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Abstract

Objectives: The objective of this study is to design a method for modeling
hepatitis C virus (HCV) infection using multi-agent simulation and to verify
it in practice.

Methods and materials: In this paper, first, the modeling of HCV infec-
tion using a multi-agent system is compared with the most commonly used
model type, which is based on differential equations. Then, the implementa-
tion and results of the model using a multi-agent simulation is presented. To
find the values of the parameters used in the model, a method using inverted
simulation flow and genetic algorithm is proposed. All of the data regarding
HCV infection are taken from the paper describing the model based on the
differential equation to which the proposed method is compared.

Results: Important advantages of the proposed method are noted and
demonstrated; these include flexibility, clarity, re-usability and the possibil-
ity to model more complex dependencies. Then, the simulation framework
that uses the proposed approach is successfully implemented in C++ and
is verified by comparing it to the approach based on differential equations.
The verification proves that an objective function that performs the best is
the function that minimizes the maximal differences in the data. Finally, an
analysis of one of the already known models is performed, and it is proved
that it incorrectly models a decay in the hepatocytes number by 40%.

Conclusions: The proposed method has many advantages in comparison
to the currently used model types and can be used successfully for analyzing
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HCV infection. With almost no modifications, it can also be used for other
types of viral infections.

Keywords: multi-agent systems, multi-agent simulation, differential
equations, genetic algorithm, HCV infection

1. Introduction

Hepatitis C virus (HCV) infections are among the major global health
problems and concern 3% of the human population [1]. Most of these in-
fections become chronic and lead to liver failure, including fibrosis, cirrhosis
and hepatocellular carcinoma [2]. The prevention and treatment of HCV
infections is a significant challenge because the elaboration of efficient vac-
cines and antiviral drugs is hampered by a very high genetic variability of
the virus. There are six major genotypes and more than 80 subtypes of
HCV around the world. In a single infected individual, HCV exists as a qua-
sispecies a population of genetically related but slightly different variants
[3, 4]. Some of the quasispecies variants appear to be superior in terms of
viral fitness. They dominate the populations and can survive despite the
pressure of the immune system and therapeutic agents [5–7]. Current stan-
dard therapy, which involves pegylated interferon and ribavirin, is effective
in only approximately 40% of the patients infected with the highly prevalent
genotype 1 [8]. The efficiency of the therapy increases considerably when
the interferon and ribavirin are accompanied by one of the recently approved
direct-acting antiviral agents, boceprevir or telaprevir [9, 10]. Despite this
substantial progress, there remain certain concerns that are connected with
anti-HCV treatment. First, the novel virus-specific compounds have only
been approved for use against the HCV genotype 1. Second, all of the treat-
ment options available thus far are connected with severe side effects, which
can lead to discontinuation of therapy or dose reduction and, eventually, a
decrease in the overall treatment efficacy. Consequently, a better understand-
ing of the molecular mechanisms that underlie HCV pathogenesis is essential
to further improve the therapeutic regimens, to achieve a higher rate of virus
eradication and eliminate adverse effects [11].

Mathematical models of HCV infection have been valuable tools in ad-
dressing biologically important questions that are concerned with crucial fea-
tures of viral dynamics and the mode of action of the therapeutic agents (re-
viewed in [12]). The initial model was applied to explain a biphasic decline of
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the serum HCV RNA level upon the interferon monotherapy. This approach
allowed the rate of virion production and virion half-life to be established
as well as elucidating the effect exerted by interferon [13]. Modifications
and extensions of the original model enabled the description of other pat-
terns of HCV kinetics, including a triphasic decline in the serum RNA level,
null response and viral breakthrough. Along with the progress in the under-
standing of the HCV-host interaction, the models have incorporated further
parameters, such as: (i) effects of ribavirin and novel virus-specific drugs, (ii)
pharmacokinetic and pharmacodynamic properties of antivirals, (iii) emer-
gence of drug resistant variants, (iv) level of alanine aminotransferase (ALT)
activity and (v) patient genetic polymorphism, which also affects the response
to therapy (reviewed in [12, 14]). Nevertheless, as more new aspects of HCV
infection are being unraveled, there remains a demand for more expanded
models that can incorporate many parameters and integrate complex clinical
and experimental data.

The most commonly used mathematical models that simulate viral in-
fections are models that are based on differential equations. During the last
20 years, since the first differential model of the human immunodeficiency
virus (HIV) kinetics was defined [15], many modifications and enhancements
have been introduced. First, these models were used to describe infections
of HIV, which was the most intensively studied virus in the 1990s, which is
why many models that attempted to explain its behavior were designed [16].
During the last 10 years, similar models of other viral infections were created.
Because HCV infection is still inaccurately understood, HCV is currently one
of the most popular modeling targets [12] next to HIV. However, there are
also examples of other viruses, for example, the hepatitis B virus (HBV) [17].

Although differential equations are a very well known and versatile method-
ology of modeling, they have some disadvantages. For example, they do not
allow the modeling of space, they add custom attributes, and their analysis
involves advanced mathematical theory. For this reason, some other mod-
eling techniques have recently been designed [18, 19]. One of them is an
approach that is based on multi-agent simulations (MAS) [20]. There are
already some researchers who attempted to utilize MAS in biology. An ex-
tended review of their results can be found in [21] and [22]. These results
include applications of agents and multi-agent systems in modeling cells [23],
signaling pathways [24–26] or studying tumor growth [27, 28], morphogen-
esis [29], chemotaxis [30], immune responses [31, 32], granuloma formation
[33] and other phenomena [34–36]. There were even some attempts to define
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or create an agent-based framework for systems biology [37, 38]. In [39],
the authors presented how agents can be used to facilitate the creation of
multi-scale biological models. There are also many papers on the application
of agents in health care (for example, [40–43]). However, they describe the
application of agents in medicine on a higher level of medical services and,
hence, the majority do not provide methods that can be used to model viral
infections of a single body.

