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ABSTRACT

In this paper, three state of the art non-stationary sinu-
soidal analysis methods based on Fourier transform (FT)
are compared - the derivative method, reassignment and
generalized reassignment.1 The derivative method and
reassignment were designed to analyze linear log-AM/linear
FM sinusoids. Generalized reassignment can analyze si-
nusoids containing arbitrary order modulations, however
the discussion will be limited to linear log-AM/linear FM
in order to compare it objectively to reassignment and the
derivative method. In this paper, the equivalence of reas-
signment and the derivative method is shown to hold for ar-
bitray order modulation estimation and theoretical compar-
ison with generalized reassignment is presented. The re-
sults of tests conducted on two different frequency ranges,
full range (frequencies up to Nyquist) and reduced range
(frequencies up to 3/4 Nyquist) frequency range, are com-
pared to the Cramer-Rao bounds (CRBs).

1. INTRODUCTION

Sinusoidal modeling of sound signals is used in many au-
dio analysis/synthesis applications [1],[2],[3]. Several anal-
ysis methods for estimating sinusoidal model parameters
based on Short Time Fourier Transform (STFT) assume
that the underlying sinusoid is quasi-stationary inside a se-
lected time frame [4],[5],[6]. Since real world sounds of-
ten violate this assumption, the analysis methods able to
detect first order polynomial modulations have received
much attention [7],[8],[9],[10],[11]. It is straightforward
to see [12] that the reassignment method could be theoreti-
cally generalized to detect higher order polynomial modu-
lations for both log-AM and FM. As it was shown in [8]
and [13] that the reassignment and the derivative meth-
ods are theoretically identical, then the same must hold

1 The latter method was not explicitly named in [14] where it was first
presented, therefore the authors decided on the namegeneralized reas-
signment, because the method exhibits similarity with the original reas-
signment and can successfully analyze ageneralized sinusoid(a sinu-
soid with arbitrary order polynomial log-AM and FM function), a term
adopted from [15]. The method exhibits close relation to the derivative
method as well, however the namegeneralized derivative methodcould
cause ambiguity with the method described in [8].
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for the derivative method. However, expressions for esti-
mating higher order modulations get very complex in both
cases and its derivations are not straightforward. The theo-
retical equality of both methods can be exploited to con-
struct the generalized reassignment method [14], which
estimates parameters of signal modulations up to an arbi-
trary degree, although some restrictions concerning win-
dow function apply. In [15] the generalized reassignment
is shown to work for any linear transform, which includes
the STFT, the wavelet transform or even a combination of
them.
The derivative method, reassignment and generalized reas-
signment are all based on the same theoretical background,
yet perform quite different in practice. Therefore, a de-
tailed comparison of its internal mechanics is performed in
the present document. In section2, the common theoreti-
cal background including general equations for parameter
estimations is derived. The differences between reassign-
ment and the derivative method are described and method-
specific parameter estimate expressions for the two are de-
rived from the general ones, providing a mathematically
identical proof already given in [8] and [13], extended to
an arbitrary modulation degree. In section3 the theoretical
differences between original and generalized reassignment
are outlined. Section4 describes the test environment and
summarizes accuracies collected in tests of all three esti-
mators and compares them to CRBs. Conclusions and fu-
ture work suggestions are given in section5.

2. REASSIGNMENT AND THE DERIVATIVE
METHOD

This section demonstrates that reassignment and the deriva-
tive method are two versions of the same algorithm. This
fact was already pointed out in [8] and [13]. Present deriva-
tions prove that the derivative method is essentially a reas-
signment method with a slightly modified STFT definition
or vice versa. In the following expression, the STFT defi-
nitions for the derivative method (D) and reassignment (R)
are given respectively:

STFT
(
s(t), w(t); t, ω

)
=

D

Sw(t, ω) =
∫ ∞

−∞

s(τ + t)w(τ)e−jωτdτ
(1)
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STFT
(
s(t), w(t); t, ω

