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Capsule 

Treating oocyte-conditioned media with proteases and hexane provided evidence for the 

oocyte-derived chemoattractant being a hydrophobic non-peptide molecule which, in an oocyte-

conditioned medium, is associated with a carrier protein. 
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Abstract 

Objective: To characterize the nature of the human oocyte-derived chemoattractant. 

Design: Laboratory in-vitro study. 

Setting: Academic research institute. 

Patients: Ten healthy sperm donors. Oocyte-conditioned media from women undergoing IVF 

treatment due to male factor infertility. 

Interventions: Sperm samples were processed by the migration–sedimentation technique. Oocyte-

conditioned media were collected 2-3 h after oocyte stripping. 

Main Outcome Measure(s): Sperm chemotaxis was assayed in a µ-slide chamber according to the 

direction of swimming relative to that of the chemical gradient. 

Results: Oocyte-conditioned media treated with proteases did not lose their chemotactic activity; on 

the contrary, they became more active, with the activity shifted to lower concentrations. When 

oocyte-conditioned media were subjected to hexane extraction, chemotactic activity was found in 

both the hydrophobic and aqueous phases. Known mammalian sperm chemoattractants were ruled 

out as oocyte-derived chemoattractants.  

Conclusions: Our results suggest that the oocyte-derived chemoattractant is a hydrophobic non-

peptide molecule which, in an oocyte-conditioned medium, is associated with a carrier protein that 

enables its presence in a hydrophilic environment. 

Key words 

Sperm chemotaxis; Chemotaxis; Oocyte-derived chemoattractant   
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Introduction 

In recent years it became clear that mammalian spermatozoa must be guided for reaching 

the oocyte [for a review, see (1)]. Thus far, three potential sperm guidance mechanisms have been 

recognized in humans: chemotaxis (2), thermotaxis (3), and rheotaxis (4). All these mechanisms only 

function in capacitated spermatozoa, i.e., ripe spermatozoa that acquired the ability to fertilize the 

egg (3-5). Thermotaxis and rheotaxis are assumed to be long-range mechanisms (1,4) guiding 

spermatozoa to the fertilization site, and chemotaxis is thought to be a short-range, more accurate 

mechanism that acts in the immediate surroundings of the oocyte-cumulus complex, guiding 

spermatozoa to the oocyte (1). This short-range mechanism appears to be a two-step process, first 

chemotaxis to the cumulus cells that surround the oocyte and then chemotaxis within the cumulus 

mass towards the oocyte itself. This is based on the finding that, in humans, there are two origins of 

sperm chemoattractants: the mature oocyte and the surrounding cumulus cells (6). The cumulus cells 

secrete a single chemoattractant, progesterone (7,8). This chemoattractant is highly active, with 

chemoattraction being observed at a concentration range as low as 10-11–10-10 M (7,8). The identity 

of the chemoattractant(s) secreted from the oocyte is not known, in spite of intensive efforts to 

identify it. It is known, however, that it is more potent than the cumulus-derived chemoattractant 

progesterone (6), meaning that it is probably active at concentrations lower than 10-11 M. Realizing 

that the identification of a substance present at such a low concentration is extremely difficult, our 

aim in this study was to characterize the nature of the oocyte-derived chemoattractant. 

Materials and Methods 

Chemicals 

Modified human tubal fluid (HTF) medium and human serum albumin (HSA) solution were 

obtained from Irvine Scientific (Santa Ana, CA, USA); polyvinylpyrrolidone (PVP, 25K) was from Fluka 
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(Buchs, Switzerland); progesterone, Pronase E and undecanal were purchased from Sigma (Rehovot, 

Israel); Proteinase K and n-hexane were from Merck (Darmstadt, Germany) and prostaglandin E1 was 

purchased from Avanti Polar Lipids (AL, USA). 

Spermatozoa  

Human semen samples were obtained from ten healthy donors after 3 days of sexual 

abstinence. (The study was approved by the Bioethics and Embryonic Stem Cell Research Oversight 

Committee of the Weizmann Institute of Science. Informed consent was obtained in writing from 

each sperm donor.) Semen samples were allowed to liquefy for 30–60 min at room temperature and 

verified for normal sperm density, motility and morphology [according to WHO guidelines (9)]. 

Human spermatozoa were separated from the seminal plasma by the migration–sedimentation 

technique (10) using the commercially available HTF medium supplemented with 0.3% (w/v) HSA. 

Following this procedure, the sperm concentration was adjusted to 4-5x105 cells/ml in HTF medium 

containing 0.3% HSA and 3.5% (w/v) PVP. The sperm suspensions were incubated under an 

atmosphere of 5% (v/v) CO2 at 37oC for an additional 1 h (2 h in total with the separation procedure) 

to obtain capacitated spermatozoa (5). 

