailto:bresson@ircam.fr
mailto:chemilli@ehess.fr
mailto:assayag@ircam.fr
http://creativecommons.org/licenses/by/3.0/

Two conceptions of time and interactions are actually em-
phasized in these different approaches. The purely reac-
tive one offers rich interaction possibilities but does not
integrate prior knowledge about the temporal evolution.
On the other hand, steering music generation with mid-
or long-term structures enables anticipation but lacks reac-
tivity with regard to external or user controls.

This bi-partition in improvisation systems actually
reflects the offline/online paradigmatic approaches in com-
puter music systems regarding time management and plan-
ning/scheduling strategies. On the one hand, “offline” cor-
responds to computer-aided composition systems [12]
where musical structures are computed following best ef-
fort strategies and where rendering involves static timed
plans (comparable to timed priority queues [13]). In this
case, the scheduling only consists in traversing a pre-
computed plan and triggering function calls on time. On
the other hand, “online” corresponds to performance-orien-
ted systems [14] where the computation time is part of the
rendering, that is, computations are triggered by clocks and
callbacks and produce rendered data in real-time [15]. In
this case, only scheduling strategies matter and no future
plan is computed.

3. GUIDED MUSIC IMPROVISATION AND
DYNAMIC CONTROLS

Our objective is to devise an architecture at an interme-
diate level between the reactive and offline approaches for
guided improvisation, combining dynamic controls and an-
ticipations relative to a predefined plan.

The proposed architecture is structured around an offline
generation module based on a scenario, embedded in a re-
active framework and steered/controlled by external events.
This generation module produces short-term anticipations
matching its scenario, and may eventually rewrite these an-
ticipations over time according to incoming control events.

3.1 Scenario/memory generation model

The offline generation process consists in finding a path
matching the scenario through a structured and labeled
memory, where:

• the scenario is a symbolic sequence of labels defined
over an alphabet,

• the memory is a sequence of musical contents la-
beled by letters of the same alphabet.

The scenario can be any sequence defined over an arbi-
trary alphabet depending on the musical context, for exam-
ple a harmonic progression in the case of jazz improvisa-
tion or a discrete profile describing the evolution of audio
descriptors for the control of sound synthesis processes.
The memory can be constituted online (recorded during a
live performance) or offline (from annotated audio or MIDI
files).

This model is used for example to improvise on a given
chord chart using a memory constituted by live inputs and
heterogenous set of jazz standards recordings as memory.

The contents of the memory can be audio slices 1 , MIDI
notes or events 2 , parameters for sound synthesis, etc.

The scenario/memory model is implemented in Impro-
teK [16, 17], a co-improvisation system inheritor of the
software environment OMax, which specifically addresses
the issues of authoring and control in human-computer im-
provisation. This generation model is a priori offline in the
sense that one run produces a whole timed and structured
musical gesture satisfying the designed scenario, which
will then be unfolded through time during performance.
Furthermore, it follows a compositional workflow: 1) chose
or define an alphabet for the labels and describe its prop-
erties, 2) compose at the structure level (i.e. define a sce-
nario).

3.2 In-time reaction

In the scope of music improvisation guided by a scenario, a
reaction of the system to dynamic controls cannot be seen
as a spontaneous instant response. The main interest of us-
ing a scenario is indeed to take advantage of this temporal
structure to anticipate the music generation, that is to say to
use the prior knowledge of what is expected for the future
in order to better generate at the current time. Whether a
reaction is triggered by a user control, by hardcoded rules
specific to a musical project, or by an analysis of the live
inputs from a musician, it can therefore be considered as a
revision of the mid-term anticipations of the system in the
light of new events or controls.

To deal with this temporality in the framework of a real-
time interactive software, we consider guided improvisa-
tion as embedding an offline process into a reactive archi-
tecture. In this view, reacting amounts to composing a new
structure in a specific timeframe ahead of the time of the
performance, possibly rewriting previously generated ma-
terial. The synchronization with the environment and the
management of high-level temporal specifications are han-
dled by a dynamic score launching the calls to the genera-
tion model. This module, using the environment Antescofo
and the associated programming language [18, 19], is de-
scribed in [16].

