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ABSTRACT

We discuss the varieties of musical accompaniment systems

and place our past efforts in this context. We present sev-

eral new aspects of our ongoing work in this area. The basic

system is presented in terms of the tasks of score following,

modeling of musical timing, and the computational issues of

the actual implementation. We describe some improvements

in the probabilistic modeling of the audio data, as well as

some ideas for more sophisticated modeling of musical tim-

ing. We present a set of recent pieces for live player and

computer controlled pianos, written specifically for our ac-

companiment system. Our presentation will include a live

demonstration of this work.

1 APPROACHES TO MUSICAL

ACCOMPANIMENT SYSTEMS

Musical accompaniment systems are computer programs that

serve as musical partners for live musicians. The types of

possible interaction between live player and computer are

widely varied, to some extent defying classification. Some

approaches create sound by processing the live player’s au-

dio using simple analysis of the audio content itself, per-

haps distorting, echoing, harmonizing, or commenting on

the soloist’s audio in largely predefined ways, [1], [2]. Other

orientations are directed toward improvisatory music such

as jazz, in which the computer follows and perhaps even

composes a rendered musical part [3]. A third approach

models the traditional “classical” concerto setting in which

the computer’s task is to perform a precomposed musical

part in a way that follows a live soloist such as [4],[5]. There

are a number of examples that blend these scenarios, while

other approaches may be entirely outside this realm of pos-

sibilities.

Our work has focused on the latter “concerto-type” set-

ting, as in a non-improvisatory composition for soloist and

accompaniment — say a violin concerto. While the music

has already been composed in this domain, the solo player

may take great liberty with the performance, requiring the

accompanying ensemble to be both flexible and responsive.
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The motivation for this kind of accompaniment system is

evident in the omitted for review (JSoM) at omitted for re-
view where most of our recent experiments have been per-
formed. For example, the JSoM contains about 200 student

pianists while the regular orchestras perform two piano con-

certi every year using student soloists. With this in mind,

it is clear that most of these aspiring pianists will never

perform as orchestral soloist during their studies here. We

believe this is truly unfortunate, as nearly all of these stu-

dents have the necessary technical skills and musical depth

to greatly benefit from the concerto experience. Our work

in musical accompaniment systems strives to bring this re-

warding experience to the music students, amateurs, and

many others who would like to play as orchestral soloist,

though, for whatever reason, don’t have the opportunity.

Even within the realm of classical music, there are a num-

ber of ways to cast the accompaniment problem, requiring

substantially different approaches. For instance, when ac-

companying early-stage musicians, the accompanist’s role

is not simply to follow the young soloist, but rather to en-

courage habits of accurate rhythm, steady tempo, while in-

troducing musical ideas. In a sense, this is the hardest of all

classical music accompaniment problems, since the accom-

panist must be expected to know more than the soloist, thus
dictating when the accompanist must lead and when to fol-

low. A coarse approximation to this accompanist role is to

provide a rather rigid accompaniment that is not overly re-

sponsive to the soloist’s interpretation (or errors); there are

several commercial programs that take this approach. The

notion of a pedagogical music system — one that follows

and leads as appropriate — is largely undeveloped, possibly

due to the difficulty of modeling the objectives. However,

we see this area as fertile for lasting research contributions

and hope that we, and others, will be able to contribute to

this cause.

An entirely different scenario deals with music that evolves

largely without a sense of rhythmic flow, such as in some

compositions of Penderecki, Xenakis, Boulez, Cage, and

Stockhausen, to name only a few. Such music is often no-

tated in terms of seconds, rather than beats or measures, to

emphasize the irrelevance of traditional pulse to the music’s

agenda. For works of this type involving soloist and ac-

companiment, the score indicates points of synchronicity,

or time relations, between various anchor points in the solo
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and accompaniment parts. Due to the lack of predictability

of such music, a natural accompaniment approach is sim-

ply to wait until various solo events are detected, and then

to respond to these events. This is the approach taken by
the IRCAM score follower, with considerable success in a

variety of pieces of this type [6],[7].