Oocyte-conditioned media 

Oocyte-conditioned media and the respective control medium (G-1, Vitrolife, Sweden) were 

obtained from the In-vitro Fertilization (IVF) Unit at Assaf Harofeh Medical Center (with the approvals 

of the hospital’s Helsinki committee and the Weizmann Institute Bioethics and Embryonic Stem Cell 

Research Oversight Committee). Cumulus-oocyte complexes were retrieved from women undergoing 

transvaginal oocyte aspiration for in vitro fertilization. The women were treated with GnRH analog 

and gonadotrophin for ovarian stimulation. Oocyte retrieval was performed 35-38 h after human 

choriogonadotrophin injection. The cumulus cells were stripped from the cumulus-oocyte complexes 

by employing both mechanical pipetting and 10–30 s treatment with 40 units/mg hyaluronidase 
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(type IV-S, Sigma, USA) followed by washing, thus avoiding leftovers of cumulus cells. Groups of 

stripped oocytes (6–8 per group) were cultured in 25 µl drops of G-1 medium supplemented with 

10% (v/v) HSA for 2-3 h before undergoing intra-cytoplasmic sperm injection. The conditioned media 

were collected and frozen just prior to the injection. 

Progesterone determination 

Oocyte-conditioned media were analyzed for the presence of progesterone using a 

progesterone ELISA kit (Enzo Life Sciences, Farmingdale, NY, USA) according to manufacturer 

instructions. The concentration of progesterone was calculated according to an experimental 

standard curve. The lowest concentration of the standard was 15.62 pg/ml, which set up the lowest 

limit of detection. Media from six different women pooled in pairs (total of three measured samples) 

were subjected to analysis. Samples were diluted 1:14 and run in duplicates. The negative control 

was G-1 medium supplemented with 10% (v/v) HSA. 

Hexane extraction 

An equal volume of n-hexane was added to the samples of oocyte-conditioned medium and 

control medium. The tubes were vortexed for 2 min and then spun (3000 u g) until a clear 

differentiation between two phases was observed. The upper phase, containing the hexane fraction, 

was transferred to another tube. Both fractions were then subjected to chemotaxis assays. 

Chemotaxis assays 

Chemotaxis assays were performed as described (11), using a disposable P-slide chemotaxis 

chamber (Ibidi GmBH, Munich, Germany). Each assay included a negative control experiment in the 

absence of the test substance. In experiments with oocyte-conditioned media this negative control 

consisted of a gradient of the oocyte-incubating medium [G-1 medium supplemented with 10% (v/v) 

HSA] treated the same way as the oocyte-conditioned medium (e.g., protease treatment). In 

experiments with prostaglandin E1 the negative control contained a gradient of the diluent.  
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Chemotaxis assessment and statistics 

Chemotaxis was assessed, as described (12), according to the distribution of the 

instantaneous directionality angles (Jinst, the angle between the vector of the cell frame-to-frame 

displacement and the gradient direction; the video frequency was 25 frames/s). For each treatment 

the total number of angles in the gradient direction (N+) and in the opposite direction (N-) were 

summed from a number of experiments. A combined odds parameter was calculated as the ratio 

between these sums (combined Odds = 6N+/6N-). The odds parameter yields values close to 1 when 

the swimming is random; it is > 1 when the swimming is biased in the gradient direction. The 

intensity of the chemotactic response was reflected in the combined odds ratio (O.R.) parameter 

(combined O.R. = combined Oddstreatment / combined Oddscontrol).  

To assess the statistical significance of elevated O.R. we used a block-bootstrapping 

algorithm as described earlier (13). Briefly, we resampled a large control data set to build a 

distribution of control O.R. for different sample sizes. The distribution provided the probability that a 

treatment O.R. is above a control O.R. randomly drawn from this distribution. The assay variability 

was assessed by the width of the control confidence intervals, assuming similar variability for the 

treatments and the controls. The dependence of the confidence intervals of the control O.R. values 

on the sample size is shown in Table 1. 

Results 

Wishing to employ for the characterization the most physiologically relevant source of 

oocyte-derived chemoattractant, we used human oocyte-conditioned media, i.e., media in which 

mature oocytes, stripped from the surrounding cumulus cells, were incubated for 2–3 h. We assayed 

chemotaxis by determining the swimming bias in the direction of the chemoattractant gradient, and 

calculating the ratio between the biases in the presence and absence of a gradient (termed 

combined odds ratio — see Materials and Methods). A value of 1 means no chemotaxis; a value >1 
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means chemotaxis towards the chemoattractant (12,13). Fig. 1A shows a representative chemotactic 

response of oocyte-conditioned media at various dilutions, demonstrating that an oocyte-

conditioned medium is usually chemotactically active at 105–106 dilution. 