In this paper, we focus on handling these reactive calls to
combine anticipation relative to the scenario and dynamic
controls, by proposing an architecture made of two main
components:

• An improvisation handler embedding the scenario/
memory articulations and generating musical
sequences on request.

• An improvisation renderer handling the temporality
and interactions in a system run.

After mentioning some musical issues raised by guided
improvisation, we will introduce these two agents (both
implemented in the OpenMusic [20] environment) in more
details and formalize their interactions in sections 4 and 5.

1 See videos: http://repmus.ircam.fr/nika/ImproteK
2 See videos: http://improtekjazz.org

http://repmus.ircam.fr/nika/ImproteK
http://improtekjazz.org

3.3 Playing with the scenario and with the dynamic
controls

The articulation between the formal abstraction of “sce-
nario” and reactivity enables to explore different musical
directions with the same objects and mechanisms, provid-
ing dynamic musical control over the improvisation being
generated.

In first approach, we differentiate two playing modes de-
pending on the hierarchy between the musical dimension
of the scenario and that of control. When scenario and
control are performed on different features of the musical
contents (3.3.1), the model combines long-term structure
with local expressivity. When scenario and dynamic con-
trols act on the same musical feature (3.3.2), it deals with
dynamic guidance and intentionality.

3.3.1 Long-term structure and local expressivity

We firstly consider the case where the specification of a
scenario and the reaction concern different features, con-
ferring them different musical roles (for example: defining
the scenario as a harmonic progression and giving real-
time controls on density, or designing the scenario as an
evolution in register and giving real-time controls on en-
ergy). In this case, a fixed scenario provides a global tem-
poral structure on a conduct dimension, and the reactive
dimension enables to be sensitive to another musical pa-
rameter. The controlled dimension has a local impact, and
deals with expressivity by acting at a secondary hierarchi-
cal level, for example with instant constraints on timbre,
density, register, syncopation etc.

This playing mode may be more relevant for idiomatic
[21] or composed improvisation with any arbitrary vocab-
ulary, in the sense that a predefined and fixed scenario car-
ries the notions of high-level temporal structure and formal
conformity to a given specification anterior to the perfor-
mance, as it is the case for example with a symbolic har-
monic progression.

3.3.2 Guidance and intentionality

When specification and reaction act on the same musi-
cal dimension, the scenario becomes dynamic. A reaction
does not consist in a local control on a secondary parame-
ter as in the previous playing mode, but in the modification
of the scenario itself.

In this case, the current state of a dynamic scenario at
each time of the performance represents the short-term “in-
tentionality” attributed to the system, which becomes a re-
active tool to guide the machine improvisation by defining
instant queries with varying time windows. The term “sce-
nario” may be inappropriate in this second approach since
it does not represent a fixed general plan for the whole im-
provisation session. Nevertheless, we will use this term in
the following sections whether the sequence guiding the
generation is dynamic or static (i.e. whether the reaction
impacts the guiding dimension or another one) since both
cases are formally managed using the same mechanisms.

4. EMBEDDING AN OFFLINE GENERATION
MODEL INTO A REACTIVE ENVIRONMENT

Thanks to the scenario, music is produced ahead of the
performance time, buffered to be played at the right time
or rewritten. For purposes of brevity (and far from any
anthropomorphism),

• anticipations will be used to refer to pending events:
the current state of the already generated musical
material ahead of the performance time,

• intentions will be used to refer to the planned for-
mal progression: the current state of the scenario
and other generation parameters ahead of the per-
formance time.

This section presents how the evolving anticipations of
the machine result from successive or concurrent calls to
the generation model. Introducing a reaction at a time
when a musical gesture has already been produced amounts
then to rewrite buffered anticipation. The rewritings are
triggered by modifications of the intentions regarding the
scenario itself or other generation parameters (these two
different cases correspond to the different musical direc-
tions introduced in 3.3).