The third scenario, which includes our system [5],[8],

treats works for soloist and accompaniment having a con-

tinuing musical pulse, including the overwhelming majority

of “common practice” art music. This music is the primary

focus of most of our performance-oriented music students,

and is the music where our accompaniment system is most

at home. Music containing a regular, though not rigid, pulse

requires close synchronization between the solo and accom-

panying parts, as the overall result suffers greatly as this

synchrony degrades. We will argue that this music cannot

be performed effectively with the purely “responsive” ap-

proach as discussed above.

Our system is known as omitted (MPO) due to its alleged
improvement on the play-along accompaniment records from

“Music Minus One” that inspired our work. We have been

collaborating for several years with faculty and students in

the JSoM on this traditional kind of concerto setting, in an

ongoing effort to improve the performance of our system.

What follows contains a description of some of these im-

provements not discussed elsewhere, as well as a number

of illuminating examples and demonstrations. We will also

discuss strengths and weakness of our rhythm model, while

sketching possible improvements. We conclude with a pre-

sentation of our accompaniment system in new music, fo-

cusing on works by omitted for review, specifically written
for our system.

2 OVERVIEW OF MUSIC PLUS ONE

2.1 Score Following

Score following is the task of computing an ongoing align-

ment between a symbolic music score and an audio perfor-

mance of the score, as the audio data accumulates. Also

known as on-line alignment, the problem is more difficult

that its off-line cousin, since an on-line algorithm cannot

consider future audio data in determining the times of au-

dio events. Thus, one of the principal challenges of on-line

alignment is the tradeoff between accuracy—- reporting the

correct times of note events — and latency— the lag in time

between the reporting time and and estimated note event

time. As with all of the accompaniment systems discussed

above, score following plays a crucial role in MPO. [9] gives

a nice annotated bibliography of the many contributions to

score following.

Our approach to score following is based on a hidden

Markov model and is described in [10]. Perhaps one of

the main virtues of the HMM-based score follower is the

grounding it gives to navigating the accuracy-latency trade-

off. One of the worst things a score follower can do is report

events before they have occurred. In addition to the sheer

impossibility of producing accurate estimates in this case,

the musical result often involves the accompanist arriving at

a point of coincidence before the soloist does. When the ac-

companist “steps on” the soloist in this manner, the soloist

must struggle to regain control of the performance, perhaps

feeling desperate and irrelevant in the process. Since the

consequences of false positives are so great, the score fol-

lower must be reasonably certain that a note event has al-

ready occurred before reporting its location. Through the

probabilistic nature of the HMM, one can compute the prob-
ability that the currently pending note has passed. Once this
has occurred, our score follower looks backward in time to

find the most likely onset position for the note.

We will omit a detailed discussion of the innards of our

score follower here, and content ourselves with a simple, ob-

vious, and crucial observation: Before an audio event can be

detected it must have sounded for some brief period of time.

Thus any score follower must necessarily deliver its obser-

vations with latency. That is, while a note onset time may

estimated correctly, the reporting of this time must come af-

ter the event has occurred.

This observation has important consequences for the mu-

sical accompaniment system: If coordination is to be achieved

in a “responsive” way — by waiting until a solo event is de-

tected and then playing the corresponding accompaniment

note, the system will always be late. In theory, one may be

able to construct a score follower whose latency is musically

insignificant. However, this has not been possible in our ex-

perience with such latencies usually in the 60-90 ms. range.

If all coincident accompaniment notes lag this far behind,

the result is musically fatal.

Instead, we accept as a basic tenet that detection latency

will be musically significant and base our coordination of

parts on prediction rather than response. Thus, central to
our approach is the recognition that score following alone is

not enough to produce good musical accompaniment. In ad-

dition we need a means of predicting future musical events

and scheduling them accordingly. In contrast, the IRCAM

system’s approach is responsive, playing events in direct re-

sponse to observations of solo events. This system has been

quite successful in music that does not have a sense of on-

going pulse — the IRCAM system was developed with this

kind of music in mind. However, the extension of this work

to other musical styles including the overwhelming major-

ity of common practice art music and popular music, seems

problematic. In contrast, with minor adaptations our ap-

proach is equally at home in pulseless music.