)
=

R

Sw(t, ω) =
∫ t+∞

t−∞

s(τ̄ )w(τ̄ − t)e−jω(τ̄−t)dτ̄ ,
(2)

wheres(t), w(t) are signal and window functions respec-
tively. It is obvious, that the second definition can be de-
rived from the first by substituting the variables:τ = τ̄−t.
Essentially

R

Sw =
D

Sw; however, its the time/frequency
derivatives yield different expressions (see Appendix A),
yet a common notationSw will be used for both

R

Sw and
D

Sw from this point on.
Sw is a function of time and frequency which can be writ-
ten in polar form as:

Sw(t, ω) = exp
(
a(t, ω) + jφ(t, ω)

)
. (3)

From the above representation, amplitude and phase func-
tions of time and frequency can be written as:

a(t, ω) = ℜ

(

log
(
Sw(t, ω)

))

(4)

φ(t, ω) = ℑ

(

log
(
Sw(t, ω)

))

. (5)

Reassigned frequency and time equations can be expressed
for this general case as:

ω̂(t, ω) =
∂

∂t
φ(t, ω) = ℑ

(
∂Sw

∂t

Sw

)

(6)

t̂(t, ω) = t−
∂

∂ω
φ(t, ω) = t−ℑ

(
∂Sw

∂ω

Sw

)

. (7)

Linear log-AM/linear FM are commonly defined in the fol-
lowing form:

s(t) = exp
(
λ0 + µ0t+ j(φ0 + ω0t+

ψ0

2
t2)
)
. (8)

As pointed out in [8] and [10], general log-AM and FM
expressions can be written as:

µ̂(t, ω) =
∂

∂t
a(t, ω) = ℜ

(
∂Sw

∂t

Sw

)

(9)

ψ̂(t, ω) =
∂ω̂

∂t̂
=
∂ω̂

∂t
/
∂t̂

∂t
(10)

∂ω̂

∂t
= ℑ

(
∂2Sw

∂t2
Sw −

(
∂Sw

∂t

)2

(
Sw

)2

)

(11)

∂t̂

∂t
= 1 −ℑ

(
∂2Sw

∂ω∂t
Sw −

∂Sw

∂ω
∂Sw

∂t
(
Sw

)2

)

. (12)

The above equations provide estimate espressions indepen-
dent of the method used and thus hold for both reassign-
ment and the derivative method. Once linear log-AM, fre-
quency and linear FM parameters are estimated, the fol-
lowing expressions can be used to obtain accurate esti-

mates for the two static parameters [7],[8]:

Γw(ω, µ, ψ) =

∫ ∞

−∞

w(t) exp

(

µt+ j

(

ωt+
ψ

2
t2
))

dt

(13)

â0 =

∣
∣
∣
∣
∣

Sw

Γw(ω∆, µ̂0, ψ̂0)

∣
∣
∣
∣
∣

(14)

φ̂0 = 6

(

Sw

Γw(ω∆, µ̂0, ψ̂0)

)

. (15)

In order to obtain the above expressions for the two meth-
ods, partial frequency and time derivatives ofSw should be
computed for reassignment and the derivative method. In
the following formulas,Sw′ andStw represent the STFT of
a signal, but the window derivative and time-ramped win-
dow functions are used instead of the original ones respec-
tively, whileS′

w represents the STFT of the time derivative
of a signal. For reassignment, the following expressions
with some restrictions (see Appendix A) apply:

∂

∂t
Sw = −Sw′ + jωSw (16)

∂

∂ω
Sw = −jStw (17)

∂2

∂ω∂t
Sw = jStw′ + jSw + ωStw (18)

∂2

∂t2
Sw = Sw′′ − 2jωSw′ − ω2Sw. (19)

Detailed derivations of16 and 17 can be found in Ap-
pendix A (see equations39, 40 and43). Equation18 is
derived in detail in Appendix A (see equation41), however
the generalized rule (see equation42) for time derivatives
can be used as well. Equation19 can be derived by us-
ing equation42 twice. For the derivative method, slightly
simpler expressions hold:

