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ABSTRACT

The quest for understanding how pianists interpret notated
music to turn it into a lively musical experience, has led
to numerous models of musical expression. One of the
major dimensions of musical expression is loudness. Sev-
eral models exist that explain loudness variations over the
course of a performance, in terms of for example phrase
structure, or musical accent. Often however, especially in
piano music from the romantic period, performance direc-
tives are written explicitly in the score to guide performers.
It is to be expected that such directives can explain a large
part of the loudness variations. In this paper, we present
a method to model the influence of notated loudness di-
rectives on loudness in piano performances, based on least
squares fitting of a set of basis functions. We demonstrate
that the linear basis model approach is general enough to
allow for incorporating arbitrary musical features. In par-
ticular, we show that by including notated pitch in addition
to loudness directives, the model also accounts for loud-
ness effects in relation to voice-leading.

1. INTRODUCTION AND RELATED WORK

When a musician performs a piece of notated music, the
performed music typically shows large variations in tempo,
loudness, articulation, and, depending on the nature of the
instrument, other dimensions such as timbre and note at-
tack. It is generally acknowledged that one of the pri-
mary goals of such variations is to convey an expressive
interpretation of the music to the listener. This interpreta-
tion may contain emotional elements (e.g. to play a piece
‘solemnly’), and also elements that convey musical struc-
ture (e.g. to highlight a particular melodic voice, or to mark
a phrase boundary) [1, 2].

These insights, which have grown over decades of mu-
sic performance research, have led to numerous models of
musical expression. The aim of these models is to explain
the variations of loudness and tempo as a function of the
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structural interpretation of the music. For example, Todd
[3] proposes a model of loudness that is a function of the
phrase structure of the piece. Another example is Parn-
cutt’s model of musical accent [4].

Our current approach is limited to expressive dynamics.
For this reason we will not discuss models of expressive
timing here. More specifically, we will focus on the pi-
ano music of Chopin. This music is exemplary of classical
music from the romantic period, which mainly evolved in
Europe during the 19th century. Although this focus is ad-
mittedly very specific, it is often used to study expressive
music performance (as in the seminal works of Repp [5]),
since the music from the romantic period is characterized
by dramatic fluctuations of tempo and dynamics.

Common dynamics annotations include forte (f ), indicat-
ing a loud passage, piano (p) indicating a soft passage,
crescendo/decrescendo indicating a gradual increase (resp.
decrease) in loudness, respectively. Other, less well-known
markings prescribe a dynamic evolution in the form of a
metaphor, such as calando (“growing silent”), and smor-
zando (“dying away”).

Although is is clear that these annotations are a vital part
of the composition, they are not always unequivocal. Their
precise interpretation may vary from one composer to the
other, which makes it a topic of historical and musicolog-
ical study. (See Rosenblum [6] for an in depth discussion
of the interpretation of dynamics markings in the works of
different composers.)

Another relevant question concerns the role of dynamics
markings. In some cases, dynamics markings may simply
reinforce an interpretation that musicians regard as natural,
by their acquaintance with a common performance prac-
tice. In other words, some annotated markings may be
implied by the structure of the music. In other cases, the
composer may annotate highly specific and non-obvious
markings, and even fingerings, to ensure the performance
achieves the intended effect. An example of this is the mu-
sic of Beethoven.

The research presented here is intended to help clarify the
interpretation of dynamics markings, and how these mark-
ings shape the loudness of the performance, in interaction
with other aspects of the music. Very generally speaking,
the aim is to develop a new methodology for musicolog-
ical research, that takes advantage of the possibilities of
digitized musical corpi, and of advances in statistics and
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machine learning – an aim shared with Beran and Maz-
zola [7].

In a more specific sense, our research follows an intuition
that underlies many studies of musical expression, namely
that musical expression consists of a number of individ-
ual factors that jointly determine what the performance of
a musical piece sounds like [8]. The goal is then to iden-
tify which factors can account for expression, in casu loud-
ness variations, and to disentangle their contributions to the
loudness of the performance.

To this end we present a rather simple model of expres-
sive loudness variations, based on the idea of signal de-
composition in terms of basis functions. The primary goal
of this approach is to quantify the influence of dynamics
markings on the loudness of a performance, but the model
is general enough to allow for the inclusion of a wide range
of features other than dynamics markings, such as pitch
and motivic structure.

