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ABSTRACT

A method for generating music via a mapping from brain
signals is proposed. The brain signals are recorded using
consumer-level brain-computer interface equipment. Each
time-step in the signal is passed through a directed acyclic
graph whose nodes execute simple numerical manipula-
tions. Certain nodes also output MIDI commands, leading
to patterned MIDI output. Some interesting music is ob-
tained, and desirable system properties are demonstrated:
the music is responsive to changes in input, and a sin-
gle input signal passed through different graphs leads to
similarly-structured outputs.

1. INTRODUCTION

Mappings between sensory modalities are fascinating. Syn-
aesthesia is an example: some people report experiencing
certain colours when they hear certain pitches, for exam-
ple; others report an association between colours and let-
ters [1]. One of the authors recently heard a two-year-old
child refer to some intense crayon work as “doing loud on
the paper”. Feeling the kick drum in your chest is indis-
pensable to some forms of music. Jean-Michel Jarre and
many others have made mappings between light and mu-
sic. Douglas Hofstadter poses questions like, what would
a poem be like if it were in the medium of painting in-
stead [2] – and recreational drug users sometimes report
answers. In our favourite songs, we often feel that there
is an essential link between the words and the music – not
just that they are well-suited, but that they are synchro-
nised, with a clear mapping between them at each point in
time. Something similar happens with film scores.

The voltages that are produced by the human brain as a
by-product of its normal activity are not a sensory modality
similar to, say, sight or hearing. Nor are they a modality we
have obvious control over, like speech. However, a map-
ping between the brain’s activity and the resulting voltage
signals can be established [3]. It is therefore of interest to
think about mappings from these signals to other modali-
ties. Because these signals are time series, it is particularly
natural to consider mappings to a time-based medium like
music. The fact that a feedback loop is possible – brain
to signal to music to ear to brain – greatly increases the
possibilities and the interest.
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In the long term, we hope to use mappings and feedback
between brain signals and music for forms of music ther-
apy [4, 5]. In this initial study the goal is much less ambi-
tious: it is to map brain signals to engaging, listenable mu-
sic which is synchronised with the brain signal and reflects
changes in it. It is thus a form of sonification. Success in
these initial steps is required for the longer-term goal.

The output of such a mapping will depend on both the in-
put and the mapping itself. However, the goal is to achieve
a sort of separation of control between the two. The map-
ping should be capable of achieving a somewhat listenable,
if dull “steady state” of music in response to a completely
static input, but should also be responsive to changes in the
input. Similarly, a single signal mapped through different
mappings should give results which, if not really similar in
style or content, are similar in temporal structure.

2. BACKGROUND & PREVIOUS WORK

2.1 Brain-Computer Interfaces

The human brain is made up of billions of neurons, which
emit electrical impulses and changes in hemodynamics when
interacting. The electrical impulses form a measurable volt-
age on the scalp that can be detected by electroencephalo-
gram (EEG) devices. A Brain-Computer Interface (BCI)
is a system which measures changes in this voltage in real-
time [6,7]. Typically the raw EEG signals are pre-processed
to produce a usable time-series or in some cases a com-
mand output. BCIs have applications in human computer
interaction.

Modern BCIs can be non-invasive, portable, low-cost,
and easy to use, with high temporal resolution. The cheap-
est ones may use just one or two EEG sensors fitted to a
light-weight headset, in contrast to medical grade BCIs.

2.2 BCI Music

Research into BCIs for music is a growing area with poten-
tial in artistic, scientific, recreational and therapeutic fields.
The earliest reported example of EEG-based musical anal-
ysis was in Brain in 1934 [8, cited by Miranda [9]], how-
ever, it is generally accepted that EEG-based composition
began with Lucier’s Music for Solo Performer, a percussive
piece composed by the performer wearing an EEG cap.
Teitelbaum used various physiological signals including
EEG and electrocardiogram (ECG) to control electronic
synthesisers [10]. Rosenboom also examined the use of
EEG signals to generate art, including music, and devel-
oped EEG-based musical interfaces [11]. Rosenboom in-
troduced a musical system whose parameters were driven
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by EEG signals associated with changes in the performer’s
selective attention [12]. Interested readers may refer to
Williams [13] for a comprehensive review of the history
of BCI music.