To verify that these conditioned media had no remains of progesterone from the cumulus 

cells, we performed a highly sensitive, progesterone-specific ELISA assay. We assayed three different 

samples of oocyte-conditioned media, each being a mixture of oocyte-conditioned media obtained 

from two women (6–8 oocytes each). In two of the samples, no progesterone was detected by the 

assay. In the third sample, progesterone at a concentration of 2x10-9 M was detected. Since oocyte-

conditioned media are chemotactically active at 105–106 dilutions (Fig. 1A), the effective 

concentration of progesterone in the diluted sample was in the range of 2x(10-15–10-14) M, which is 

four orders of magnitude below the threshold progesterone concentration that can be sensed by 

human spermatozoa and stimulate a chemotactic response [10-11–10-10 M (7,8)].  

To characterize the nature of the oocyte-derived chemoattractant, we first determined 

whether or not it is a peptide. We incubated oocyte-conditioned media with a broad-spectrum 

protease, Proteinase K. In each experiment we verified the activity of the protease by running the 

oocyte-conditioned media on SDS-PAGE prior and subsequent to the proteolysis. The 

chemoattractant activity of the oocyte-conditioned media was not lost by the proteolysis (Fig. 1B; 

similar results were obtained with trypsin — data not shown). On the contrary, the activity shifted to 

a lower concentration (i.e., higher dilution). Since Proteinase K cleaves peptide bonds adjacent to the 

carboxyl group of both aliphatic and aromatic amino acids, these results suggest that the 

chemoattractant in oocyte-conditioned media is not a peptide (excluding a very short peptide).  

To verify the unexpected observation that the proteolysis increased the chemotactic activity 

of the medium from 1:105 dilution to 1:106, we carried out another set of experiments, using this 

time a mixture of two proteases, Proteinase K and Pronase E in higher concentrations than those 
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used for Proteinase K alone, thus eliminating any possibility of peptide leftovers (excluding very small 

peptides). In this set of experiments the sample of oocyte-conditioned media (prior to treatment) 

happened to be chemotactically inactive. (This happened occasionally due to the fact that we used a 

pool of media from different women.) Nevertheless, these inactive media became active after 

proteolysis (Fig. 1C). Clearly, proteolysis elevated the chemoattractant concentration. This could be 

the outcome of two scenarios. One is that the chemoattractant is an amino acid or a very short 

peptide (such as a di-or tri-peptide) and proteolysis produces more of it. The other is that the 

chemoattractant is a hydrophobic molecule which, in an oocyte-conditioned medium, is associated 

with a carrier protein that enables its presence in a hydrophilic environment. According to this 

scenario, proteolysis destroys the carrier protein and frees the hydrophobic chemoattractant to the 

medium (the high concentration of albumin in the medium likely enables presence of the 

chemoattractant in the aqueous solution).  

If, indeed, the oocyte-derived chemoattractant is hydrophobic and it is chemotactically 

active both when it is in complex with its carrier protein and when unbound, it should exhibit 

chemotactic activity both in hydrophilic and hydrophobic environments. To determine whether or 

not this is the case, we extracted by hexane the hydrophobic substances from the oocyte-

conditioned media, and examined the chemotactic activity of both the hexane fraction and the 

remaining aqueous fraction. Consistently with the carrier-protein scenario, both fractions were 

chemotactically active (Fig. 2).  

Two sperm receptors apparently can act as chemotaxis receptors. One of them is the CatSper 

channel (or a protein closely associated with it), shown to be the sperm receptor for the 

chemoattractant progesterone (14,15). The other is OR1D2, suggested to mediate the chemotactic 

response to the odorant bourgeonal (16) [though a later study raised the possibility that the 

response to bourgeonal is mediated by CatSper (17)]. Since the ligands of these receptors are quite 

hydrophobic, we examined whether any of them is the chemoattractant in oocyte-conditioned 
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medium. CatSper is also activated by prostaglandin E1 (though via a binding site different from that 

of progesterone) (14,15) and is known to be secreted from the cumulus-oocyte complex (18). 

Prostaglandin E1 exhibited no chemotactic activity at any tested concentration (Fig. 3A), even though 

it bound to its receptor (reflected in stimulating intracellular Ca2+ rise — not shown). Likewise, 

preincubation of oocyte-conditioned media with undecanal — an antagonist of the OR1D2 receptor 

(16), did not affect the chemotactic activity of the medium (Fig. 3B). These results indicate that 

neither prostaglandin E1 nor an OR1D2 ligand is the oocyte-derived chemoattractant. 