4.1 Improvisation handler

To give control over these mechanisms, that is dynamically
controlling improvisation generation, we define an impro-
visation handler agent (H) which contains and articulates
the generation model with:

• a scenario (S);

• a set of generation parameters;

• current position in the improvisation tp

(performance time);

• the index of the last generated position tg

(generation time);

• a function f responsible for the output of generated
fragments of improvisation (output method).

This improvisation handler agent H links the real time
of performance and the time of the generation model em-
bedded in an improviser structure (see Figure 1). The im-
proviser structure associates the generation model and the
memory with a set of secondary generation parameters and
an execution trace described below.

The set of generation parameters contains all the param-
eters driving the generation process which are indepen-
dent from the scenario: parametrization of the generation
model (e.g. minimal / maximal length or region of the
sub-sequences retrieved from the memory, measure of the
linearity/non-linearity of the paths in the memory etc.) and
content-based constraints to filter the set of possible results
returned by the scenario matching step (e.g. user-defined
thresholds, intervals, rules etc.).

The execution trace records history of paths in the mem-
ory and states of these generation parameters for the last
runs of the generation model so that coherence between

Improvisation
renderer (R)

Improvisation handler (H)

Scenario

Time

Generated fragment of improvisation
f

?

Output for [q ; q+n] q+n tg

Memory

Label
Content

Parametrization of the generation model
Secondary constraints for filtering

Execution trace

History of the previous runs on [0 ; tg]

Improviser (generation model)

 - ≤

Generation parameters

Input reactive to environment and controls:
launches a query for a time q triggering a run of the generation model

Generation
time (tg)

Performance
time (tp)✏

Figure 1. Improvisation handler agent.

successive generations phases associated to overlapping
queries is maintained. This way, the process can go back
to an anterior state to insure continuity at the first position
where the generation phases overlap.

The interactions of the improvisation handler with the en-
vironment consist in translating dynamic controls on reac-
tive inputs into reactive queries and redirecting the result-
ing generated fragments. We call reactive inputs the en-
tities whose modifications lead to a reaction: the scenario
and the set of generation parameters. In this framework,
we call reaction an alteration of the intentions leading to
a call to the generation model to produce a fragment of
improvisation starting at a given position in the scenario.

We note Q a query launched by a reaction to generate
an improvisation fragment starting at time q in the sce-
nario 3 . Q triggers a run of the improviser to output a
sub-sequence (or a concatenation of sub-sequences) of the
memory which:

• matches the current state of the scenario from date q
(i.e. a suffix Sq of the scenario, see [17]),

• satisfies the current state of the set of generation pa-
rameters.

The output method of the improvisation handler (f) is a
settable attribute, so that generated improvisations can be
redirected to any rendering framework. For instance, the
improvisation handler can interface with Max via the dy-
namic score written in the Antescofo language mentioned
in 3.2. In this case, f determines how resulting improvisa-
tion segments are sent back to the dynamic score where

3 q is the time at which this fragment will be played, it is independent
from tp and from the date at which the query is launched by the improvi-
sation handler.

they are buffered or played in synchrony with the non-
metronomic tempo of the improvisation session. Section
5 details how f is used to couple the improvisation han-
dler with an improvisation renderer in order to unify music
generation, scheduling and rendering.

4.2 Triggering queries for rewriting anticipations

We describe here the way control events are translated into
generation queries triggered by the improvisation handler.
This mechanism can be time-triggered or event-triggered,
i.e. resulting respectively from depletion of previously gen-
erated material or from parameters modifications.

4.2.1 Time-triggered generation

Rendering may lead to the exhaustion of generated im-
provisation. New generation queries have therefore to be
launched to prevent the time of the generation tg from be-
ing reached by the time of the performance tp. To do so,
we define ε as the maximum allowed margin between tp

and tg . Consequently, a new query for time q = tg + 1
is automatically triggered when the condition tg − tp ≤ ε
becomes true.