Affective Algorithmic Composition (AAC) is a proposed
umbrella term [13] referring to an interdisciplinary field
which combines computer-aided composition with affect
analysis (or emotion assessment). AAC algorithms are
driven by an intended affective response from the listener,
who in turn, can become the composer. AAC includes any
system for composition designed to respond to an affec-
tive target and/or to create an affective response in the lis-
tener [13]. A listener might use a bio-signal device to mea-
sure some physiological response, for example, to generate
affectively responsive music.

Existing work uses brain-computer control systems to al-
low users to control musical parameters via EEG [14–16].
Miranda et al. [4] describe the evaluation of a pilot brain-
computer musical interface allowing a patient with Locked-
in syndrome to control amplitude and other musical param-
eters via EEG for the purposes of music therapy and pal-
liative care [4]. Advances in modern BCIs and non-clinical
EEG provide an opportunity to develop more commercially-
accessible neurofeedback-derived control over musical fea-
tures in response to individual affective responses result-
ing in real-time biophysical sensing of emotions to control
AAC systems.

2.3 Other Mappings

Moving away from BCI, one important stream of research
in mapping signals to music has arisen in the context of
evolutionary computation (EC). EC is a class of population-
based metaheuristic search and optimisation algorithms in-
spired by Darwinian evolution. EC approaches to music
usually take advantage of some form of mapping rather
than trying to create music directly. An interesting map-
ping was proposed by Hoover [17]. Time is divided into
time-steps. At each time-step, some variables are fed into
a neural network. They represent the events in the corre-
sponding time-step of some pre-existing music. The neu-
ral network maps these values to produce multiple outputs,
which can be interpreted as MIDI commands. By running
the network once per time-step, with the input signals vary-
ing over time, the result is a new piece of music synchro-
nised with – because it is created as a mapping from – the
input piece. Naturally, the mapping must be of sufficient
complexity that the output is not a simple monotonic trans-
formation of the input.

This method was used to interactively create drum tracks
to accompany pre-existing harmonic and melodic mate-
rial [17]. The network was trained through interactive evo-
lution, that is via preferences for one network’s results over
another’s, expressed interactively by a listener. An appeal-
ing feature of the representation is that in a neural network,
computation is “shared” – the same result calculated at one
node can be re-used by multiple nodes at the next layer, and
so the multiple outputs can be expected to be related. Of
course, that is a desirable property for the multiple voices
of many types of music.

The same idea was later extended to create pitched ac-
companiment material, and to also use simple signals indi-
cating the “semantics” of the current time-step – whether it
is the start of a beat, and whether it is the start of a bar [18].
“Complex conductors”, i.e. arbitrary time series as further
input variables, were also proposed.

Inspired by these mappings, the second author has devel-
oped [19] a directed acyclic “executable graph” representa-
tion which again uses input variables representing the time-
step’s “semantics”, shared computation in the graph, and
multiple outputs mapping to MIDI commands. The main
differences from NEAT Drummer and subsequent work
are: (1) the model of computation does not use an implicit
weighted sum of inbound edges at each node. The arity
of the function executed by a node determines the number
of inbound edges that it requires. (2) No input music is
used. (3) The output nodes are stateful, that is their inputs
and outputs in previous time-steps can affect their outputs
in the current time-step. In another implementation, trees
(rather than graphs) are used, and input signals are supplied
by the user via a mouse or Nintendo Wiimote [20].

These representations are capable of generating listenable
music, at least over short time-scales. It is natural to con-
sider using them as general methods for sonifying any type
of time series. That is the point we take up in this paper.
We propose a mapping and investigate how well it achieves
our goals:
• A static BCI input signal should lead to listenable (if

dull) steady-state music;
• The music should respond to changes in the input

signal;
• The temporal structure of the input signal should be

reflected in the output;
• As a consequence, a signal mapped through different

graphs should lead to pieces of music which share
temporal structure.

We begin by describing more details of the mapping, in-
cluding novel features not used in previous work.

3. MUSIC WITH EXECUTABLE GRAPHS

3.1 Music as a function of time

The representation is a development of that in XG [19],
as inspired by that of NEAT Drummer [17]. Time is di-
vided into even time-steps, e.g. six steps per quarter-note.
At each time-step, the values of some numerical variables
(described later) are fed into a graph. The nodes of the
graph may output MIDI note-on or note-off messages. In
this way, temporal patterns in the input variables give rise,
via a mapping, to temporal patterns in the output. In this
representation we can think of music as a function of time,
and of the input time-series.

