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Abstract
As mass spectrometry-based proteomics has matured during the past decade a growing emphasis has been placed on

quality control. For this purpose multiple computational quality control tools have been introduced. These tools generate

a set of metrics that can be used to assess the quality of a mass spectrometry experiment. Here we review which di�erent

types of quality control metrics can be generated, and how they can be used to monitor both intra- and inter-experiment

performance. We discuss the principal computational tools for quality control and list their main characteristics and

applicability. As most of these tools have speci�c use cases it is not straightforward to compare their performance.

For this survey we used di�erent sets of quality control metrics derived from information at various stages in a mass

spectrometry process and evaluated their e�ectiveness at capturing qualitative information about an experiment using a

supervised learning approach. Furthermore, we discuss currently available algorithmic solutions that enable the usage of

these quality control metrics for decision-making.

1 Introduction

In the past decade mass spectrometry (MS)-based pro-

teomics has evolved into an extremely powerful analytical

technique to identify and quantify proteins in complex bio-

logical samples. This high-throughput approach can yield a

considerable volume of complex data for each experiment.

As it has matured, over the last few years a growing em-

phasis has been placed on quality assurance (QA). This

attention on quality assurance is of the utmost importance

to safeguard con�dence in the acquired results: in cases

where this has been lacking mass spectrometry proteomics

has sometimes su�ered from exaggerated claims [4, 20].

To anticipate this evolution, a shift to “quality by design”

is now taking place [51]. This means that the “designing

and developing formulations and manufacturing processes

ensure a prede�ned product quality.” As such, quality assur-

ance consists of multiple aspects of which quality control

(QC) is an essential component, but other elements such as

a careful experimental design [12, 25, 35] are equally vital.

Whereas the experimental design has to be established

prior to the initiation of an experiment, quality control

takes place while or after the experimental results are ob-

tained. Nonetheless, quality control and experimental de-

sign should not be discussed in isolation, as they are inter-

woven. For example, a QC sample can consist of a single

peptide, a single protein digest, or a complex lysate, and

this decision in�uences the type of QC metric(s) that can be

investigated [5, 30, 41]. Furthermore, one has to decide how

many QC runs to include in the experiment and to what

extent and in which order these QC runs are interleaved

with the biological samples under consideration. The goal

of quality control is then to leverage the experimental set-

up to comprehend how well an instrument performs and

how con�dent the results from the experiments are.

Related to the experimental design and based on the type

of performance we want to monitor there are multiple ap-

proaches to quality control. A typical example consists of

the use of QC samples with a simple sample content in-

terleaved between the biological samples. The interesting

aspect of such QC samples is that they have a controlled,

limited, and known sample content. They are typically mea-

sured on a frequent basis, which allows to extract periodic

information on the performance of the mass spectrome-

ter. Of course, to understand this performance expressive

QC metrics that provide information indicative of the qual-

ity of the experimental results need to be derived. Some

straightforward and commonly used QC metrics include

the number of identi�cations or the sequence coverage. Al-

though these metrics give a global view of the performance,

they do not allow us to pinpoint speci�c elements of the

work�ow where a failure might have arisen. Instead, more

granular QC metrics providing information on the chro-

matography, the ion signal, the spectrum acquisition, etc.,

might be used.

Over the years dozens of QC metrics have been proposed,

generated by a range of bioinformatics tools. In this paper

we will list the main QC tools and explain their use cases

and capabilities. Furthermore, we will provide an empirical

assessment of which type of QC metrics is most adequate

in detecting low-quality experiments.
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QC metric Value

RT-TIC-Q1 0.344

RT-TIC-Q2 0.182

RT-TIC-Q3 0.198

RT-TIC-Q4 0.276

QC metric Value

RT-TIC-Q1 0.393

RT-TIC-Q2 0.169

RT-TIC-Q3 0.168

RT-TIC-Q4 0.271

… ……
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results intra-experiment metrics inter-experiment metrics

Figure 1: Intra-experiment metrics evaluate the quality of a single experiment, whereas inter-experiment metrics can be

used to compare the quality of multiple experiments.

1.1 �ality control metrics
We can primarily distinguish QC metrics based on whether

they represent information about a single experiment, or

about multiple experiments, as illustrated in �gure 1.

Intra-experiment metrics give information about a single

experiment and are computed at the level of individual scans

or identi�cations. These metrics show the evolution of a

speci�c measure over the experiment run time, such as,

for example a chromatogram of the total ion current (TIC)

over the retention time (RT), or the mass accuracy of the

identi�ed spectra.

Inter-experiment metrics, on the other hand, assess a spe-

ci�c part of the quality of an experiment using a single

measurement for the whole experiment. These values can

subsequently be compared for multiple experiments, for

example through a longitudinal analysis to evaluate the per-

formance over time. Often an intra-experiment metric can

be converted to an inter-experiment metric through sum-

marization. This is illustrated in �gure 1, where a TIC chro-

matogram enables the assessment of the chromatographic

performance by visualizing the intensity distribution over

the retention time. Using summary statistics this continu-

ous information can be converted to inter-experiment met-

rics detailing the fraction of the total retention time that

was required to accumulate a certain amount of the TIC,

which gives a high-level assessment at the experiment level

of the chromatographic stability.