Discussion 

The results of this study show that the human oocyte-derived sperm chemoattractant does 

not lose its activity by proteases (Fig. 1), it can be present in both hydrophobic and hydrophilic 

environments (Fig. 2), and it is not one of the known ligands of the recognized chemotaxis receptors 

(Fig. 3). The first two observations could be explained by a number of scenarios: a hydrophobic 

chemoattractant in complex with a carrier protein, two (or more) chemoattractants — one 

hydrophobic and one hydrophilic, a chemoattractant of an amphipathic nature, and a 

chemoattractant which is an amino acid or a very short peptide. The finding that the activity of the 

oocyte-conditioned medium increased by proteolysis, taken together with the conservation of 

activity in both hydrophobic and hydrophilic environments, is consistent with the possibility of a 

hydrophobic chemoattractant associated with a carrier protein in an aqueous environment. 

According to this possibility, both the hydrophobic molecule and its complex with the carrier protein 

are chemotactically active. The free hydrophobic molecule is expected to be more active because, 

otherwise, proteolysis would not increase the activity. The other mentioned scenarios do not seem 

probable. Thus, the possibility of an amphipathic chemoattractant or two chemoattractants, one 

hydrophobic and one hydrophilic, is inconsistent with the proteolysis-dependent increase in 

chemotactic activity. Likewise, the possibility of an amino acid chemoattractant or a very short 
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chemoattractant peptide is inconsistent with the proteolysis results by trypsin, which generates 

relatively long peptides. The anticipation in such a case would be no change in activity. The results 

further indicate that the oocyte-derived chemoattractant is not one of the peptides reported to act 

in vitro as chemoattractants for human spermatozoa [e.g., CCL5 (19), Allurin (20), CCL20 (21) and 

atrial natriuretic peptide (22)] as all are expected to undergo proteolysis by the proteases used. Thus, 

it seems probable that the chemoattractant is a hydrophobic molecule associated with a carrier 

protein. 

It is reasonable to speculate that the receptor for the oocyte-derived chemoattractant is 

different from the known receptors for sperm chemoattractants. Otherwise, the receptor for the 

oocyte-derived chemoattractant might be saturated with cumulus-derived progesterone when 

passing through the mass of cumulus cells, thus interfering with the binding of the oocyte-derived 

chemoattractant to this receptor.  

To conclude, the chemoattractant is likely a hydrophobic non-peptide molecule which, when 

secreted from the oocyte, is in complex with a carrier protein. Apparently, the extreme potency of 

the chemoattractant compensates for its low concentration in the medium, and the carrier protein 

enables the presence of the chemoattractant in aqueous solutions and prevents its adsorption to 

non-specific locations. 
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Figure legends 

Fig. 1. Chemotactic response of human spermatozoa to oocyte-conditioned medium (OCM) in the 

absence and presence of proteases. A: Dependence of the chemotactic response on the OCM 

dilution. B: Chemotactic activity of OCM following treatment with Proteinase K (20 µg/ml, 3 h, 370C). 

C: Chemotactic activity of OCM following treatment with a mixture of Proteinase K and Pronase E (50 

µg/ml each, 3 h, 370C). The data are presented as combined odds ratios (O.R.) of 6900-9500 tracks 

[(91–121)x104 angles; A] and 5000-5800 tracks [(70–80)x104 angles; B,C]. The negative control is 

defined as O.R. = 1. Note that error bars are missing because the combined O.R. value is calculated 

from a pool of the whole data and is not an average. Also note that, due to the large variations 

between sperm samples [even of the very same sperm donor — a well known phenomenon in sperm 

biology (23-25)], a quantitative comparison is allowed within each panel but not between panels. *P 

< 0.05 versus the appropriate control.  

Fig. 2. Chemotactic response of human spermatozoa to oocyte-conditioned medium (OCM) before 

and after extraction with hexane. The data are presented as combined O.R. of 1400-2900 tracks 

[(18–35)x104 angles]. Note that error bars are missing because the combined O.R. value is calculated 

from a pool of the whole data and is not an average. *P ≤ 0.06; **P < 0.01 versus the appropriate 

control. 

Fig. 3. Examination of sperm receptors suspected to be involved in human sperm chemotaxis. A: 

Chemotactic response to Prostaglandin E1 (PGE1). The data are presented as combined O.R. of 4200-

5300 tracks [(58–73)x104 angles]. B: Chemotactic response to oocyte-conditioned medium (OCM) in 

the presence of undecanal. The data are presented as combined O.R. of 2500-3600 tracks [(9–

15)x104 angles]. Note that error bars are missing because the combined O.R. value is calculated from 

a pool of the whole data and is not an average. *P ≤ 0.02 versus the appropriate control. 
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Table 1 

Confidence intervals (95%) of O.R. values according to sample size 

Sample size (number of angles) Confidence intervala 

5x104 0.86-1.16 

10x104 0.90-1.11 

100x104 0.97-1.03 

a Calculated by block-bootstrapping  
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