∂

∂t
Sw = S′

w (20)

∂

∂ω
Sw = −jStw (21)

∂2

∂ω∂t
Sw = −jS′

tw (22)

∂2

∂t2
Sw = S′′

w. (23)

Substituting reassignment STFT expressions16-19into gen-
eral equations for parameter estimations6-12yields:

R

ω̂(t, ω) = ω −ℑ

(
Sw′

Sw

)

(24)

R

µ̂(t, ω) = −ℜ

(
Sw′

Sw

)

(25)

R

ψ̂(t, ω) =
ℑ

(
SwSw′′−(Sw′)2

(Sw)2

)

ℜ

(
Stw′Sw−StwSw

(Sw)2

) , (26)

which are well known reassignment expressions for esti-
mating parameters of log-AM/FM sinusoids. Analogously,



substituting derivative method STFT expressions20-23into
same equations results in:

D

ω̂(t, ω) = ℑ

(
S′

w

Sw

)

(27)

D

µ̂(t, ω) = ℜ

(
S′

w

Sw

)

(28)

D

ψ̂(t, ω) =
ℑ

(
S′′

w

Sw

)

− 2
D

µ̂(t, ω)
D

ω̂(t, ω)

1 + ℜ

(
S′

twSw−StwS′

w

(Sw)2

) , (29)

which are the derivative method expressions as given in [8]
and [13]. Since expressions27and28are straightforward,
only detailed derivations of equation29 can be found in
Appendix B (see equations50, 51).
This section has clearly demonstrated that reassignment
and the derivative method are in fact analogous methods,
derived from the same general linear log-AM/linear FM
equations. The only difference is the definition of STFT,
which results in quite different expressions for parame-
ter estimates. Mathematically identical proof was already
given in [8] and [13], however it was given for each pa-
rameter of linear log-AM/linear FM sinusoids separately
and thus does not prove the equivalence of the two meth-
ods for arbitrarly modulated sinusoids. In order to prove
equivalence of the methods in such a general case, arbi-
trary order time derivatives of general linear FM parameter
expressions (equation10) should be considered:∂

nω̂

∂t̂n
=

∂nω̂
∂tn /

∂nt̂
∂tn . Such expressions would contain STFTs of the

form ∂k+lSw

∂tk∂ωl . By using the rules42, 43, 44, 45 it is pos-
sible to transform the general expressions into reassign-
ment ones, containing STFTs of the formSw(k)tl and anal-
ogously into the derivative method ones, containing STFTs
of the formS

(k)

tl . It is straightforward that reassignment
and corresponding derivative method expressions are iden-
tical for all modulation degrees. The same procedure can
be performed for log-AM, concluding the proof of equality
of the two methods for an arbitrary modulated sinusoid.
The derivative method requires computation of signal time-
derivatives, as opposed to reassignment, which requires
computation of the window time-derivatives. In practice,
it is impossible to avoid errors computing time derivative
of the signal in time domain. For that purpose, a deriva-
tion filter is used, however unacceptable errors occur at
high frequencies [8]. Further, using such filter increases
the frame length requirements of STFT and raises com-
putational complexity. When performing STFT, analytical
expression for window function is known in most cases,
therefore exact analytical expression for its time deriva-
tives can generally be computed before performing STFT,
which does not add any computational complexity. It can
be concluded that lower computational complexity and higher
accuracy is expected from the reassignment estimates com-
pared to the derivative method ones. However, tests have
shown that in the reduced frequency range (up to 3/4 Nyquist),
methods perform comparably [8].