To compare inter-experiment metrics multiple observa-

tions for di�erent experiments are required. Therefore, QC

tools that analyze these metrics usually include a database

back-end for the persistent storage of historical data. On the

other hand, intra-experiment metrics can be computed from

only a single experiment and there is no comparison with

external data. As a result, QC tools that exclusively gener-

ate intra-experiment metrics are generally easier to set up,

as no external data storage needs to be provided. Because

the use cases and requirements di�er between these two

types of tools, we will further make a distinction between

tools that generate metrics for individual experiments, tools

that compare a limited group of experiments and do not

necessarily require a complex back-end for data storage,

and tools for longitudinal tracking that store QC data for a

large number of experiments.

A second distinction between various metrics can be

made based on from which stage in a mass spectrome-

try work�ow they represent the quality of the system. As

shown in �gure 2, we can distinguish between instrument

metrics, identi�cation (ID)-free metrics, and ID-based met-

rics.

ID-free metrics and ID-based metrics are similar in the

sense that they are both computed from the spectral results.

ID-free metrics are derived solely from the spectral results,

i.e. from the raw spectral data directly generated by the

mass spectrometer. These metrics aim to capture infor-

mation over the whole mass spectrometry work�ow and

include for example the shape of the peaks or the course of

TIC detailing the chromatography, the number of MS1 and

MS2 scans or the scan rate detailing the spectrum acquisi-

tion, or the charge state distribution detailing the ionization.

The advantage of ID-free metrics is that they are generated

directly from the raw spectral data, which makes it possi-

ble to instantly generate these metrics as soon as a mass

spectrometry run has been completed.

ID-based metrics are derived from the spectral results

as well, but they combine these data with subsequently

obtained identi�cation results. Examples include aforemen-

tioned metrics such as the number of identi�cations in terms

of peptide-spectrum matches (PSMs), peptides, or proteins;

or the sequence coverage for a known sample. Other de-

tailed metrics can be computed as well, for example by

comparing the di�erence in RT for similar identi�cations

to assess the chromatographic stability, the number of spec-

tra identi�ed as the same peptide to measure the dynamic

sampling, or by linking information similar to the ID-free
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sample mass spectrometer spectra bioinformatics

ID-based

• OpenMS
• proteoQC
• PTXQC
• QuaMeter
• SimpatiQCo

ID-free

• OpenMS
• QuaMeter
• SimpatiQCo
• SProCoP

instrument

• iMonDB

Figure 2: QC tools can capture qualitative information at di�erent stages of a mass spectrometry experiment. For each

type of QC metrics the representative tools are listed.

metrics with the identi�cation results. Compared to ID-free

metrics, the computation of ID-based metrics is somewhat

more involved because it additionally requires the identi�-

cations results. Furthermore, the computation of ID-based

metrics can be negatively in�uenced by suboptimal iden-

ti�cation settings. However, in general the inclusion of

identi�cations can provide a more detailed qualitative as-

sessment of the experimental results.

Finally, instrument metrics do not look at the spectral

data but derive information directly from instrument read-

outs. These are typically very sensitive, low-level metrics,

such as the status of the ion source, the vacuum, or a turbo

pump, depending on the type of instrument. An advantage

of instrument metrics is that they directly indicate which

part of the instrument is outside its normal range of oper-

ation. This facilitates troubleshooting and can be a driver

for maintenance scheduling. On the other hand, these met-

rics cannot be directly related to the experimental results,

instead they provide a secondary source of QC informa-

tion. Furthermore, instrument metrics are instrument- and

vendor-speci�c, and are typically not included in open �le

formats such as the mzML format [38].

Each distinct type of metric can give a di�erent view

on the quality of the data. However, not all metrics are

always applicable; often metrics are especially relevant for

a particular type of sample. For example, monitoring the

sequence coverage is mostly applicable when using samples

that contain a single protein digest, whereas the number of

protein identi�cations is applicable to samples that consist

of a complex lysate. Additionally, the type of experiment

also plays an important role. For example, the number of

identi�cations is very relevant for a discovery experiment,

but less so for a targeted experiment. In contrast, instrument

metrics are largely agnostic to the type of experiment and

the sample content, but they can signi�cantly vary between

di�erent instrument models and vendors.

2 QC tools

In recent years, quality control has become a key focus of

attention in academic, industrial, and governmental pro-

teomics laboratories. This trend is exempli�ed (and possibly

driven) by the numerous QC tools that have been devel-

oped over the past few years. Initial work by Rudnick et al.