A video demonstrating our score following ability can be

seen at http://www.music.informatics.indiana.
edu/papers/smc09. In this video the rather eccentric
performer ornaments wildly, makes extreme tempo changes,
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plays wrong notes, and even repeats a measure, thus demon-

strating the robustness of the system.

2.2 Modeling Musical Timing

As discussed above, our approach to accompaniment relies

on the prediction of future musical events. We present here
the model serving as the backbone for this process. We be-

gin with three important traits we believe such a model must

have.

1. Since our accompaniment must be constructed in real

time, the computational demand of our model must be

feasible in real time.

2. We anticipate training our prediction algorithm us-

ing a sequence of rehearsals in which the solo player

demonstrates her interpretation, with all its variabil-

ity. In order to benefit from these rehearsals our model

must be automatically trainable. Thus, rehearsal will

allow our system to more accurately anticipate the

way future musical timing will unfold. This is cer-

tainly one of the objectives of human rehearsal, as

well.

3. If our rehearsals are to be successful in guiding the

system toward the desired musical end, the system

must “sightread” (perform without rehearsal) reason-

ably well. Otherwise, the player will become dis-

tracted by the poor ensemble and not be able to play

her part consistently with her convictions. Thus our

model must be constructed around widely applica-

ble musical assumptions, so it can perform reasonably

well “out of the box.”

Our model is expressed in terms of two sequences, {tn}
and {sn} where tn is the time, in seconds, at which the nth
note begins and sn is the tempo, in seconds per beat, for the

nth note. The model is then

sn+1 = sn + σn (1)

tt+1 = tn + lnsn + τn (2)

where ln is the length of the nth note, in beats. With the
{σn} and {τn} variables set to 0, this model gives a lit-
eral and robotic musical performance. The introduction of

these variables allow time-varying tempo through the σ’s
and elongation or compression of note lengths with the τ ’s.
To complete the model we assume that

(
σn

τn

)
∼ N(µn, Σn)

whereN(µ,Σ) denotes a joint normal distribution with mean
µ and covariance Σ. Thus the {µn} vectors represent the
tendencies of the performance — where the player tends

to speed up (σn < 0), slow down (σn > 0), and stretch
(τn > 0), while the {Σn} matrices capture the repeatability
of these tendencies.

If the actual note observations generated by our score fol-

lower, {yn} are viewed as imperfect estimates of the true
onset times,

yn = tn + εn (3)

where εn ∼ N(0, ρ2), and all of the {σn, τn, εn} variables
are modeled as independent, then the model is seen as a
straightforward example of the Kalman filter. In this con-

text, all of our desired traits are satisfied. We predict future

evolution by first computing our knowledge of the current

state given our observations, p(sn, tn|y1, . . . , yn). From this
information we can predict future note onset times by ap-

plying our basic model to our current belief, thus allowing

the system to sightread. Furthermore, using standard ideas

from the Bayesian network literature, we can perform max-

imum likelihood estimation on the {µn, Σn} parameters,
thus training our model from actual rehearsal data. Finally,

the computational burden of these calculations is modest, at

most, easily suiting the approach for real time.

Our system is concerned only with the scheduling of the

currently pending accompaniment note. Every time new in-

formation becomes available, either in the form of a played

accompaniment note or a detected solo note, we have new

information about the pending note. Thus we reestimate

the current state, predict the accompaniment location, and

reschedule the note accordingly. If we consider the common

situation involving a run of solo notes culminating in a point

of coincidence between solo and accompaniment parts, we

see that this time of coincidence will be rescheduled many

times before its scheduled time finally occurs and the note

is played. In this way, our system makes use of all informa-

tion currently available, continually modifying its view of

musical timing until it must finally act.