3. REASSIGNMENT AND GENERALIZED
REASSIGNMENT

Generalized reassignment is the latest method based on the
same backround as reassignment and the derivative method.
The method is essentially based on the derivative method,
as it uses signal derivatives for estimating the parameters.
However, integrationper-partesis used to transform ex-
pressions containing signal derivatives to expressions con-
taining ramped window derivatives [14]. Final expressions
resemble much more those of reassignment than those of
the derivative method. Although it is designed to esti-
mate arbitrary order log-AM/FM modulations, the discus-
sion will be restricted to linear log-AM/FM signals. The
following equations apply in this context (from [14]):

(
GR

µ̂(t, ω) + j
GR

ω̂(t, ω))Sw + j
GR

ψ̂(t, ω)Stw =

− Sw′ + jωSw (30)

Sw′′ − j2ωSw′ − Swω
2 =

(
GR

µ̂(t, ω) + j
GR

ω̂(t, ω))(−Sw′ + jωSw) −
GR

ψ̂(t, ω)Stw.
(31)

From above equations, the following estimates can be ex-
pressed [14]:

GR

ψ̂(t, ω) =
ℑ

(
SwSw′′−(Sw′)2

(Sw)2

)

ℜ

(
Sw′Stw−StwSw

(Sw)2

) (32)

GR

µ̂(t, ω) + j
GR

ω̂(t, ω) = jω −
Sw′

Sw

− j
GR

ψ̂(t, ω)
Stw

Sw

⇒

(33)

GR

ω̂(t, ω) =

R
ω̂

︷ ︸︸ ︷

ω −ℑ

(
Sw′

Sw

)

−
GR

ψ̂(t, ω)

t∆=t̂−t
︷ ︸︸ ︷

ℜ

(
Stw

Sw

)

(34)

GR

µ̂(t, ω) =

R
µ̂

︷ ︸︸ ︷

−ℜ

(
Sw′

Sw

)

−
GR

ψ̂(t, ω)ℑ

(
Stw

Sw

)

.

(35)

The FM estimate expression is identical to that of original
reassignment. The frequency and log-AM estimates on the
other hand, contain additional terms compared to those of
original reassignment. In the case of the frequency esti-
mate, the additional term isψt∆. The original frequency
reassignment gives a frequency estimate at a reassigned

time t̂, so the time shiftt∆ = t̂− t = ℜ

(
Stw

Sw

)

can be used

to correct the frequency estimate (e.g.:movefrequency
estimate back to desired time), once FM is estimated. In
the case of a log-AM estimate, no such time correction is
present, as the log-AM is modeled to be constant. How-

ever, another term̂ψℑ
(

Stw

Sw

)

with no straightforward in-

terpretation is present. It can be thought of as a correction
of an error that presence of FM causes on AM estimation.



It will be shown in tests that this additional terms improve
frequency and AM estimate significantly in high signal-to-
noise (SNR) ratios.

4. TESTS AND RESULTS

For easier comparison, the test parameter set was choosen
identical to the one in [8], with exception of a frequency
range. The test frequencies (100 in total) were linearly
distributed over two different frequency ranges: reduced
frequency range, 20Hz-16538Hz (3/4 of Nyquist) and full
frequency range, 20Hz-22050Hz (Nyquist), the results for
each range are plotted separately. All other test param-
eters were linearly distributed in the following ranges: 7
different phase values in range[−π, π], 5 log-AM values
values in[−100, 100] range and 5 different FM values in
[−10000, 10000]. Hanning window of length 511 samples
and sampling frequency of 44100Hz was used. The error
variance was calculated using all parameter combinations.
In the case of the derivative method, the derivation filter
as described in [8] of length 1023 was used and the frame
length was extended to 1533 samples (511+2 1023−1