[45] described for the �rst time how computational QC met-

rics can be used to objectively assess the quality of a mass

spectrometry proteomics experiment. Whereas previously

quality control was mostly performed manually by moni-

toring a few key measurements, this work showed how a

comprehensive set of QC metrics can be used to thoroughly

investigate the system performance. A set of 46 mainly ID-

based metrics was de�ned and implemented in a pipeline

of Perl programs by researchers at the National Institute

of Standards and Technology (NIST), called NIST MSQC.

This set of metrics has since then been reimplemented in

several lab-speci�c data processing pipelines. Support for

NIST MSQC itself has been discontinued in early 2016 and

the original implementation is no longer available, but sev-

eral of the reimplementations remain under active develop-

ment.

It has been demonstrated that computational QC metrics

provide objective criteria that can accurately capture the

quality of a mass spectrometry experiment, and there has

been a proliferation of tools that can compute such metrics.

Here, we will detail the primary tools, their characteris-

tics, and their usage. Table 1 provides an overview of the

discussed tools.

2.1 Tools evaluating individual
experiments

2.1.1 �aMeter

QuaMeter was initially developed as a user-friendly and

open-source alternative to NIST MSQC. NIST MSQC con-
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Tool Interface

Operating

system

Experiment

type

Instru-

ment

ID-

free

ID-

based

Website

QuaMeter

[33, 59]

command-

line

Windows,

Linux

discovery

DDA

× X X
http://proteowizard.sourceforge.
net/

OpenMS

[58]

KNIME

cross-

platform

discovery

DDA

× X X http://www.openms.de/

proteoQC

[60]

R

cross-

platform

discovery

DDA

× × X
http://bioconductor.org/packages/
proteoQC

PTXQC

[8]

R

Windows,

cross-

platform

discovery

& quan-

ti�cation

DDA

× × X https://github.com/cbielow/PTXQC

SProCoP

[6]

Skyline Windows

discovery,

targeted

SRM &

PRM

× X ×
http://proteome.gs.washington.
edu/software/skyline/tools/
sprocop.html

SimpatiQCo

[43]

web Windows

discovery

DDA

× X X
http://ms.imp.ac.at/?goto=
simpatiqco

iMonDB

[10]

GUI Windows any X × × https://bitbucket.org/
proteinspector/imondb/

Table 1: An overview of the discussed QC tools and their main characteristics.

sisted of a graphical user interface (GUI) wrapper around

multiple individual tools and scripts with various inter-

dependencies, which resulted in a complex pipeline. Ad-

ditionally, some elements of this pipeline could only be

modi�ed to a limited extent. NIST MSQC could exclusively

compute metrics from Thermo Scienti�c raw �les, and only

supported three search engines to provide identi�cations:

the NIST MSPepSearch or the SpectraST [31] spectral li-

brary search engines, or the OMSSA [24] sequence database

search engine. These limitations restricted the applicability

of NIST MSQC. Instead, QuaMeter consists of a single multi-

platform command-line application that is able to compute

QC metrics from raw �les originating from instruments pro-

duced by multiple vendors. Using the ProteoWizard [13]

library it is able to read spectral data stored in a wide variety

of vendor-speci�c raw �les (restricted to the Windows plat-

form) and open standard �le formats, such as mzML [38].

Further, it can utilize identi�cation results produced by any

search engine in the standard mzIdentML [26] or pepXML

format through external processing using IDPicker [32].

The initial QuaMeter version [33] computed a set of 42

ID-based QC metrics equivalent to those de�ned by Rudnick

et al. [45]. In a subsequent version QuaMeter improved

upon this by also including functionality to compute a set

of 45 ID-free QC metrics [59]. Both sets of metrics are

inter-experiment summary metrics, although the output

is exported to simple tab-delimited text �les, so the visual-

ization and analysis thereof has to be done using external

software or code scripts. Without advanced visualization

or analysis functionality QuaMeter focuses solely on com-

puting QC metrics. Especially the set of ID-free metrics,

which requires only the spectral data, can very easily be

computed. For the set of ID-based metrics some prior pro-

cessing of the identi�cation results by IDPicker is required,

which can make this process slightly more cumbersome.

Only a limited con�guration is required, and through the

command-line functionality the computation can easily be

automated. This makes QuaMeter a powerful tool that com-

putes an extensive set of inter-experiment QC metrics.

2.1.2 OpenMS

OpenMS is a comprehensive open-source software library

that o�ers a wide range of algorithms and tools for mass

spectrometry-based proteomics and metabolomics [49]. It

consists of various small processing tools that can be used to

construct complex analysis work�ows [2, 27]. These work-

�ows can be designed visually using the KNIME work�ow

engine [7], where each tool functions as an individual node

in the work�ow.