The outline of the paper is as follows: In section 2, we de-
scribe the model, and the basis functions used in the model.
In section 3, we show how the model is used to represent
loudness variations in real performances, and perform ex-
periments to evaluate the predictive value of the model, as
trained on the data. The results are discussed in section 4,
and conclusions and future work can be found in section 5.

2. A LINEAR BASIS MODEL OF EXPRESSIVE
DYNAMICS

As stated in the previous section, the model reflects the
idea that different aspects of the music jointly shape vari-
ation in loudness. When we ignore the possibly complex
ways in which aspects might interact, and assume that the
eventual loudness is a weighted mixture of these aspects, a
linear basis model is an obvious choice to model loudness
variation. In this model, one basis function is created for
each dynamics annotation, and the performed loudness is
regarded as a linear combination of these basis-function.
Even if it is simple, we believe that this approach cap-
tures the notion that part of the interpretation of a dynamics
marking is constant, and that the degree to which the dy-
namics marking is followed by the performer, is variable.
For example, the annotation p indicates that the passage
spanned by the range of that p is to be played softly. This
can be represented by a basis-function that removes a con-
stant amount from the loudness curve over that range. The
weight of that basis-function determines how much the per-
formance gets softer. We will illustrate this further in sub-
section 2.1.

2.1 Mapping from score to basis

We distinguish between three categories of dynamics an-
notations, based on their scope, as shown in table 1. The
first category, constant, represents markings that indicate
a particular loudness character for the length of a passage.
The passage is ended either by a new constant annotation,
or the end of the piece. Impulsive annotations indicate a
change of loudness for only a brief amount of time, usually
only the notes over which the sign is annotated. The last

Category Examples

Constant f, ff, fff, mf, mp, p, pp, ppp, vivo, agitato,
appassionato, con anima, con forza, con
fuoco, dolce, dolcissimo, espressivo, leg-
giero, leggierissimo

Impulsive fz, sf, sfz, fp

Gradual calando, crescendo, decrescendo, dimin-
uendo, smorzando, perdendosi

Table 1. Three categories of dynamics markings
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Figure 1. Example of basis functions representing dynam-
ics annotations

category contains those annotations that indicate a gradual
change from one loudness level to the other. We call these
annotations gradual.

Based on their interpretation, as described above, we as-
sign a particular basis function to each category. The con-
stant category is modeled as a step function that has value
1 over the affected passage, and 0 elsewhere. Impulsive
annotations are modeled by a unit impulse function, which
has value 1 at the time of the annotation and 0 elsewhere.
Lastly, gradual annotations are modeled as a combination
of a ramp and a step function. It is 0 until the start of the
annotation, linearly changes from 0 to 1 between the start
and the end of the indicated range of the annotation (e.g.
by the width of the ‘hairpin’ sign indicating a crescendo),
and maintains a value of 1 until the time of the next con-
stant annotation, or the end of the piece.

As an illustration, figure 1 shows a fragment of notated
music with dynamics markings, and the corresponding basis-
functions. The bottom-most curve is a weighted sum of the
basis functions ϕ1 to ϕ4 (using unspecified weights).

2.1.1 Other types of basis-functions

The basis functions shown in figure 1 represent dynamics
annotations, and are functions of score time. That is, when
two or more notes have the same onset time, the value of



the basis function of these notes will be equal. However,
we can also conceive of basis-functions more generally, as
functions of the note itself, that may yield different values
for notes even if their onset times coincide. This general-
ization allows us to represent a much larger range of score
information as basis-functions.

We will briefly discuss three features that we will include
in the model in the form of basis-functions. Firstly, we
can include information about the decorative role of notes
into the model, by defining a basis function that acts as an
indicator function. This function evaluates to 1 for notes
that have been marked in the score as grace notes, and to 0
otherwise.

Furthermore, we include a polynomial pitch model into
our linear basis model, simply by adding basis functions
that map each note to powers of its pitch value. For in-
stance, using the midi note number representation of pitches,
the four basis-functions of a third order polynomial pitch
model would map a note with pitch 72 to the vector
(720, 721, 722, 723) = (1, 72, 5184, 373248). There is no
need to treat the coefficients of this model separately – by
aggregating the polynomial pitch basis functions into the
overall model, the coefficients of the polynomial model
simply are a subset of the weights of the model. Obvi-
ously, the ranges of the polynomial basis-functions will be
very diverse. Therefore, in order to keep the model weights
in roughly the same range, it is convenient to normalize all
basis-functions to the interval [0, 1].