Depletion of the previously generated improvisation gen-
eration occurs when generation over the whole scenario
is not performed in a single run. Figure 2 illustrates two
successive generation phases associated to queries Q1 and
Q2 for time q1 and q2 respectively. A generation phase
matches a scenario sub-sequence starting at a queried posi-
tion q to a sub-sequence of the memory, i.e. the generation
model searches for a prefix of the suffix Sq of the scenario
S in the memory (phase q1 in figure 2) or an equivalent
non-linear path (phase q2 in figure 2). The generation pro-
cess waits then for the next query.

Phase q1

... A B

Scenario (S)

Memory (M)

Improvisation

A' B' C A" B" C' C" A"' B"' C"'

A C'B A' B' C A" B" C" C'" B'" A'"

...

Label
Content

a b a b c a b c c b a c b

c a b a b c a b a c b a c a b c c b a

Phase q2 ...

Phase q1 Phase q2
Phase q1 Phase q2 ...

q1 q2
q2S

q1S

Figure 2. Phases of the guided generation process.

Defining such phases enables to have mid-term anticipa-
tions generated ahead of the performance time while avoid-
ing generating over the whole scenario if an event modifies
the intentions.

A generated fragment of improvisation resulting from a
query Q for time q contains n slices where:

1 ≤ n ≤ length(S)− q, n ∈ N

The search algorithm of the generation model runs a gen-
eration phase 4 to output a sub-sequence of the memory in
time Θ(m) and does not exceed 2 ∗ m − 1 comparisons,
where m is the length of the memory. In first approxi-
mation, the maximum margin ε is empirically initialized
with a value depending on the initial length m. Then, in
order to take into account the linear time complexity, ε in-
creases proportionally to the evolution of m if the mem-
ory grows as the performance goes. Future works on this
point will consist in informing the scheduling engine with
the similarities between the scenario and the memory to
optimize anticipation. Indeed, the number of calls to the
model depends on the successive lengths n of the similar
patterns between the scenario and the memory. For exam-
ple, the shorter the common factors, the higher the number
of queries necessary to cover the whole scenario.

4.2.2 Event-triggered generation

As introduced previously, the musical meanings of a reac-
tion of the improvisation handler impacting the scenario it-
self (3.3.2) or an other musical dimension (3.3.1) are quite
different. Yet, both cases of reaction can be formally man-
aged using the same mechanisms of event-triggered gen-
eration. The reactive inputs (4.1) are customizable so that
any relevant slot of the improvisation handler can easily
be turned into a reactive one. Modifying the scenario or
one of these reactive slots launches a generation query for
the time q affected by this modification. The triggering of
a query by a reaction can indeed take effect at a specified
time q independent of performance time tp.

A C BR

a c b d e a

Scenario

Buffered
Improvisation

Memory
Trace

Update

Current position

b

B

Reaction

Generation

Label
Content

New query

B' D E

B'' D' E' A

Rewriting anticipations

tg tgqtp

Figure 3. Reactive calls to the generation model.

As illustrated in figure 3, the new improvisation fragment
resulting from the generation is sent to the buffered impro-
visation while the improvisation is being played.The new
fragments overwrites the previously generated material on
the overlapping time interval. The execution trace intro-
duced in 4.1 enables to set mechanisms providing continu-
ity at the tiling time q.

4.3 Rewriting intentions: concurrent queries

Anticipation may be generated without ever being played
because it may be rewritten before being reached by the

4 1) Index the prefixes of the suffix Sq of the scenario in the memory,
2) select one of these prefixes depending on the generation parameters, 3)
output this prefix or an equivalent non-linear path.

time of the performance. Similarly, an intention may be de-
fined but never materialized into anticipation if it is changed
or enriched by a new event before being reached by a run
of generation.

Indeed, if reactions are frequent or defined with delays, it
would be irrelevant to translate them into as many indepen-
dent queries leading to numerous overlapping generation
phases. We then define an intermediate level to introduce
evolving queries, using the same principle for dynamically
rewriting intentions as that defined for anticipations.