The various OpenMS nodes can be used to build com-

plex QC pipelines [58]. The provided QC nodes can com-

pute a set of intra-experiment metrics, consisting of both

ID-free and ID-based metrics. OpenMS supports a range

of search engines to generate identi�cations for the ID-

based metrics, for which there exist speci�c nodes, includ-

ing Mascot, MS-GF+ [28], Myrimatch [52], OMSSA [24],

and X!Tandem [16]. Example QC metrics include the num-

ber of spectra (identi�ed or otherwise), peptides, and pro-

teins; mass accuracy statistics; and the mass over charge

and retention time acquisition ranges. These metrics are

complemented by various plots that provide further details,

such as a TIC chromatogram, a histogram of the mass accu-

racy of the identi�ed peptides, or a histogram of the charge

distribution of the detected ion features. OpenMS exports

this information to an Extensible Markup Language (XML)

qcML �le [58], which can be visualized in a web browser

through an embedded stylesheet, or to a portable document

format (PDF) report.

Due to the wealth of algorithms and tools that are avail-

able in the OpenMS software library, the provided QC work-

�ows can potentially be easily extended to compute addi-

tional metrics. Furthermore, there is no need to be restricted

http://proteowizard.sourceforge.net/
http://proteowizard.sourceforge.net/
http://www.openms.de/
http://bioconductor.org/packages/proteoQC
http://bioconductor.org/packages/proteoQC
https://github.com/cbielow/PTXQC
http://proteome.gs.washington.edu/software/skyline/tools/sprocop.html
http://proteome.gs.washington.edu/software/skyline/tools/sprocop.html
http://proteome.gs.washington.edu/software/skyline/tools/sprocop.html
http://ms.imp.ac.at/?goto=simpatiqco
http://ms.imp.ac.at/?goto=simpatiqco
https://bitbucket.org/proteinspector/imondb/
https://bitbucket.org/proteinspector/imondb/
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to algorithms natively provided by OpenMS, as the available

functionality can easily be extended through custom nodes,

for example by using the built-in support for the R statistical

programming language [44]. This makes it possible to build

granular work�ows and achieve a very �ne-grained control,

although expert knowledge of the OpenMS ecosystem and

the KNIME environment is recommended to do so. The

constructed work�ows can subsequently be exported and

shared. Both OpenMS and KNIME are cross-platform tools,

ensuring the universal applicability of these work�ows.

2.2 Tools comparing groups of experiments
2.2.1 proteoQC

The proteoQC package [60] for the R programming lan-

guage [23, 44] can be used to generate a Hyper Text Markup

Language (HTML) report detailing the experimental qual-

ity. Prior to executing proteoQC the experimental design

has to be speci�ed by con�guring each spectral data �le

representing a sample as belonging to a speci�c fraction,

technical replicate, and biological replicate. The generated

QC report contains intra-experiment metrics for each indi-

vidual sample, as well as aggregated information to compare

samples at the level of their fractions, technical replicates,

and biological replicates.

To generate a set of intra-experiment ID-based metrics

for each sample, proteoQC uses the rTANDEM package [22]

to interface the X!Tandem [16] sequence database search en-

gine in R to provide identi�cation results. For each sample

some individual metrics and QC plots are generated, such as

a breakdown of the precursor ion charge states, the mass ac-

curacy, information on the number of spectra and peptides

that were used to identify distinct proteins during protein

inference, etc. Furthermore, when identifying the data pro-

teoQC automatically adds the common Repository of Adven-

titious Proteins (cRAP) (http://www.thegpm.org/crap/)

database to the user-provided protein database. The cRAP

database contains contaminants such as common laboratory

proteins, like trypsin, or contaminants transfered through

dust or contact, like keratin, and proteoQC reports which of

these contaminants were detected in the samples. Addition-

ally, proteoQC reports on the reproducibility of the results

by comparing the number of identi�ed spectra, peptides,

and proteins per fraction, technical replicate, and biological

replicate, and their overlap between the replicates.

By incorporating the experimental design proteoQC can

make informed comparisons between individual samples,

which provides QC information on an additional level. Fur-

thermore, proteoQC is fully cross-platform within the pop-

ular R programming language. However, as the QC pipeline

has to be con�gured programmatically, some R experience

is recommended to utilize proteoQC.

2.2.2 PTXQC

Proteomics Quality Control (PTXQC) [8] is an R-based qual-

ity control pipeline for MaxQuant [15], a highly popular

software suite for quantitative proteomics. Like MaxQuant,

PTXQC supports a wide range of quantitative proteomics

work�ows, including stable isotope labeling with amino

acids in cell culture (SILAC), tandem mass tags (TMT), and

label-free quanti�cation. After initial processing of the spec-

tral data by MaxQuant, PTXQC uses the MaxQuant output

results to compute various QC metrics. PTXQC requires

as input the custom text �les generated by MaxQuant and

the MaxQuant con�guration settings, and hence cannot be

used to process any other type of data. As PTXQC is written

in the R programming language, it is fully cross-platform.

Additionally, easy drag-and-drop functionality to execute

the QC analyses is provided for the Windows operating

system.