2 ). Af-
ter convolution with the filter, only the middle 511 samples
out of 1533 were kept to avoid edge effect.
In order to perform parameter estimations, all the algo-
rithms require an initial frequency estimate, which is a con-
sequence of the fact that STFT is a function of frequency
and time. The initial frequency estimate is commonly ac-
quired by taking the bin frequency of the magnitude spec-
trum peak. Once a frequency estimate is made (using the
bin frequency of the peak), this estimate itself can be used
to estimate other parameters, even tore-estimatethe fre-
quency itself. Such a procedure can be performed many
times, thus iteratively obtaining presumably more accurate
estimations in each iteration. In [8], the derivative method
was tested in the following setting: the bin frequency of
the spectrum peak is used to obtain a frequency estimate,
which is in turn used to estimate log-AM/FM and finally
static log-amplitude/phase, but the frequency itself is not
reestimated. On the other hand, reassignment was tested
by using the bin frequency of spectrum peak for all esti-
mates. In the presented test results, all algorithms use a fre-
quency estimate (not the inital bin frequency of the peak)
to obtain all subsequent higher order, as well as static pa-
rameter estimates. For that, it is reasonable to expect that
reassignment will achieve better results as reported in [8].
Further, the FM estimates of the derivative method as de-
fined in [8] did not take into account the group delay, which
was pointed out in [13], thus the improvement of the FM
estimate of the derivative method is also expected.
The estimation errors of the derivative method are identical
for log-amplitude, log-AM, phase and frequency to those
presented in [8], tested in 20Hz-16538Hz (3/4 Nyquist)
frequency range. The FM estimate improved as expected.
Reassignment performs significantly better than reported
in [8], which renders the accuracy difference between the
two in the reduced frequency range negligible. General-
ized reassignment performs superior for all parameter es-
timations except FM in this frequency range, where all
three methods perform roughly the same. Using the full

frequency range, estimate errors of the derivative method
rise significantly, while the original reassignment performs
even better. Generalized reassignment again performs sig-
nificantly better in all cases and seems to be unaffected by
frequency range changes. This suggests, that generalized
reassignment achieves identical accuracy for all frequen-
cies. It is important to note, that a significant accuracy
difference between reassignment and generalized reassign-
ment occurs in higher SNR region. For each parameter es-
timation, it is possible to define a SNR value, above which
the accuracies of reassignment and generalized reassign-
ment differ significantly. Below such SNR value however,
the two methods perform equally.
All three algorithms were implemented in Octave program-
ming language and the tests were conducted with Octave
2.9.9 (x86-64 bit Debian distribution) on a Sun Grid En-
gine 6.2 (SGE) cluster.

5. CONCLUSION

This document analyzes and compares three state of the art
methods for non-stationary analysis and compares them to
CRBs. It has been shown that generalized reassignment is
the most appropriate method for analyzing complex linear
log-AM/FM signals. Generalized reassignment is able to
detect an arbitrary log-AM/FM degree of a sinusoid and
achieves superior accuracy in the linear log-AM/linear FM
case and should therefore be the topic of further research
concerning the analysis of real world signals: both multi-
component and real. In this case, the degree of modulation
of each sinusoid under study is unknown and determin-
ing its exact degree is crucial, as errors rise significantly
when the modeled modulation degree is set either too high
or too low [13]. Furthermore, the usual window functions
like Hanning cannot be used when analyzing higher order
modulations, as its second time derivative does not reach
0 at the start and end of the frame (required by the algo-
rithm). Some higher order window functions were pro-
posed in [13], however its exact accuracy currently remains
unknown; therefore a more detailed study of window func-
tions satisfying the restrictions of the algorithm should be
researched. It is reasonable to expect, that such window
functions would exhibit less desirable time-frequency trade
offs. To avoid accuracy deterioration, limiting the analysis
algorithm to a certain degree of modulation is crucial and
could be balanced with a multi resolution method of some
sort, for example a wavelet transform based one, a similar
idea already pointed out in [15].
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Figure 1: Parameter estimation errors for reassignment, the derivative method and generalized reassignment.