3.2 Model of computation

The graph is directed and acyclic. Input nodes carry the
input BCI signals. Other nodes have incoming edges and
carry out numerical computations such as +, *, or sin. The
graph is constrained to have the right number of inbound
edges to each function. On the other hand, each node may



Table 1: Labels, computations, and arities for all node types.

label result arity
i1 input signal 1 at current time-step 0
i2 input signal 2 at current time-step 0
b beat at current time-step (an integer) 0
0.5 constant 0.5 0
1 constant 1 0
2 constant 2 0
unary- −x 1
* x ∗ y 2
+ x+ y 2
- x− y 2
pdiv x/

√
1 + y2 2

pmod x %
√
1 + y2 2

sin sin(x) 1
cos cos(x) 1
if if x ≥ 0.0 then y else z 3

send its output to any number of other nodes. In contrast
to a neural network, there is no implicit weighted sum of
inbound edges’ signals.

Because the graph is constrained to be acyclic, the nodes
can be sorted using “topological sort”, i.e. nodes which
have no inputs are placed first, and every node is placed
after the nodes which give its inputs. Thus each node can
be executed in this order, to execute the entire graph. The
graph is thus executable. The labels, computations, and
arities for all node types are shown in Table 1.

As an example, Fig. 1 shows a very simple graph and its
effect. Just one input signal i1 is used, together with the
beat signal b. The values of these signals over six succes-
sive time-steps (two bars in 3/4 time) are shown, together
with the output of the + node. We can interpret these out-
puts as pitch values for MIDI note-on commands. (This
is a simplified example, with a very small graph, just one
input signal, and ignoring the effects of restrictions on out-
put nodes, accumulators and thresholds, and sigmoid and
diatonic mappings, to be described in detail below.)

b

*

+

2

i1

time-step 0 1 2 3 4 5
b 0 1 2 0 1 2
i1 50 50 50 58 58 58
output (at +) 50 52 54 58 60 62
pitch D E F# A# C D’

Figure 1: A simplified example of the mapping process.

3.3 Graph generation

The graph generator starts by creating one node each with
the labels i1, i2, b, 0.5, 1, and 2, i.e. all those with arity

0. It then adds 100 nodes, each with a label randomly-
chosen from those with non-zero arity. For each node, it
adds the appropriate number of inputs (according to arity),
taken from the output of any previously-added node. In
this way, the property of acyclicity is also guaranteed.

3.4 Output nodes: accumulators and thresholds

The graph as described so far deals with purely numerical
values. In order to produce music, these numerical val-
ues must be mapped to MIDI note-on/note-off commands.
This takes place at output nodes. An output node is just a
normal node of the graph, with a label chosen from Table 1
as usual. However only a node with at least two inputs, and
such that there is at least one path from an input node to this
node of length 3 or greater, will be used as an output node.
This multiple-output representation is reminiscent of that
used in single-node genetic programming [21].

An output node’s inputs are used for a numerical compu-
tation, determined by its label, and resulting in a numeri-
cal output as usual. In addition the inputs are interpreted
as pitch and activity controls. An output node has an ac-
cumulator variable which is increased by the value of the
activity control, via a sigmoid mapping, at each time-step.
Whenever the activity is above a numerical threshold (set
to 1.25 in experiments reported here), two things happen:
a MIDI note-on command is output, with pitch controlled
by the pitch control input, via a sigmoid mapping and a di-
atonic mapping, and with velocity controlled by the degree
to which activity exceeds the threshold; and the accumu-
lator variable is decreased to account for this command.
Whenever the activity is below a second, lower threshold
(0.0625), a MIDI note-off command is issued, for the pitch
most recently switched on. Thus pitch, velocity, and note
duration are explicitly controlled. Whenever the activity is
between these two thresholds, there is no MIDI output, but
the activity variable is decreased.

The sigmoid mapping is standard, x → 1/(1 + e−x).
The motivation for the mapping in both pitch and activity
is that the output of a node can vary widely, especially with
multiplication and division. The mapping “squashes” large
values (positive or negative).