PTXQC produces an extensive report that contains a set

of 24 intra- and inter-experiment metrics. These metrics are

divided into four categories corresponding to the speci�c

MaxQuant output source the metrics are derived from: “Pro-

teinGroups”, “Evidence”, “Msms”, and “MsmsScans”. The

metrics cover a wide range of information, including the

intensity of the detected features and peptides, the poten-

tial presence of contaminants, the mass accuracy of the

identi�ed peptides and fragments, the number of missed

cleavages detailing the enzyme speci�city, and the num-

ber of identi�ed peptides and proteins. Other metrics are

speci�cally related to the MaxQuant “match-between-runs

(MBR)” [14] functionality. MBR aligns the retention times

of multiple runs and transfers their identi�cations across

features that have the same accurate mass and a similar

retention time, providing more data for the downstream

quanti�cation of proteins. PTXQC assesses the MBR per-

formance by evaluating the retention time alignment and

by checking whether the identi�cation transfer seems cor-

rect. All of these metrics are then visualized and compared

between the di�erent raw �les that constitute the consid-

ered MaxQuant project using detailed �gures. Furthermore,

each of the metrics is converted to an individual score for

each experiment using automated scoring functions. Most

of these scores are absolute scores generated by comparing

the observation to a threshold, for example such as whether

the number of detected contaminants is too excessive, or

generated by evaluating a speci�c characteristic of the ob-

servation, for example such as the extent to which the mass

deviations are centered around zero. Other scores are com-

puted for a single raw �le using the other raw �les as a

reference, for example by comparing the number of missed

cleavages in each individual raw �le to the average number

of missed cleavages. Finally, some other scores are evalu-

ated relative to settings extracted from MaxQuant, such as

the mass accuracy compared to the width of the precursor

mass window. All these scoring functions generate inter-

experiment metrics that are used to compare the quality

of the di�erent experiments. Usefully, PTXQC provides a

heatmap overview of the inter-experiment metrics, which

yields an assessment of the quality at a glance and facilitates

pinpointing the low-performing experiments.

Although PTXQC can exclusively be used to analyze

MaxQuant results, through this tight integration it is able to

compute some highly relevant and specialized QC metrics.

These metrics do not only assess the quality of the spec-

tral data, but also provide information on the subsequent

bioinformatics processing by MaxQuant. Furthermore, the

addition of a high-level heatmap at the start of the report

is very useful to get a quick overview of the quality, after

which the more detailed visualizations can be employed to

http://www.thegpm.org/crap/
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further investigate potential problems.

2.2.3 SProCoP

Statistical Process Control in Proteomics (SProCoP) [6] is a

QC script written in R [44] that can be used as a plugin [11]

for the popular Skyline [34] tool for targeted proteomics.

SProCoP applies well-established statistical process con-

trol techniques such as the Shewhart control chart and the

Pareto chart. The purpose of a Shewhart control chart is

to track performance over time and identify outliers that

deviate excessively from the expected behavior. Further,

the Pareto chart is a combination of a bar and line graph,

which displays the number of deviating measurements for

each metric along with its cumulative percentage, and pro-

vides feedback on which metrics are more variable and may

require attention.

Using these statistical process control techniques SPro-

CoP monitors the performance of �ve inter-experiment

QC metrics based on targeted peptides present in QC sam-

ples with a known sample content or spiked into real sam-

ples: signal intensity, mass measurement accuracy, reten-

tion time reproducibility, peak full width at half maximum

(FWHM), and peak symmetry. Measurement thresholds are

de�ned empirically based on a reference set of samples with

a known good quality, after which the performance of other

samples in the Skyline project can be investigated.

Through its integration with Skyline SProCoP is vendor-

independent and can be used for a wide range of tar-

geted and discovery work�ows. Additionally these statisti-

cal process control techniques are available online (http:
//www.qcmylcms.com/) and have been implemented in the

Panorama [47] repository for targeted proteomics from Sky-

line. Panorama AutoQC is a utility application that monitors

for new data �les and automatically invokes Skyline to pro-

cess the data. The QC metrics are stored in Panorama and

the statistical process control charts similar to SProCoP can

be visualized through the Panorama web application.

2.3 Tools for longitudinal tracking
2.3.1 SimpatiQCo

SIMPle AuTomatIc Quality COntrol (SimpatiQCo) [43] not

only computes various QC metrics, it also stores and visual-

izes these metrics for longitudinal monitoring of the system

performance. It uses a PostgreSQL database as back-end,

and an Apache webserver to provide a web-based front-end

for con�guration and visualization.

SimpatiQCo can compute QC metrics from a limited se-

lection of Thermo Scienti�c and SCIEX instruments. Raw

�les from these instruments can be uploaded to the web

server manually, or can be added automatically through a

“hot folder” that is monitored continuously for new raw �les.