Lastly, we include a more complex feature, based on Nar-
mour’s Implication-Realization model of melodic expecta-
tion [9]. This model allows for an analysis of melodies that
includes an evaluation of the degree of ‘closure’ occurring
at each note 1 . Closure can occur for example due to met-
rical position, completion of a rhythmic or motivic pattern,
or resolution of dissonance into consonance. We use an
automatic melody parser that detects metric and rhythmic
causes of closure [10]. The output of this parser allows
us to define a basis-function that expresses the degree of
closure at each note.

Note that we cannot say in advance whether the inclusion
of such features will improve our model. By including the
features into the model as basis functions we merely create
a possibility for the model to explain loudness variations
as a function of those features.

2.2 The model

To specify a linear basis model of expressive dynamics, we
represent a musical performance as a list of pairs ((x1, y1),
· · · , (xn, yn)), where n is the number of notes in the per-
formance, xi is a representation of the score attributes of
the i-th note, and yi is the loudness value of the i-th note in
the performance. We will refer to the vector (x1, · · · , xn)
as x, and to the vector (y1, · · · , yn) as y.

We then define a basis function as a function ϕk(.) that
takes the n elements of x as arguments to produce a real

1 Narmour’s concept of closure is subtly different from the common
notion of musical closure in the sense that the latter refers to ‘ending’
whereas the former refers to the inhibition of the listener’s expectation of
how the melody will continue. In spite of the difference in meaning, both
notions are arguably related.

valued vector of size n. Once a set ϕ = (ϕ1(.), · · · , ϕm(.))
of m basis functions is fixed, it can be applied to a musical
score x to yield a matrix ϕ(x) = (ϕ1(x), · · · , ϕm(x)) of
size n×m, where n is the number of notes in x.

The definition of the elements of x is not mathematically
relevant, since x will only appear as an argument to ϕ.
Suffice it to say that the elements of x contain basic note
information such as notated pitch, onset time and offset
time, and any dynamics markings that are annotated in the
score. 2

The model is defined as a function y of the score x =
(x1, · · · , xn) and a vector of weights w = (w1, · · · , wm),
such that the loudness is a linear combination of the basis
functions:

f(x,w) = wTϕ(x) (1)

Thus, for note xi, the predicted loudness is computed as:

ŷi(w) = f(xi,w) = wTϕ(xi) =

m∑
j

wjϕj(xi) (2)

2.3 Learning and prediction with the linear basis
model

Given performances in form (x,y) we can use the model
in equation (1) to estimate the weights w, which is a simple
linear regression problem. The most common approach to
this kind of problem is to compute w as the least squares
solution[11], that is, the w that minimizes the sum of the
squared differences between the loudness predictions y(x,w)
of the model and the observed loudness y:

wx,y = argminw

n∑
i

[ yi − ŷi(w) ]2 (3)

To find the optimal w for a set of musical performances
((x1,y1), · · · , (xK ,yK)), we can use two different ap-
proaches. One way is to compute a vector wxk,yk

for each
performance k according to equation (3), and combine the
wxk,yk

’s in some way to form a final estimate of wx,y, e.g.
by taking the median for each weight wj

Another approach is to concatenate the respective xk’s
and yk’s of the performances into a single pair (x,y), and
to find wx,y directly according to equation (3). For this to
work however, ϕ must have the same number of columns,
i.e. the same number of basis functions, for each xk. This
may or may not be the case, depending on how we define
our basis functions. In the following paragraph, we briefly
explain two alternative approaches to defining basis func-
tions.

2.3.1 Local and global bases

The mapping of dynamics annotations can be done in dif-
ferent ways. The first possibility is to define a new basis
function for each dynamics marking that we encounter in
the score. This means for example, that repeated crescendo
annotations are represented in different basis functions, and

2 the representation of dynamics markings can be realized for example
by indicator functions over the elements of x



that each crescendo can be fitted to the observed loudness
independent of the other crescendi. This approach leads
to basis functions that are zero throughout the piece, ex-
cept for the passage where the corresponding annotation
applies. We call such basis functions local. They have the
benefit that they make the model more flexible, and there-
fore allow for better approximations of the data. A draw-
back of this method is that we obtain as many weight pa-
rameters as we have crescendi, rather than a single weight
estimation for the crescendo sign in general. Also, as the
number of basis functions we obtain for a musical piece
varies, depending on the number of dynamics annotations
in the score, the fitting method by concatenating musical
performances, as proposed above, becomes impossible.