These computations lead to quite human-sounding vari-
ations in note volume and note density. Although it is
still fully deterministic, it tends to avoid the metronomic
or robotic feeling that can easily arise in generated music,
e.g. to some extent in the output of previous work [20].
The individual voices in the music play and rest and form
phrases with pleasant dynamics.

The restriction on input path length for output nodes helps
to prevent very simple (e.g. monotonic) transformations of
the input from occurring in the output.

There are several important parameters in the representa-
tion, including the accumulator threshold and the number
of nodes in the graph. The values given above for these
parameters have been found to give good results, but in-
vestigation of optimal values is postponed to future work.



4. BCI HARDWARE AND PROCESSING

An EEG signal is a voltage that is measured on the surface
of the scalp, arising from neural activity e.g. mental state,
cognitive activity etc. Fluctuations in the EEG signal occur
within defined frequency bands that have been associated
with brain states such as attention (Beta: 13–30Hz), en-
gagement, frustration, meditation (Alpha: 8–13Hz ) and so
on. Changes in the signal within these frequencies bands
can be measured by EEG devices, which reflect changes
in neural activity. Some of these bands relate to emotion-
based responses, and concentrating on these frequencies,
we can capture emotional response data.

4.1 NeuroSky MindWave

NeuroSky Technologies have developed a minimally in-
vasive, dry biosensor to read neural activity representing
states of attention (Beta) and meditation/relaxation (Al-
pha). The MindWave headset consists of a single dry sen-
sor positioned at the forehead on a position known as FP1,
to capture activity from the pre-frontal cortex in the front of
the brain where higher thinking occurs. Emotions, mental
states, concentration, etc. are all dominant in this area. The
MindWave captures raw neural signals at FP1 and provides
information on a user’s Alpha, Beta, Gamma, Delta and
Theta bands. The signals are captured at 512Hz, filtered
and processed using a Fourier transform, and passed to a
proprietary algorithm which generates eSense values, cus-
tom measures of attention and meditation [22]. For each of
attention and meditation, the algorithm returns one value
per second on a scale from 0 to 100, representing the level
of attention or meditation of the subject [23].

In a previous study, Crowley et al. [24] identified thresh-
old values for these eSense scales in order to categorise
response intensity. Using these threshold measures, an eS-
ense value between 40 to 60 at any given moment in time is
considered “neutral”. A value from 60 to 80 is considered
“slightly elevated”, and values from 80 to 100 are consid-
ered “elevated”. Similarly, on the other end of the scale,
a value between 20 to 40 indicates “reduced” level of re-
sponse, while a value between 1 to 20 indicates “strongly
lowered” levels.

The meditation value returned by the headset is used to
record the users’ state of arousal, which indicates the level
of a user’s mental “calmness” or “relaxation”. If the user
is relaxed and not under stress then the value returned is
high (high meditation = low stress). The eSense Atten-
tion meter indicates the intensity of a user’s level of mental
“focus” or “attention”, such as that which occurs during
intense concentration and directed (but stable) mental ac-
tivity. The attention value captures the users’ level of ef-
fort. If the user’s effort level is high then the output can
near 100 whereas if they make no effort at all it is nearer
0 [24]. While the headset records both the raw EEG sig-
nal and the eSense measures, our analysis focuses on the
custom attention and meditation scales for their potential
as easy-to-use, “off-the-shelf” measures of EEG signal ac-
tivity that could be used by signal processing novices.

4.2 BCI Data Collection and Preparation

To produce the input BCI data for the system a number of
tasks were completed. The aim was to use both baseline
and task-related BCI data as inputs for the system. A sub-
ject was fitted with the NeuroSky MindWave device and
asked to complete a number of tasks while wearing the
BCI headset. Firstly, the subject was asked to sit quietly
for 5 minutes while baseline recordings were measured.
Three stressor tasks were then administered – The Towers
of Hanoi, an N-Back Task and an electric wire loop game.
These are common in psychological and BCI research as
described, e.g. by Crowley [24, 25]. These are not musical
tasks, hence the system is functioning as a sonification of
the BCI data rather than a method for the subject to control
music.

The three stressor tasks produced BCI data that varied in
attention and meditation levels from baseline. Each task
is designed to elicit varying degrees of stress (low medi-
tation) and require different amounts of cognitive load (at-
tention) depending on the individual response of the partic-
ipant. The eSense meters of attention and meditation for
each task were extracted from the BCI recordings and used
as inputs i1 and i2 to the executable graph.