We have created a video to demonstrate this process, avail-

able at the aforementioned website. The video shows the

estimated solo times from our score follower appearing as

green marks on a spectrogram. Predictions of our accom-

paniment system are shown as analogous red marks. One

can see the pending accompaniment event “jiggling” as new

solo notes are estimated, until finally the time currently pre-

dicted time passes.

At this point there seems to be so much “good news” that

one is loathe to make criticisms. However, long experience

with this model in action has demonstrated a number of defi-

ciencies, mostly perceived as a kind of musical naivete. We

will discuss these and pose possible improvements in a later

section.

2.3 Computational Approach

Our program consists of about 100,000 lines of C code with

the graphical interface written in C++. The score follower
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is implemented as a thread which continually polls to see
if a new frame audio data is ready, with about 31 audio

frames per second. When a new frame is available, the

thread runs an iteration of the HMM forward algorithm. If

the forward algorithm detects that the pending solo note has

passed, the most likely onset frame is computed through the

forward-backward algorithm, using all currently-available

audio data. This most likely time is then modeled as a noisy

estimate of the true solo time, (Eqn. 3) and the pending ac-
companiment note is rescheduled using the Kalman filter

model.

Our system can create the audio output using eitherMIDI,

or resynthesizing the output audio from an accompaniment-

only recording. This latter method is our preferred approach

for traditional common practice art music, since it preserves

much of the tonal quality and some of the performance in-

tent of the original recording. We often use the Music Minus

One recordings for this purpose. When using a recording,

we resynthesize the audio using phase vocoding, thus al-

lowing time warping in the original recording without any

change of pitch.

A separate high-priority thread handles this audio output

— while there is no great danger in delaying the process-

ing of audio input, a delay in audio output can result in a

“drop-out” with an associated click or gap in the audio out-

put. This thread is time critical since we create the audio

at the last possible moment allowing it to be influenced by

the most current information from the audio analysis thread.

Typically we buffer about .064 seconds of outgoing audio.

This thread constructs each frame of audio according to the

current vocoding “play rate,” computed from the prediction

model as the rate needed to arrive and the pending event at

the predicted time.

While originally written for the Linux operating system,

our preferred home, in recent years we have ported the sys-

tem to Windows. Ideology aside, the target community of

this work is actual practicing “classical” musicians, more

familiar with Windows. No special-purpose hardware is

needed to run the system.

3 MODELING THE ORCHESTRA’S

CONTRIBUTION TO THE AUDIO

One of the often-touted virtues of the HMM is its trainabil-

ity. That is, an HMM can use representative data to automat-

ically improve its transition and output models, perhaps re-

sulting in better performance. Though we continue to place

faith in this trainable aspect of the HMM we have replaced

a fully trained output model with a different model that per-

forms significantly better, even without training.

This model computes the likelihood of an audio magni-

tude spectrum q = (q1, . . . , qK) given an assumption about
the note or notes sounding in the solo part. In doing so,

we construct a probability template p = p1, . . . , pK for the

note or notes that may be sounding at a particular time. For

a single note we have modeled p as a mixture of Gaussians
centered at the harmonic frequencies of the note with de-

creasing mixture weights as harmonic number increases:

pk =
H∑

h=1

whN(k; hf0, (hf0)2ρ2) (4)

where
∑

h wh = 1, f0 is the fundamental frequency of the

note, andN(k; µ, σ2) is a discrete approximation to the nor-
mal density function. With this probability model in place,

we view the actual audio magnitude spectrum as a random

sample from the probability model. That is, we regard qk

as the number of observations at frequency k — qk must be

discretized for this to make sense. Then we have

p(q|p) = c(q)
∏

k

pqk

k

where c(q) is the multinomial constant. In the event that
we are following a polyphonic instrument, we simply model

p in Eqn. 4 with an additional sum over the collection of
currently-sounding solo notes. This model has worked well

in practice in a wide variety of situations and can be ex-

tended in some interesting ways, as follows.