This aspect is dealt with by handling concurrency and
working at the query level when the improvisation han-
dler receives new queries while previous ones are still be-
ing processed by the generation module. Algorithm 1 de-
scribes how concurrency is handled, with:

• Run(Q): start generation associated toQ. This func-
tion outputs generated data when it finishes,

• Kill(Q): stop run associated to Q and discard gener-
ated improvisation,

• Relay(Q1,Q2,q): output the result of Q1 for [q1; q[,
kill Q1 and run Q2 from q. The execution trace is
read to maintain coherence at relay time q,

• WaitForRelay(Q1,Q2,q): Q2 waits until Q1 gener-
ates improvisation 5 at time q. Then Relay(Q1,Q2,q).

Algorithm 1 Concurrent runs and new incoming queries

Qi, query for improvisation time qi
RQ, set of currently running or waiting queries
CurPos(Q), current generation index of Run(Q)

when new Q received do
1: for Qi ∈ RQ do
2: if q = qi then
3: if Q and Qi from same inputs then
4: Kill(Qi)
5: else
6: Merge Q and Qi

7: end if
8: else if q > qi then
9: if q < CurPos (Qi) then

10: Relay(Q,Qi,q)
11: else
12: WaitForRelay(Q,Qi, q)
13: end if
14: else if q < qi then
15: WaitForRelay(Qi, Q, qi)
16: end if
17: end for

This way, if closely spaced in time queries lead to concur-
rent processing, relaying their runs of the generation model
at the right time using the execution trace enables to merge
them into a “dynamic query”.

5 More precisely, new generation phases are launched if needed until
q is reached.

5. RENDERING AND SCHEDULING:
IMPROVISATION RENDERER

The reactive architecture presented in the previous section
embeds the data, specifications, and mechanisms manag-
ing music generation, reaction, and concurrency in the im-
provisation handler. This improvisation handler receives
from the environment: (1) the live inputs (in the case of
online learning), (2) the control events, and (3) the cur-
rent performance time tp. In return, it sends improvisation
fragments back to the same environments (4).

Live inputs and interaction (1,2) are managed autono-
mously by the improvisation handler. The connection with
the real performance time (3,4) is managed in an unified
process through the continuous interaction with an impro-
visation renderer. This renderer is designed as a schedul-
ing module which runs in parallel to the improvisation han-
dler all along the performance.

5.1 Scheduling strategy

To describe the scheduling architecture we need to intro-
duce a number of additional concepts: an action is a struc-
ture to be executed (including a function and some data);
a plan is a list of ordered timed actions; the planner is
an entity in charge of extracting plans from musical struc-
tures; and the scheduler is the entity in charge of rendering
plans.

A hierarchical model is used to represent musical data
(for example, a chord as a set of notes, a note as a set of
MIDI events...) and to synchronize datasets rendering. To
prepare a musical structure rendering, the planner converts
the object into a list of timed actions. Triggering the ren-
dering of a “parent object” synchronizes the rendering of
its “children” 6 . Then, the scheduler renders the plan, i.e.
triggers the actions on time [24].

The planner and scheduler cannot operate concurrently
on a same plan, but they can cooperate. Scheduling is said
dynamic when the scheduler is likely to query the planner
for short-term plans on the fly, and/or when the planner
is likely to update plans being rendered by the scheduler
[25, 26]. Our strategy is based on a short-term lookahead
planner: instead of planning a list of actions representing
the whole content of a musical object, the planner is called
on-time by the scheduler and outputs plans applicable in a
specified time window.

The flowchart on figure 4 summarizes the plan extraction
algorithm used by the scheduler to render musical objects.
Typically, the scheduler calls the planner for a plan appli-
cable in a time window W of duration w, then the sched-
uler can render this short-term plan on time and query the
planner for the next one. The lower w, the most reactive
the system is, at a cost of more computations (w can be
tweaked accordingly). If the planner returns no plan (i.e.
there is nothing to render in the queried time interval), the
scheduler can query again for the next time window un-
til a plan is returned. Therefore, the time window W can
be far ahead of the actual rendering time of the structure,

6 As introduced in [22]. In terms of scheduling, the hierarchical repre-
sentations also eases the development of optimized strategies [23].