Several composite signals were created, with the goal of
imposing clear temporal structure:
ABA means A signal of 48s in ABA format, where A uses

the mean value of the subject’s baseline recording
for 16s, and B uses the mean value of the subject’s
Towers of Hanoi recording (lowered meditation and
raised attention) for 16s.

ABA non-means A similar signal in ABA format, but us-
ing 16s of raw signal from the baseline and Towers
of Hanoi recordings, rather than means.

ABACADA non-means A similar signal in ABACADA
format, where C and D are raw signal from the N-
Back and Wire Loop tasks (both tasks again leading
to lowered meditation and raised attention).

5. RESULTS

The executable graph mapping was used to generate many
pieces using various BCI signals. Here we concentrate on
pieces made using two different graphs, and using the com-
posite signals described above. The “ABA means” signals
were used to demonstrate that a static input signal leads
to a static musical pattern. The simplicity of the output
then made it suitable for use during auditioning of multi-
ple graphs. We chose two graphs which led to interesting
patterns, corresponding to random seeds numbers 1 and 5.
The latter graph is shown in Fig. 2. For the former we
chose a minor scale mapping 1 and for the latter, a major
scale.

The “ABA non-means” signals were then used to investi-
gate the result of non-static input signals. The results were
encouraging: the non-static input signals introduce varia-
tion, but not so much that the piece loses a sense of close
similarity with the “means” version.

1 Refer to the subject2 means aba seed1 mp3 available for down-
load.

subject2_means_aba_seed1
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Figure 2: One of our chosen graphs. Due to its size (100 nodes)
the labels are not readable here, but the graph is available online.

Figure 3: A BCI input (with two signals) in ABACADA form and
two distinct pieces of music, with the same temporal structure,
resulting from mapping this input via two distinct graphs.

Finally, we moved to the “ABACADA non-means” sig-
nals, still using the same graphs for mapping. Figure 3
shows a MIDI pianoroll for the pieces generated with these
signals, along with the composite BCI signal (attention and
meditation eSense scales) 2 . Each piece is a rondo with

2 Refer to the subject2 nonmeans abacada mp3s available for
download.

the form ABACADA. In both pieces, the MIDI pianoroll
shows clear repeated themes that are in sync with changes
in the attention eSense meter. Increases in the attention
level of the subject has a direct impact on thematic varia-
tions in the piece. Similarly, decreases in meditation (in-
creased stress) also shapes the melody of the piece. The
minor piece shows the impact of decreased meditation on
the MIDI output. Both pieces share a similar temporal
structure, even though the graphs used are entirely differ-
ent. Thus, we have achieved a sort of separation of control
between the graph (responsible for musical material) and
the BCI input (responsible for temporal structure).

In previous iterations of this work evolutionary compu-
tation was used to search for good graphs. We have found
that search is not necessary in this iteration, since the graph
generator used to make initial graphs seems to give multi-
ple “good” pieces out of every 5 generated. The pieces
described above are using random seeds 1 and 5, where
auditioning began at seed 0.

The pieces described here are available together with code,
composite BCI signals, and a small collection of other pieces
with low-numbered seeds, from
http://www.skynet.ie/∼jmmcd/xg.html.

6. DISCUSSION & FUTURE WORK

We have succeeded in our initial steps: our representation
can map BCI signals to music. It is responsive to changes
in the signal, but not so responsive that changes in the sig-
nal lead to unrecognisable music. Static input signals lead
to interesting musical patterns in a significant proportion
of randomly-generated graphs, while the addition of varia-
tion in the input signals can lead to quite good “miniature”
musical pieces. These statements are subjective, of course.
One necessary step for future work is an objective valida-
tion.

The next phase of this project will then involve using the
eSense meters in real-time. We will then have a feedback
loop in our signal path: from the brain via the BCI, the
graph, and the music, to the ear, and thence the brain.

Other issues to be investigated include: more fine-grained
input data signals, rather than the two summary signals
output by the eSense meters; the algorithm’s sensitivity
to parameters mentioned in Section 3.4; and the use of
headsets for controlling an evolutionary search based on
attention to multiple pieces of music in a population. The
categorisation thresholds identified by [24] will be used to
determine the success level of the generations, resulting
in adaptive feedback composition. Multiple headsets will
then allow collaborative composition.
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