These raw �les are then submitted to a linked Mascot server

for peptide identi�cations. Next, SimpatiQCo calculates a

range of ID-free and ID-based QC metrics such as the num-

ber of MS1 and MS2 scans, the number of identi�ed PSMs

and proteins, the TIC, and information on lock masses (if

applicable). Further, speci�c peptides and proteins can be

investigated in detail using metrics such as the peak area

and width and the elution time of peptides of interest, and

the protein sequence coverage. For each QC metric the

range of acceptable values is learned based on the historical

observations using robust statistical measures to take outly-

ing values into account. This information is then displayed

in the metric plots using a color-coded background band to

highlight deviating system performance. Further, external

messages can be entered manually, for example pertaining

to instrument maintenance. These messages will be super-

imposed on the metric plots to relate the external events to

the evolution of the metrics.

SimpatiQCo consists of a number of di�erent components,

such as the database, the web server, and various processing

tools. These components need to be installed individually,

and although a step-by-step installation guide is available

online, this complicated process is not recommended for

novice users. Furthermore, not all of the con�guration can

be done through the graphical web-based client. For exam-

ple, to process raw �les these must be able to be linked to

a speci�c instrument. Unfortunately, an instrument de�ni-

tion can only be created by manually adding a record in the

corresponding table of the PostgreSQL database.

SimpatiQCo is a powerful tool to track system perfor-

mance over time, albeit with some technical limitations.

Namely, SimpatiQCo is only able to process raw �les gen-

erated on a limited number of instrument models and only

supports the commercial Mascot search engine for peptide

identi�cations.

2.3.2 iMonDB

Unlike the previous tools the Instrument MONitoring

DataBase (iMonDB) [10] does not compute metrics from

the spectral results, but extracts instrument metrics from

the raw �les. The iMonDB uses a MySQL database to store

its information. This database acts as a server, with two sep-

arate standalone GUI applications that can connect to the

database as clients, each with a speci�c task: the iMonDB

Collector processes raw �les and stores the instrument met-

rics in the database, whereas the iMonDB Viewer retrieves

the information from the database and visualizes it.

The iMonDB supports a wide range of instruments man-

ufactured by Thermo Scienti�c, although it does not sup-

port other instrument vendors. Prior to extracting instru-

ment metrics from a raw �le, a corresponding instrument

de�nition has to be created. This can be done through

the iMonDB Collector, which allows the full con�gura-

tion through its GUI. Further, extraction of the instrument

metrics can be done manually through the GUI, or can be

done through command-line functionality provided by the

iMonDB Collector. This command-line functionality can

be used to automatically run the iMonDB Collector using

an external scheduling tool, such as the native operating

system scheduler.

The behavior over time of the metrics for each instru-

ment can be viewed using the iMonDB Viewer. Similar to

functionality provided by SimpatiQCo it is possible to add

additional information pertaining to external events and

show this on the metric plots to link this to the evolution

of the metrics. It is also possible to export a PDF �le of the

external events for reporting purposes.

A unique aspect of the iMonDB is that this is the only

http://www.qcmylcms.com/
http://www.qcmylcms.com/
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tool that is able to systematically analyze instrument met-

rics. The advantage of these instrument metrics, which

provide information at the lowest level, is their high sensi-

tivity, which makes it possible to detect emerging defects

in a timely fashion. However, because these metrics are

instrument-dependent they are usually not retained during

conversion to open formats, such as mzML [38]. Due to this

limitation the iMonDB needs to work with vendor-speci�c

raw �les directly, which is currently limited to Thermo

Scienti�c raw �les. Furthermore, there is a multitude of

instrument metrics that are extracted, which makes it hard

to comprehend which metrics are most useful to monitor

systematically, even for expert users. Nevertheless, these

instrument metrics can be very useful to detect malfunc-

tioning instrument elements before these have a deleterious

e�ect on the experimental results, preventing potential loss

of valuable sample content.

2.4 Other tools
As mentioned previously, NIST MSQC [45] was the �rst

tool that generated computational QC metrics, although it

was recently retired in early 2016.

Metriculator [54] is a web-based tool for storing and vi-

sualizing QC metrics longitudinally. However, Metriculator

does not compute QC metrics directly but critically depends

upon an embedded version of NIST MSQC. Unfortunately,

the installation process for Metriculator is not very straight-

forward; it has many Ruby dependencies whose installation

might fail, and which are presently outdated or even no

longer supported.

LogViewer [50] is a simple visualization tool that presents

a set of 11 instrument metrics, such as MS1 and MS2 ions

injection times, and ID-free metrics, such as the charge

state and mass distributions. As input it uses log �les from

Thermo instruments exported by RawXtract [39], which

has been deprecated presently.

A di�erent approach is used by SprayQc [46]. Whereas

the other discussed tools compute QC metrics post-

acquisition, SprayQc directly interfaces with periph-

eral equipment to continuously monitor its performance.