Render the plan

Query a plan

Plan Found ?

Plan a query

W W + w

Limit reached?

Figure 4. Short-term plan extraction flowchart.

and might not be the same across concurrently rendered
objects. Plan queries themselves can also be planned as
actions to execute in the future. For instance, a limit of
successive plan queries can be set to avoid overload (e.g. if
there is nothing else to play): in this case sparse planning
queries can be planned at the end of each time windows.

5.2 Application for guided improvisation

The improvisation renderer (R) connected to the improvi-
sation handler:

• receives and renders the produced fragments,

• communicates the current performance time tp.

With regard to the scheduling architecture, R is a struc-
ture containing two children objects, the mutable priority
queues:

• RC (render action container) containing actions to
render, extracted from improvisation fragments.

• HC (handler action container) containing time
marker actions to send back to the handler H .

Improvisation renderer (R)

Render action container (RC)

Cast to
Actions

A

Handler action container (HC)

I
From H

To H

f

Figure 5. The improvisation renderer.

Figure 5 depicts the improvisation renderer and its com-
munication with the improvisation handler. An improvisa-
tion fragment I is outputted from the improvisation han-
dler, and this fragment is casted into a list of actions A
integrated into the render action container RC. This trans-
lation can be defined depending on the type of improvised

data. For instance, if the improvisation slices contain MIDI,
actions will consist in calls to midi-on and midi-off. If the
list of actions is overlapping with existing content (i.e. with
previously generated fragments of improvisation already
stored as actions in RC), the new actions substitute the
overlap and add the last generated improvisation toRC. At
the same time, information about slices timing of I is ex-
tracted to feed the handler action container HC with time
markers that will be sent back on time to the improvisation
handler.

To perform the previous operations, we define the follow-
ing functions:

• Cast(I): cast an improvisation fragment I into a list
of timed actions A,

• Timing(I): extract a list of actions from an impro-
visation fragment I , corresponding to the slices’ re-
spective times,

• Tile(C,A): integrate an action list A in the action
container C, overwriting the overlapping actions.

In order to connect the improvisation handler (section
4.1) to the improvisation renderer, the output method f of
the improvisation handler shall therefore be the function
of an improvisation fragment I and the improvisation ren-
derer R defined as:

f(I,R) =

{
Tile(RC,Cast(I))

Tile(HC, T iming(I))

R can then be planned and rendered as a standard mu-
sical object, although this object will be constantly grow-
ing and changing according to performer’s inputs or user
controls. The short-term planning strategy will allow for
changes not to affect the scheduled plans if they concern
data at a time ahead of the performance time by at least w.
In the contrary case (if data is modified inside the current
time window) a new short-term plan extraction query is
immediately triggered to perform a re-planning operation.

6. CONCLUSIONS AND PERSPECTIVES

We presented an architecture model to combine dynamic
controls and anticipation with respect to a formal struc-
ture for guided human-computer music improvisation. It
is achieved by embedding offline processes into a reac-
tive framework, out of the static paradigm yet not using
pure last moment computation strategies. It results in a hy-
brid architecture dynamically rewriting its musical output
ahead of the time of the performance, in reaction to the
alteration of the scenario or of a reactive parameter. The
generation model and the improvisation handler agent are
customizable and designed in such a way that it can be
easily interfaced with any rendering environment (for ex-
ample Antescofo/Max or OpenMusic). This architecture is
instantiated in the improvisation software ImproteK.

In the scope of guided improvisation, the reactive archi-
tecture described in this paper proposes a model to answer
the question “how to react?”, but does not address the ques-
tion “when to react and with what response?”. Indeed, the

model defines the different types of reactions that have to
be handled and how it can be achieved. It choses to offer
genericity so that reactions can be launched by an operator
using customized parameters, or by a composed reactivity
defining hardcoded ruled specific to a particular musical
project. Yet, integrating approaches such as that developed
in [4] could enable to have reactions launched from the
analysis of live musical inputs.