The model above may describe reasonably well the au-

dio signal that comes from the soloist, for purposes of note

discrimination. However, our microphone will receive both

this solo audio as well as the audio generated by our accom-

paniment system. When the accompaniment audio contains

components that are confused with the solo audio, this can

lead to the highly undesirable possibility of the accompani-

ment system following itself— in essence, chasing its own

shadow. To a certain degree, the likelihood of this outcome

can be diminished by “turning off” the score follower when

the soloist should not be playing. We do this. However,

there is still significant potential for shadow-chasing since

the pitch content of the solo and accompaniment parts is of-

ten similar.

Our solution to this difficulty is to directly model the con-

tribution of the accompaniment to the incoming audio sig-

nal we process. Since we know what the orchestra is play-
ing, we add a component of this contribution to our prob-

ability model. More explicitly, if ps is the solo template

described above, and po is the known contribution of the or-

chestra to the currently analyzed audio frame, we create a

probability model for the observed magnitude spectrum q
by p = λps + (1 − λ)po. This is the actual p we use in
evaluating the data likelihood.

This addition creates significantly better results in many

situations. The surprising difficulty in actually implement-

ing the approach, however, is that there seems to be only

weak agreement between the audio that our system plays

and the accompaniment audio the comes in from the micro-

phone. We can improve our model of po by various averag-

ing tricks, thus modeling the room acoustics to some degree.
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Doing so leads to a po estimate that seems to largely elimi-

nate the undesirable shadow-chasing.

4 BETTER MODELING OF MUSICAL TIMING

We have already discussed the strengths of the musical tim-

ing model of Eqns. 1-2, however, it would be disingenuous

to claim there are no weaknesses. Clearly our model must

allow for a range of possible musical performances, since

we know we will encounter variation in practice. Since

we do not know the nature of this variation, we have over-

parametrized the model, allowing for way too much flexibil-

ity — and perhaps not the right kind. Surely the player will

not make a change to the tempo and apply tempo-independent
note length variation on every note. However, our model al-

lows such a performance (and accommodates it reasonably

well). We propose a couple of possible variations on the

basic rhythm model here.

Our first observation concerns the {τn} variables of the
model, which represent changes in note length not natu-

rally expressed through tempo. The prime musical example

would be the agogic accent, in which one stresses a note
by lengthening it, though keeping the same basic tempo

in subsequent notes. This is a common expressive device

in playing passages of fast running fast notes, to highlight

important metric positions, harmonic changes, dissonances,

etc. While this example of note lengthening is familiar in

a variety of musical styles, we don’t believe the same holds

for shortening of note length. Of course, there are musi-
cal examples where the conceptual rhythm may differ from

that explicit notation, such as the double-dotting of a French

overture, or the swing of jazz. But these are examples where

“stolen” time is given back elsewhere, unlike the case of

τn < 0. We expect that the musical plausibility of our model
is improved by removing this possibility.

Our second observation is that tempo changes and note

length variation introduced by the player is sparse — most

notes are rendered without any such deviation, while it may

not be musically meaningful to have both agogic accent and

tempo change in the same position. Phrased in terms of our

model, most of the {σn, τn} variables are 0 and we should
not allow σn #= 0 and τn #= 0 for fixed n.
We propose the following model to capture these no-

tions. We let x1, x2, . . . be a hidden discrete process where
n continues to index the notes of the piece. We assume
xn ∈ {1, 2, 3, 4}, with the following interpretations:

xn = 1 ⇐⇒ σn = τn = 0
xn = 2 ⇐⇒ τn = 0
xn = 3 ⇐⇒ σn = 0, τn ∼ N(µ3, ρ

2
3)

xn = 4 ⇐⇒ σn = 0, τn ∼ N(µ4, ρ
2
4)

That is,

1. When xn = 1 we arrive at note n exactly in tempo.

2. When xn = 2 the tempo may change between notes
n − 1 and n, but there is no additional note length
variation.

3. When xn = 3 we have have an agogic accent and no
tempo variation. This is the case of a small agogic ac-

cent where the parameters µ3 > 0 and ρ2
3 are chosen

to ensure that a negative value is highly unlikely.