SprayQc is able to automatically track the stability of the

electrospray through computer vision, the status of the liq-

uid chromatography (LC) pumps, the temperature of the

column oven, and the continuity of the data acquisition. In

case a malfunctioning is detected SprayQc can automati-

cally take corrective actions and warn the instrument op-

erator. This is a valuable approach to minimize the loss

of precious sample content and provide early noti�cations,

and it can complement the other QC tools that provide a

post-acquisition quality assessment.

3 Metrics evaluation
We compared various sets of metrics to assess their e�ec-

tiveness in expressing the quality of a mass spectrometry

proteomics experiment. Typically this is not a straightfor-

ward task because, as we have reviewed in the previous

sections, each QC tool has its own characteristics and re-

quirements, and use cases can vary as some tools are spe-

ci�c to certain experimental work�ows and sample types.

Meanwhile most tools also represent some of their QC in-

formation through visualizations. Although these quickly

provide useful insights for human users, this data is not

suitable for an objective, automatic comparison.

To compare di�erent types of metrics we used the set

of instrument metrics computed by the iMonDB [10], the

set of ID-free metrics computed by QuaMeter [59], and the

set of ID-based metrics as identi�ed by Rudnick et al. [45].

These sets of metrics are very comprehensive and all of

these inter-experiment metrics can readily be used to com-

pare experiments to each other. To be able to determine

whether or not these metrics can capture qualitative infor-

mation about an experiment, we used a public dataset for

which the quality of the experiments is known. The dataset

consists of a number of complex quality control LC-MS runs

performed on several di�erent instruments at the Paci�c

Northwest National Laboratory (PNNL) [3]. Each sample

had an identical content (whole cell lysate of Shewanella
oneidensis), and the quality of the various runs has been

manually annotated by expert instrument operators as be-

ing either “good”, “ok”, or “poor”. We split up the various

runs depending on the instrument type, being either “Exac-

tive”, “LTQ IonTrap”, “LTQ Orbitrap”, or “Velos Orbitrap”,

with each of these instrument groups consisting of multiple

individual instruments. We refer to the original publica-

tion by Amidan et al. [3] for further information on the

experimental procedures and the dataset details.

This public dataset already contains the precomputed set

of ID-free metrics by QuaMeter and the set of ID-based

metrics by SMAQC (the PNNL in-house reimplementa-

tion of the NIST MSQC metrics de�ned by Rudnick et al.

[45]; https://github.com/PNNL-Comp-Mass-Spec/SMAQC).

We further used the iMonDB to compute the set of instru-

ment metrics. To this end all experimental raw �les, pre-

computed QC metrics, and the expert quality annotations

were retrieved from the PRoteomics IDEnti�cations (PRIDE)

database [57].

To quantify the expressiveness of these three sets of met-

rics, each capturing a di�erent type of QC information, we

employed a binary classi�er. As the quality of the experi-

ments was manually assessed by expert instrument opera-

tors, this labeling can be used as the ground truth to train

the classi�er. We used the acceptable experiments, with

their quality designated as either “good” or “ok”, as the pos-

itive class, and the inferior experiments, with their quality

designated as “poor”, as the negative class. When given an

experiment represented by its QC metrics, the classi�cation

task consists of correctly predicting the experiment’s qual-

ity. Prior to training the classi�er we removed redundant

features that have a very low variance and we rescaled the

features robust to outliers by centering by the median and

scaling by the interquartile range. Next, for each separate

instrument type we trained a random forest classi�er, for

which we split the data into 65%–35% training and testing

subsets that are equally strati�ed according to their quality

labels. This classi�er has been coded in Python and uses

the random forest implementation from scikit-learn [42],

along with functionality provided by NumPy [56] and pan-

das [40]. The code is available as open source at https:
//bitbucket.org/proteinspector/qc-evaluation/.

https://github.com/PNNL-Comp-Mass-Spec/SMAQC
https://bitbucket.org/proteinspector/qc-evaluation/
https://bitbucket.org/proteinspector/qc-evaluation/
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Figure 3: ROC curve showing the classi�cation perfor-

mance for the Velos Orbitrap instrument type. ROC curves

for the other instrument types indicate similar results (data

not shown).

As illustrated by the receiver operator characteristic

(ROC) curve in �gure 3 all three types of QC metrics are

adept at discriminating high-quality experiments from low-

quality experiments. This shows that all of the di�erent

tools can give us valuable insights into the quality of an

experiment, and that information captured at various dif-

ferent stages of the mass spectrometry process should be

investigated. ID-based metrics slightly outperform ID-free

metrics, most likely because the ID-based metrics can em-

ploy additional information provided by the identi�cations.

This di�erence is minimal however, which is perhaps not

surprising as both types of metrics take similar properties of

the spectra into account. This reinforces previous research

which showed that ID-based metrics are not signi�cantly

in�uenced by slight di�erences in the identi�cations, such

as when using an alternative search engine [33]. This also

shows the excellent e�cacy of ID-free metrics in objectively

evaluating the quality based solely on spectral information.