Alternatively, we can choose to assign a single basis func-
tion to each type of marking. This implies for example,
that we combine the different step functions of each p in
the piece into a single function, e.g. by summing them up.
We call this a global basis function.

Note that the basis functions for the other features men-
tioned (features related to pitch, grace notes, and I-R clo-
sure) are all global: for each feature the values of all notes
in the performance are aggregated into a single basis func-
tion. There is therefore a fixed set of basis-functions rep-
resenting the global features, independent of the piece.

2.3.2 Prediction with local and global bases

In the global case, once a weight vector w has been learned
from a data set D, predictions for a new piece x can be
made easily, by computing the matrix ϕ(x) and subse-
quently the dot product f(x,w) = wTϕ(x).

In the case where dynamics annotations are modeled by
local basis functions, the w’s that have been learned for
each piece in the training set may have different lengths.
In this case, we split up the w’s of each training piece
into a set of weights wA that correspond to global basis
functions (i.e. for the non-dynamics features), and the re-
maining weights wB , for the dynamics annotations, which
vary in number. Over the weights wA (which have fixed
size), we take the median. The weights wB of all pieces
in the training set are pooled. This pool includes multiple
weights for each dynamics marking. To predict weights
for the dynamics markings of a test piece, we use a sup-
port vector machine [12], that has been trained on the pool
of weights wB from the training data. The medians over
the wA’s and the SVM predictions from the pool of wB’s
are then appended to yield the final vector w used for pre-
dicting the loudness of the new piece.

3. MODEL EVALUATION

To evaluate the different features, and basis modeling ap-
proaches we have discussed above, we use it to model and
predict the loudness in a set of real performances. Details
of the data set are given in subsection 3.1. We wish to
highlight that this data set is larger than any other data set
we know of, that has a similar level of recording precision
(exact onset times and loudness for each performed note).

We evaluate two aspects of the model variations. The first
is the goodness-of-fit, that is, how well can the model rep-

resent the data (subsection 3.2). The second is the predic-
tive accuracy (subsection 3.3). In both cases, we compare
different features sets, for both basis modeling approaches
we discussed, local and global.

We use the following abbreviations to refer to the differ-
ent kinds of features: DYN: dynamics annotations. These
annotations are represented by one basis function for each
marking in table 1, plus one basis function for accented
notes; PIT: a third order polynomial pitch model (3 basis
functions) 3 ; GR: the grace note indicator basis; IR: two
basis-functions, one indicating the degree of closure, and
another representing the squared distance from the near-
est position where closure occurs. The latter feature forms
arch-like parabolic structures reminiscent of Todd’s model
of dynamics [3].

The total number of parameters in the model is thus 30
(DYN) + 3 (PIT) + 1 (GR) + 2 (IR) + 1 (constant basis)
= 37, or less, depending on the subset of features that we
choose. In the evaluation, we omit the feature combina-
tions that consist of only GR and IR, since we expect their
influence on loudness to be marginal with respect to the
features DYN and PIT.

3.1 Data Set

For the evaluation we use the Magaloff corpus [13] – a
data set that comprises live performances of virtually the
complete Chopin piano works, as played by the Russian-
Georgian pianist Nikita Magaloff (1912-1992). The music
was performed in a series of concerts in Vienna, Austria,
in 1989, on a Bösendorfer SE computer-controlled grand
piano [14] that recorded the performances onto a computer
hard disk. The data set comprises more than 150 pieces,
adding up to almost 10 hours of music, and containing over
330,000 performed notes. These data, which are stored in
a native format by Bösendorfer, were converted into stan-
dard MIDI format, representing loudness values as a pa-
rameter named velocity, taking values between 0 (silent),
and 127 (loudest). For the purpose of this experiment, ve-
locity values have been transformed to have zero-mean per
piece.

Information about dynamics markings in the score was
obtained from optical music recognition from the scanned
musical scores (see [13] for details). We have used the
Henle Urtext Edition wherever possible.

3.2 Goodness-of-fit of the loudness representation

To quantify how well the model is able to capture loudness
variations of the performances. We compute the optimal
weight vector w of the model for each piece in the data
set. In the global case, a single weight vector is computed
on the whole data set, and is applied to the basis ϕ(x) of
each piece x. In the local case, a w was computed for each
piece, and used to to fit the model to the data. This is done
for the different features and combinations discussed at the
beginning of section 3.