7. APPENDIX A

As already briefly mentioned in section1, the equality
R

Sw =
D

Sw holds for allt andω, yet each equation yields a differ-
ent time derivative expression. When the window function
is assumed to be of finite support, and consequently the
infinite integral bounds are replaced by finite ones, the ex-
pressions for

R

Sw and
D

Sw change to:

D

Sw(t, ω) =

∫ T
2

−T
2

s(τ + t)w(τ)e−jωτ dτ (36)

R

Sw(t, ω) =

∫ t+ T
2

t−T
2

s(τ̄ )w(τ̄ − t)e−jω(τ̄−t)dτ̄ , (37)

where the window function time support is assumed to
be T. The partial time derivative of integral expression37
should be taken with care, as integral limits depend on time
and the time derivative operator cannot simply be brought
inside the integral. Using the Leibniz’s integral rule on

R

Sw

yields:

∂

∂t

R

Sw(t, ω) =

∂

∂t

∫ t+ T
2

t−T
2

s(τ̄ )w(τ̄ − t)e−jω(τ̄−t)dτ̄ =

s(t+
T

2
)

=0
︷ ︸︸ ︷

w(
T

2
) e−jω T

2 − s(t−
T

2
)

=0
︷ ︸︸ ︷

w(−
T

2
) ejω T

2 +

∫ t+ T
2

t−T
2

s(τ̄ )
∂

∂t

[

w(τ̄ − t)e−jω(τ̄−t)
]

dτ̄ .

(38)

With the additional restriction that the window function
reaches 0 at both its edges, e.g.:w(T

2 ) = w(−T
2 ) =

0, the first two terms of the above expression can be ne-
glected. The restriction modifies equation38 in a way,
as if the integral boundaries wouldn’t depend on the time
variable and thus the time derivative operator can simply
be brought inside the integral. Throughout this appendix
it will be assumed, that the window function and its arbi-
trary time derivative reach 0 at both edges, eg:w(k)(T

2 ) =

w(k)(−T
2 ) = 0 for all k and consequently the time deriva-

tion operator can always be brought inside the integral.
Note, that the partial frequency derivative operators can be
brought inside the integral for both

R

Sw and
D

Sw, as well as
the partial time derivative in the case of

D

Sw without any
additional restrictions. In the following derivations thein-
tegral bounds will be omitted for the sake of clarity. For

reassignment the following holds:

∂

∂t

R

Sw =

∫

s(τ)
∂

∂t

[

w(τ − t)e−jω(τ−t)
]

dτ =

∫

s(τ)

−w′(t)
︷ ︸︸ ︷

∂

∂t
[w(τ − t)] e−jω(τ−t)dτ+

∫

s(τ)w(τ − t)

jωe−jω(τ−t)

︷ ︸︸ ︷

∂

∂t

[

e−jω(τ−t)
]

dτ =

− Sw′ + jωSw

(39)

∂

∂ω

R

Sw =

∫

s(τ)w(τ − t)

−j(τ−t)e−jω(τ−t)

︷ ︸︸ ︷

∂

∂ω

[

e−jω(τ−t)
]

dτ =

− jStw

(40)

∂

∂t

R

Stw =
∫

s(τ)
∂

∂t

[

w(τ − t)(τ − t)e−jω(τ−t)
]

dτ =

∫

s(τ)

−w′(τ−t)
︷ ︸︸ ︷

∂

∂t
[w(τ − t)](τ − t)e−jω(τ−t)dτ+

∫

s(τ)w(τ − t)

−1
︷ ︸︸ ︷

∂

∂t
[τ − t] e−jω(τ−t)dτ+

∫

s(τ)w(τ − t)(τ − t)

jωe−jω(τ−t)

︷ ︸︸ ︷

∂

∂t

[

e−jω(τ−t)
]

dτ =

− Sw′ − Sw + jωSw.

(41)

It is informative to generalize the time and frequency deriva-
tive expressions for the reassignment STFT using arbitrary
window time derivative, ramped with an arbitrary polyno-
mial:

∂

∂t

R

Stnw(k) =
∫

s(τ)
∂

∂t

[

w(k)(τ − t)(τ − t)ne−jω(τ−t)
]

dτ =

∫

s(τ)

−w(k+1)(τ−t)
︷ ︸︸ ︷

∂

∂t
[w(k)(τ − t)](τ − t)ne−jω(τ−t)dτ+

∫

s(τ)w(k)(τ − t)