Considering the genericity of the alphabets in the gener-
ation model and that of the reactive architecture presented
in this paper, future works will focus on chaining agents
(using the output of an improvisation handler as an in-
put for an other). A preliminary study of such chaining
will involve using an ascending query system through the
tree of plugged units to avoid data depletion, and message
passing scheduling between multiple agents [27] to ensure
synchronization. Other perspectives suggest to make use
of such reactive music generation to produce evolving and
adaptive soundscapes, embedding it in any environment
that generates changing parameters while including a no-
tion of plot, as video games for example.

Acknowledgments

The authors would like to thank José Echeveste and Jean-
Louis Giavitto for fruitful discussions. This work is sup-
ported by the French National Research Agency projects
EFFICACe ANR-13-JS02-0004 and DYCI2 ANR-14-CE2
4-0002-01.

7. REFERENCES

[1] G. Assayag, G. Bloch, M. Chemillier, A. Cont, and
S. Dubnov, “OMax brothers: a dynamic topology of
agents for improvization learning,” in 1st ACM work-
shop on Audio and music computing multimedia, Santa
Barbara, CA, USA, 2006, pp. 125–132.

[2] B. Lévy, G. Bloch, and G. Assayag, “OMaxist dialec-
tics,” in 12th International Conference on New Inter-
faces for Musical Expression, Ann Arbor, MI, USA,
2012, pp. 137–140.

[3] A. R. François, I. Schankler, and E. Chew, “Mimi4x:
an interactive audio–visual installation for high–level
structural improvisation,” International Journal of Arts
and Technology, vol. 6, no. 2, pp. 138–151, 2013.

[4] L. Bonnasse-Gahot, “An update on the SOMax
project,” Ircam - STMS, Internal report ANR project
Sample Orchestrator 2, ANR-10-CORD-0018, 2014.

[5] J. Moreira, P. Roy, and F. Pachet, “Virtualband: In-
teracting with Stylistically Consistent Agents,” in 14th
International Society for Music Information Retrieval,
Curitiba, Brazil, 2013, pp. 341–346.

[6] F. Pachet, P. Roy, J. Moreira, and M. d’Inverno, “Re-
flexive Loopers for Solo Musical Improvisation,” in
14th SIGCHI Conference on Human Factors in Com-
puting Systems, Paris, France, 2013, pp. 2205–2208.

[7] F. Pachet and P. Roy, “Markov constraints: steerable
generation of markov sequences,” Constraints, vol. 16,
no. 2, pp. 148–172, 2011.

[8] A. Donzé, R. Valle, I. Akkaya, S. Libkind, S. A. Seshia,
and D. Wessel, “Machine improvisation with formal
specifications,” in 40th International Computer Music
Conference, Athens, Greece, 2014, pp. 1277–1284.

[9] D. J. Fremont, A. Donzé, S. A. Seshia, and
D. Wessel, “Control improvisation,” arXiv preprint
arXiv:1411.0698, 2014.

[10] G. Surges and S. Dubnov, “Feature selection and
composition using pyoracle,” in 9th Artificial Intelli-
gence and Interactive Digital Entertainment Confer-
ence, Boston, MA, USA, 2013.

[11] C. Wang and S. Dubnov, “Guided music synthesis with
variable markov oracle,” in 3rd International Workshop
on Musical Metacreation, Raleigh, NC, USA, 2014.

[12] G. Assayag, “Computer Assisted Composition Today,”
in 1st symposium on music and computers, Corfu,
Greece, 1998.

[13] M. Kahrs, “Dream chip 1: A timed priority queue,”
IEEE Micro, vol. 13, no. 4, pp. 49–51, 1993.