Because ID-based metrics require additional computational

steps to obtain the identi�cations, whereas ID-free metrics

can be directly computed from the spectral results, ID-free

metrics might be preferred if a speedy quality assessment

is required. In contrast, instrument metrics perform a lit-

tle worse at correctly identifying low-quality experiments.

This is likely because they are only secondary results that

are not always directly related to the data quality. Never-

theless, these metrics still have merit as they do not depend

on a speci�c type of experiment or sample content, but are

applicable on all occasions. Furthermore, by combining

the individual classi�ers for the various types of metrics in

an ensemble classi�er a further performance gain can be

achieved because the di�erent types of metrics each provide

a complementary view on the quality.

4 Using QC metrics for
decision-making

As tools for computational quality control have prolifer-

ated in recent years, the challenge in this �eld is now shift-

ing from the computation of QC metrics toward informed

decision-making based on these metrics. However, inter-

preting these metrics is not trivial. First, considerable do-

main knowledge is required to understand what each metric

signi�es. Second, the metrics form a high-dimensional data

space, which complicates their analysis. Di�erent elements

in a mass spectrometry work�ow do not function in iso-

lation but instead in�uence each other, which has to be

taken into account while analyzing metrics representing

information about these elements. Therefore, univariate

approaches are generally insu�cient; instead multivariate

approaches that can deal with the high-dimensional data

space should be preferred, while also taking the curse of

dimensionality into account [1].

To this end Wang et al. [59] have developed a robust mul-

tivariate statistical toolkit to interpret QC metrics. They

have used a principal component analysis (PCA) transforma-

tion to reduce the data to a low-dimensional approximation,

in which they were able to successfully detect outlier low-

quality experiments based on pairwise dissimilarities. Fur-

thermore, they developed an analysis of variance (ANOVA)

model which enabled them to identify whether the observed

variability was attributable to lab-dependent factors, batch

e�ects, or biological variability. Such work driving the un-

derstanding of QC metrics is highly valuable, and these

analyses have been applied to great e�ect for multiple stud-

ies. For example, it was used to assess the quality of the

experimental results for various studies conducted by the

National Cancer Institute (NCI) Clinical Proteomic Tumor

Analysis Consortium (CPTAC) [48, 53, 61].

Similar work was done by Bittremieux et al. [9], who ap-

plied unsupervised outlier detection to identify low-quality

experiments. Subsequently they used a specialized outlier

interpretation technique to determine which QC metrics

mostly contributed to the decrease in quality. The advan-

tage of this approach is that all QC metrics are used to

identify low-quality experiments, unlike when using a di-

mensionality reduction, such as PCA, which discards some

of the information. Meanwhile, the advanced outlier in-

terpretation pinpointing the most relevant QC metrics can

yield actionable information for domain experts to optimize

their experimental set-up.

Whereas these previous analyses used unsupervised tech-

niques, Amidan et al. [3] trained a supervised classi�er to

discriminate low-quality experiments from high-quality ex-

periments. A supervised approach will generally perform

better than an unsupervised approach but will require initial

training. Furthermore, a supervised classi�er might have

to be retrained to adapt it to data generated by a di�erent

instrument or in a di�erent laboratory. Amidan et al. [3]

have expended signi�cant e�ort in manually annotating the

quality of over a thousand experiments to generate train-

ing data, which allowed them to build a highly performant

logistic regression classi�er.

These analyses are extremely valuable, as they allow us

to achieve a deeper understanding of the mass spectrometry

processes and the properties of what makes a high-quality

experiment. These algorithmic approaches provide a thor-

ough quality assessment of the spectral data, which enforces

informed decision-making, and which has the potential to

automatically drive the spectral acquisition in the future.
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5 Conclusion
We have given an overview of the available computational

tools to generate QC metrics for mass-spectrometry-based

proteomics. These tools enable assessing the performance

of the experimental set-up and detecting unreliable results.

These are essential requirements to inspire con�dence in the

experimental results, which will prove to be a crucial step in

the maturation of proteomics technologies, and which will

allow us to for example routinely apply these technologies

into a clinical setting [36, 51]. Another potential applica-

tion where an accurate assessment of the data quality is

paramount, is in the reuse of public data [19, 21, 29, 37]. As

public data repositories keep expanding and the potential

for data reuse grows, we envision that data submissions to

public repositories will soon have to be accompanied by

QC parameters at the time of submission, or will have a

standard set of QC metrics calculated automatically after

submission [37].

Finally, most current QC tools are limited to the typical

use case of bottom-up data-dependent acquisition (DDA)

discovery experiments, and their QC metrics often cannot

be directly translated to other types of experiments. Less

research has been done on QC for other types of work�ows,

such as data-independent acquisition (DIA) [18] or top-

down proteomics [55], or even related mass spectrometry-

based domains, such as metabolomics [17]. In the next few

years we will likely see the e�orts on QC expanded to these

types of work�ows as well, which will further bolster the

diverse and powerful mass spectrometry ecosystem.
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