3 The chosen polynomial order of 3 was chosen as most appropriate,
after a visual inspection of scatterplots showing the relationship between
loudness and pitch. The constant basis function that is part of the polyno-
mial pitch model is omitted because it is subsumed by a default constant
basis function included in every basis combination.



r R2

Basis (global) avg. std. avg. std.

DYN 0.332 (0.150) 0.133 (0.117)
PIT 0.456 (0.108) 0.219 (0.097)
DYN+PIT 0.565 (0.106) 0.330 (0.122)
DYN+PIT+GR 0.567 (0.107) 0.332 (0.123)
DYN+PIT+IR 0.575 (0.102) 0.341 (0.120)
DYN+PIT+GR+IR 0.577 (0.102) 0.343 (0.120)

Basis (local)

DYN 0.497 (0.170) 0.276 (0.160)
PIT 0.456 (0.108) 0.219 (0.097)
DYN+PIT 0.670 (0.113) 0.462 (0.146)
DYN+PIT+GR 0.671 (0.113) 0.463 (0.146)
DYN+PIT+IR 0.678 (0.109) 0.471 (0.142)
DYN+PIT+IR+GR 0.678 (0.109) 0.472 (0.142)

Table 2. Goodness of fit of the model; See section 3 for
abbreviations

The results of this evaluation are shown in table 2. The
goodness-of-fit is expressed in two quantities: r is the Pear-
son product-moment correlation coefficient, denoting how
strong the observed loudness, and the loudness values of
the fitted model correlate. The quantity R2 is the coeffi-
cient of determination, which is defined as:

R2 = 1 − SSerr
SSobs

, (4)

where:

SSobs =

n∑
i

(yi− ȳ)2, SSerr =

n∑
i

(yi− ŷi(w))2. (5)

The coefficient of determination is a measure for how
much of the loudness variance is accounted for by the model.
In the case of a perfect fit R2 = 1, since SSerr = 0. In
the undesirable case where the variance of the loudness in-
creases by subtracting the model fit from the observations,
we have SSerr > SSobs , and R2 will be negative. Table 2
lists the average and standard deviations of the r and R2

values over 154 musical pieces.
The results show that both the strongest correlation, and

the highest coefficient of determination is achieved when
using local basis for dynamics markings, and including all
features. This is unsurprising, since in the global setting
a single weight vector is used to fit all pieces, whereas in
the local setting each piece has its own weight vector. Fur-
thermore, since adding features increases the number of
parameters in the model, it will also increase the goodness-
of-fit.

3.3 Predictive accuracy of the model

The additional flexibility of the model, by using local bases
and adding features, may increase its goodness-of-fit. How-
ever, it is doubtful that it will help to obtain good model
predictions for unseen musical pieces. To evaluate the ac-
curacy of the predictions of a trained model for an unseen

r R2

Basis (global) avg. std. avg. std.

DYN 0.192 (0.173) 0.020 (0.100)
PIT 0.422 (0.129) 0.147 (0.111)
DYN+PIT 0.462 (0.125) 0.161 (0.156)
DYN+PIT+GR 0.462 (0.125) 0.161 (0.156)
DYN+PIT+IR 0.462 (0.124) 0.162 (0.155)
DYN+PIT+GR+IR 0.462 (0.124) 0.162 (0.154)

Basis (local)

DYN 0.192 (0.179) 0.024 (0.109)
PIT 0.415 (0.137) 0.149 (0.149)
DYN+PIT 0.459 (0.126) 0.151 (0.220)
DYN+PIT+GR 0.459 (0.123) 0.153 (0.195)
DYN+PIT+IR 0.455 (0.130) 0.141 (0.231)
DYN+PIT+IR+GR 0.457 (0.123) 0.188 (0.126)

Table 3. Predictive accuracy the model in a leave-one-out
scenario; See section 3 for abbreviations

piece, we perform a leave-one-out cross-validation over the
154 pieces. The predictions are evaluated again in terms of
averaged r and R2 values over the pieces, which are shown
in table 3.

The average correlation coefficients between prediction
and observation for the local and global basis settings are
roughly similar, ranging from weak (r = .19) to medium
correlation (r = .46). In the global setting, increasing the
complexity of the model does not affect its predictive ac-
curacy, whereas in the local setting, maximal predictive ac-
curacy is achieved for models of moderate complexity (in-
cluding dynamics, pitch, and grace note information). The
decrease of accuracy for more complex models is likely to
be caused by overfitting.