[14] R. Dannenberg, “Real-Time Scheduling and Computer
Accompaniment,” in Current Directions in Computer
Music Research, Cambridge, MA, USA, 1989, pp.
225–261.

[15] P. Maigret, “Reactive Planning and Control with Mo-
bile Robots,” in IEEE Control, 1992, pp. 95–100.

[16] J. Nika, J. Echeveste, M. Chemillier, and J.-L. Giavitto,
“Planning Human-Computer Improvisation,” in 40th
International Computer Music Conference, Athens,
Greece, 2014, pp. 1290–1297.

[17] J. Nika and M. Chemillier, “Improvisation musicale
homme-machine guidée par un scénario temporel,”
Technique et Science Informatique, Numéro Spécial In-
formatique musicale, vol. 7, no. 33, pp. 651–684, 2015,
(in french).

[18] J. Echeveste, A. Cont, J.-L. Giavitto, and F. Jacque-
mard, “Operational semantics of a domain specific lan-
guage for real time musician-computer interaction,”

Discrete Event Dynamic Systems, vol. 4, no. 23, pp.
343–383, 2013.

[19] J. Echeveste, J.-L. Giavitto, and A. Cont, “A Dynamic
Timed-Language for Computer-Human Musical Inter-
action,” INRIA, Rapport de recherche RR-8422, 2013.

[20] J. Bresson, C. Agon, and G. Assayag, “OpenMusic.
Visual Programming Environment for Music Compo-
sition, Analysis and Research,” in ACM MultiMedia
2011 (OpenSource Software Competition), Scottsdale,
AZ, USA, 2011.

[21] D. Bailey, Improvisation: its nature and practice in
music. Da Capo Press, 1993.

[22] X. Rodet, P. Cointe, J.-B. Barriere, Y. Potard, B. Ser-
pette, and J.-P. Briot, “Applications and developments
of the formes programming environment,” in 9th Inter-
national Computer Music Conference, Rochester, NJ,
USA, 1983.

[23] R. J. Firby, “An Investigation into Reactive Planning in
Complex Domains,” in 6th National Conference on Ar-
tificial Intelligence, Seattle, WA, USA, 1987, pp. 202–
206.

[24] D. Bouche and J. Bresson, “Planning and Schedul-
ing Actions in a Computer-Aided Music Composi-
tion System,” in Scheduling and Planning Applica-
tions woRKshop, 25th International Conference on Au-
tomated Planning and Scheduling, Jerusalem, Israel,
2015, pp. 1–6.

[25] M. E. desJardins, E. H. Durfee, J. Charles L. Ortiz, and
M. J. Wolverton, “A Survey of Research in Distributed,
Continual Planning,” AI Magazine, vol. 20, no. 4, 1999.

[26] E. C. J. Vidal and A. Nareyek, “A Real-Time Con-
current Planning and Execution Framework for Auto-
mated Story Planning for Games,” in AAAI Technical
Report WS-11-18, 2011.

[27] J. Lee, M. J. Huber, E. H. Durfee, and P. G.
Kenny, “UM-PRS: An implementation of the Proce-
dural Reasoning System for multirobot applications,”
in AIAA/NASA Conference on Intelligent Robotics in
Field, Factory and Space, Houston, TX, USA, 1994,
pp. 842–849.

	 1. Introduction
	 2. Related work
	 3. Guided music improvisation and dynamic controls
	3.1 Scenario/memory generation model
	3.2 In-time reaction
	3.3 Playing with the scenario and with the dynamic controls
	3.3.1 Long-term structure and local expressivity
	3.3.2 Guidance and intentionality

	 4. Embedding an offline generation model into a reactive environment
	4.1 Improvisation handler
	4.2 Triggering queries for rewriting anticipations
	4.2.1 Time-triggered generation
	4.2.2 Event-triggered generation

	4.3 Rewriting intentions: concurrent queries

	 5. Rendering and scheduling: Improvisation Renderer
	5.1 Scheduling strategy
	5.2 Application for guided improvisation

	 6. Conclusions and Perspectives
	 7. References