4. When xn = 4 we have have a similar situation, but
now account for the longer agogic accent. Thus µ4 >
µ3 with ρ2

4 also chosen to make negative values of τn

rare.

Of course these 4 cases are not equally likely, thus we model

the probabilities of p(xn = i) to reflect that i = 1 is, a
priori, the most likely, with reasonable choices for the other
3 cases. It may even be reasonable to model the x1, x2, . . . ,
process as a Markov chain allowing for some small degree

of memory in the choice of expressive actions.

The model is now a Switching Kalman filter [11]. For the

Switching Kalman filter, the exact computation of the fil-

tered distribution: p(xn, sn, tn|y1, . . . , yn) is not tractable
due to the large number of paths x1, . . . , xn that must be

marginalized over, in accounting for all of the ways we can

arrive at state (xn, sn, tn). However, there are numerous
ways to approximate this calculation, using various approxi-

mation schemes. In addition, such models are also amenable

to automatic training using ideas analogous to those em-

ployed with Kalman Filters and HMMs. Here we train the

p(σn, τn) parameters, as before, and additionally train the
p(xn) probabilities. Thus we learn the qualitative behavior
of the soloist through the p(xn) probabilities, which tell us
where various kinds of actions are likely to occur, as well

as the quantitative description learned through the p(σn, τn)
parameters. Experiments are currently underway with such

a model.

5 NEWMUSIC WITH ACCOMPANIMENT

SYSTEM

Our work with accompaniment systems has mostly focused

on common practice music for soloist and orchestra, how-

ever, we believe the accompaniment system is by no means

limited to this domain. There has been a long tradition of

compositions for live soloist and accompanying electronica,

with many possible techniques for coordinating parts. In

some of these, the live player is completely responsible for

synchronization, by either following a tape or playing along

with a click track. In others, a human plays the role of the

“conductor,” cueing electronic or computer parts at the ap-

propriate times. There have also been some examples in

which the computer genuinely follows the live player, but
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with some of the best results in music not relying on regu-

lar pulse, such as with IRCAM’s score follower mentioned

above. We believe that the notion of pulse is in no way

limited to common practice music, as exemplified by the

vast collection of contemporary music that employs metered

rhythm. Thus we believe our accompaniment system may

create possibilities for new music, perhaps not playable by

any other means, whose composition is of genuine interest

to living composers.

Recently we have recorded two such new works for oboe

and computer-controlled pianos written specifically for our

accompaniment system by Swiss composer name omitted
for review: Mist Covered Mountains and Winter. While
the pieces use traditional rhythmic notation and sometimes

have a highly rhythmic feel, they require a level of pianistic

virtuosity and ease with complex polyrhythms posing nearly

superhuman demands on the pianist. This is fitting, since the

piano part(s) were not intended to be played by humans.

One of the main challenges for the oboist is in under-

standing the rhythmic relationship between the parts; the

score notates all rhythm precisely, though there is an aleatoric

feel to large sections. While a good deal of score study was

necessary to accomplish this, quite a bit of rote memoriza-

tion was also necessary, accomplished through regular lis-

tening over a period of several months. Perhaps the author’s

original understanding of this music was something like the

young student’s knowledge of the “Pledge of allegiance”

— knowing the sequence of syllables, but perhaps not the

meaning of the words. However, the music began to make

sense after passing through this stage. The accompaniment

system was a significant aid in learning these pieces, since
it came to our rehearsals already understanding the complex

rhythmic relations and reinforced these through repetition

and automatic adaptation to the soloist’s errors.

The music was recorded in a studio, recording the live

oboe while listening to a MIDI performance of the pianos

through headphones, as controlled by the accompaniment

system. The MIDI piano performance was as captured and

later used to control a Bösendorfer reproducing piano. The

resulting piano audio was then mixed with the original oboe.

Recordings of sections of these pieces are available at the

web page mentioned earlier. Though the merit of these pieces

does not lie in their reliance on new technology, it seems

nearly impossible to perform these pieces with anything other

than an accompaniment system.
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