Interestingly, the highest proportion of explained vari-
ance (R2 = .19) is achieved by the predictions of the lo-
cal model with all available features (DYN+PIT+IR+GR).
However, it should be noted that the standard deviation of
R2 is rather large in most cases, indicating that for some
pieces a much larger proportion of the loudness variance
can be explained than for others.

4. DISCUSSION OF RESULTS

The results presented in the previous section show a sub-
stantial difference in the contribution of dynamical anno-
tations (DYN) and pitch (PIT) to the performance of the
model. The fact that pitch explains a larger proportion of
the loudness variance than the dynamics annotations may
come as a surprise, given that dynamics annotations are by
nature intended to guide variations in loudness.

Although the data set spans a large set of performances,
it is important to realize that the results are derived from
performances of a single performer, performing the music
of a single composer. The importance of pitch as a pre-
dictor for loudness may be different for other performers,
composers, and musical genres. Specifically, we hypothe-
size that the fact that pitch has a strong predictive value for
loudness in our data set may be a consequence of melody



lead. This phenomenon, which has been the subject of
extensive study (see [15, 16]), consists in the consistent
tendency of pianists to play melody notes both louder and
slightly earlier than the accompaniment. This makes the
melody more clearly recognizable by the listener, and may
improve the sensation of a coherent musical structure. In
many musical genres (though not all), the main melody of
the music is expressed in the highest voice, which explains
the relationship between pitch loudness.

This effect is clearly visible in figure 2, which displays
observed, fitted, and predicted loudness for the final mea-
sures of Chopin’s Prelude in B major (Opus 28, Nr. 11).
In this plot, the loudness of simultaneous notes is plotted
at different (adjacent) positions on the horizontal axis, for
the ease of interpretation. Melody notes are indicated with
dotted vertical lines. It is easily verified by eye that the
loudness of melody notes is substantially higher than the
loudness of non-melody notes. This effect is very promi-
nent in the predictions of the model as well. 4

Although observed and predicted loudness are visibly cor-
related, figure 2 shows that the variance of the prediction
is substantially lower than that of the observation, mean-
ing that expressive effects in the predicted performance are
less pronounced. The lower variance is most likely caused
by the fact that the (relatively small set of) model parame-
ters has been optimized to performances of a wide range of
different pieces, preventing the model from accurately cap-
ture loudness variance for individual performances. This
problem may require a more sophisticated model, or alter-
natively, a separate treatment of musical pieces with dis-
tinct musical characters.

In spite of this, the results generally show that using a
simple linear basis model, it is possible to capture a sub-
stantial proportion of loudness variations, both in function
of dynamics annotations in the score and as a consequence
of more implicit phenomena such as melody lead. We be-
lieve that this kind of model can provide a general method-
ology to study the factors that influence musical expres-
sion.

The model may also be of use to model variation in the
articulation of notes. However, the applicability of the
model to other aspects of musical expression, may not be
straight-forward in all cases. For example, expressive tim-
ing (e.g. in terms of inter-onset interval (IOI) ratios) is a
phenomenon that affects the time dimension of the perfor-
mance. Therefore, it is not desirable to predict IOI values
independently for simultaneous notes.

5. CONCLUSIONS AND FUTURE WORK

The work presented in this paper corroborates a growing
insight in music performance research: that even if mu-
sical expression is a highly complex and subjective phe-
nomenon, it is by no means fully unsystematic. We have
shown that using a simple linear basis model, we can gen-
erate loudness predictions from musical scores that show

4 Sound examples of musical fragments with loudness predicted
by the model can be found at www.cp.jku.at/research/
TRP109-N23/BasisMixer/midis.html

substantial positive correlation with loudness as observed
in human performances by a professional pianist.

The model has several advantages. Firstly, it embod-
ies the common intuition that expression in music perfor-
mance is a result of multiple factors that jointly determine
how the performance sounds. Secondly, it is concise: with
37 parameters, it is possible to explain almost 29% of the
loudness variance in a data set of over 330,000 performed
notes (table 2).

Improvements to the model can be conceived at different
fronts. For example, a more sophisticated approach may
be taken to infer the weight vectors from a data set. In par-
ticular, a Bayesian approach seems attractive, in which a
prior probability distribution over weights is specified. An-
other improvement would be to learn basis-functions from
the data, or adapt manually specified basis-functions. For
this, techniques developed in the field of dictionary learn-
ing, such as matching pursuit, might be used. Finally, it is
desirable to assess the quality of predicted loudness curves
by subjective evaluation through listening tests, in addition
to numerical comparison of predictions with target perfor-
mances.
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