−n(τ−t)n−1

︷ ︸︸ ︷

∂

∂t
[(τ − t)n] e−jω(τ−t)dτ+

∫

s(τ)w(k)(τ − t)(τ − t)n

jωe−jω(τ−t)

︷ ︸︸ ︷

∂

∂t

[

e−jω(τ−t)
]

dτ =

− Stnw(k+1) − Stn−1w(k)n+ jωStnw(k)

(42)



∂

∂ω

R

Stnw(k) =

∫

s(τ)w(k)(τ − t)(τ − t)n

−j(τ−t)e−jω(τ−t)

︷ ︸︸ ︷

∂

∂ω

[

e−jω(τ−t)
]

dτ =

− jStn+1w(k) .

(43)

Equation42 corresponds to equations39 and 41 for the
values ofk = 0, n = 0 andk = 0, n = 1 respectively and
equation43 corresponds to equation40 for the values of
k = 0, n = 0.
Analogously, for the derivative method STFTs, time and
frequency derivatives can be generalized for an arbitray
signal time derivative, using a window ramped with an ar-
bitrary polynomial:

∂

∂t

D

S
(k)
tnw =

∫
∂

∂t

[

s(k)(τ + t)
]

w(τ)τne−jωτdτ =

S
(k+1)
tnw

(44)

∂

∂ω

D

S
(k)
tnw =

∫ ∞

−∞

s(τ + t)w(τ)τn

−jτe−jωτ

︷ ︸︸ ︷

∂

∂ω

[
e−jωτ

]
dτ =

− jS
(k)
tn+1w

.

(45)

8. APPENDIX B

Substituting the reassignment STFT expressions16-19into
general equations for frequency, log-AM and FM estima-

tions defined in6,9,10yields:

R

ω̂(t, ω) = ℑ

(
−Sw′ + jωSw

Sw

)

= ℑ

(

jω −
Sw′

Sw

)

= ω −ℑ

(
Sw′

Sw

)

(46)

R

µ̂(t, ω) = ℜ

(
−Sw′ + jωSw

Sw

)

= ℜ

(

jω −
Sw′

Sw

)

= −ℜ

(
Sw′

Sw

)

(47)

R

ψ̂(t, ω) =
∂
R

ω̂

∂t
/
∂
R

t̂

∂t

∂
R

ω̂

∂t
= ℑ

(
(Sw′′ − 2jωSw′ − ω2Sw)Sw

(Sw)2

)

−ℑ

(
(−Sw′ + jωSw)2

(Sw)2

)

= ℑ

(
Sw′′Sw − (Sw′)2

(Sw)2

)

(48)

∂
R

t̂

∂t
= 1 −ℑ

(
(−Sw′ − Sw + jωSw)Sw)

(Sw)2

)

−ℑ

(
jSw(−Sw′ + jωSw

(Sw)2

)

= 1 −ℑ

(

j
(Sw)2 + Stw′Sw − StwSw

(Sw)2

)

= ℜ

(
Stw′Sw − StwSw

(Sw)2

)

.

(49)

Substituting the derivative method STFT expressions20-
23 into general equations for frequency and log-AM esti-
mations defined in6,9 yield straightforward expressions,
however the expression for FM estimate10deserves more
attention:

D

ψ̂(t, ω) =
∂
D

ω̂

∂t
/
∂
D

t̂

∂t

∂
D

ω̂

∂t
= ℑ

(
S′′

wSw − (S′
w)2

(Sw)2

)

= ℑ

(
S′′

w

Sw

)

−

2ℜ

„

S′

w
Sw

«

ℑ

„

S′

w
Sw

«

︷ ︸︸ ︷

ℑ

((
S′

w

Sw

)2
)

= ℑ

(
S′′

w

Sw

)

− 2
D

µ̂(t, ω)
D

ψ̂(t, ω)

(50)

∂
D

t̂

∂t
= 1 −ℑ

(
−jS′

twSw + jStwS
′
w

(Sw)2

)

= 1 + ℜ

(
S′

twSw − StwS
′
w

(Sw)2

)

.

(51)
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