Although the topic of multi-agent systems is popular in biological ap-
plications, there is a very limited number of their applications in the field
of viral infections modeling. There are few authors who have attempted to
utilize agents to model mainly HIV infection [44–46], but only one group [46]
assumes that multi-agent simulations can be used for HCV. Moreover, all
of the existing papers are rather concentrated on basic models of viral in-
fection. The proposed approaches lack clearly defined goals and algorithms
for setting values of unknown parameters in a process that is similar to data
fitting. Only [44] presents the algorithm for a verification of some commonly
assumed theories about HIV infection in the general case.

Although the application of agents to model viral infections has not been
analyzed by many researchers yet, the authors believe that it is an approach
that can be very successful. The viruses that are present in the human
body are independent (decentralized), movable, can interact with cells that
are located in their neighborhood (local view) and cooperate to successfully
infect the organism (self-organization). The same features characterize agents
in the multi-agent system [20]. Additionally, the varying human body can
be easily modeled by the environment in which the agents interact. In this
paper, the comprehensive algorithm for the construction and verification of
a multi-agent model of HCV infection is presented. To achieve this aim, first
an example is model designed by analogy with an already existing model [47],
which is described in section 2. Section 3 presents a method to perform some
more complex analyses using multi-agent simulation and the algorithm for
finding the values of the parameters that exist in the model. These algorithms
can be used to tune and verify the model for a specific patient. In section
4 the results of the computational experiment are presented, and finally, in
section 5, there are some conclusions.
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2. Differential equation model of HCV infection with treatment

The models of HCV infection that use differential equations have already
been defined and discussed by many authors (for example, [12, 48–50]). The
model described here was compared with the model defined in [51, 52]. The
latter was selected because it is the standard model, which can reproduce
biphasic decline kinetics that are the most common for HCV infection.

2.1. Definition

As was stated in the introduction, the model of HCV infection that uses
differential equations has already been defined and discussed by many au-
thors. The model that describes both HCV infection and the response to
treatment is presented in the following equations.

dT

dt
= s+ rTT

(
1− T + I

Tmax

)
− dTT − (1− η)βV T + qI (1)

dI

dt
= rII

(
1− T + I

Tmax

)
+ (1− η)βV T − dII − qI (2)

dV

dt
= (1− ε)pI − cV (3)

In the above equations, T denotes the number of uninfected hepatocytes,
I denotes the number of infected hepatocytes, and V is the number of free
virions. Uninfected hepatocytes are produced by the differentiation of pre-
cursors at the rate s and are infected at the rate β, which is proportional to
the number of uninfected cells and free virions. Both uninfected and infected
hepatocytes die at the rates dT and dI , respectively, and they proliferate at
the maximum rates of rT and rI , respectively, until the maximal number
of hepatocytes Tmax is reached. Infected cells can also be cured through a
noncytolytic process at the rate q [47]. Free functional or non-functional viri-
ons are produced from infected hepatocytes at the rate p and are cleared by
the immune system at the rate c. The coefficients ε and η model the treat-
ment with antiviral drugs (interferon and ribavirin). When no treatment is
set, they equal 0. Time is measured in days, and all of the quantities are
measured in one milliliter of tissue.
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2.2. Example analysis of the model

The model presented in section 2.1 can be analyzed in many ways using
well-known mathematical instruments. For example, one can find steady
states, perform a stability analysis or calculate the condition that must be
satisfied to successfully cure the patient. The detailed mathematical analysis
of the model was presented in [49]. In this section, the example results for one
of the patients are presented, which will be referred to later. Additionally,
the methodology that was used to generate these results is briefly described
to make it possible to compare it with the approach proposed in this article.

In figure 1, the example result of the simulation based on this model for
one of the patients is presented. For others, it can be different because the
rates of the processes modeled by the differential equations are different in
the body of each patient (organisms are not identical and behave in differ-
ent ways). This finding means that the parameters described using small
letters in equations 1-3 will probably have different values (but in some usu-
ally known ranges) for each patient and that they have to be found at the
beginning of the model analysis. This goal is usually accomplished using
mathematical software for the data fitting of the differential equations (see
PottersWheel [53] or Berkeley Madonna [54]). Figure 1 presents the simu-
lation for the values found for the example patient described in [49]. The
number of patients was limited to one because the main objective of this
article was to prove the computational usefulness of the proposed method.
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Figure 1: Simulation of the viral kinetics after the beginning of the therapy, as presented in
[49]. The number of virions decreases rapidly after the beginning of the therapy. However,
after two days, it stabilizes at a positive level, which means that the therapy was not
successful. The parameter values are β = 1.4 · 10−6, dT = 0.012, dI = 0.36, rT = 3.0,
rI = 0.97, Tmax = 5 · 106, p = 28.7, c = 6.0, q = 0, ε = 0.98, and η = 0.

2.3. Analysis of the differential equations model
Usually, during the analysis of the viral infection based on a model that

uses differential equations, the available clinical data are limited to the level
of HCV RNA in serum. The acquisition of more detailed data, such as the
number of uninfected and infected hepatocytes, requires the invasive proce-
dure of liver biopsy, followed by sophisticated analyses. This requirement
probably explains why authors of mathematical models of HCV kinetics usu-
ally pay attention only to the equation that describes the level of the viral
RNA in serum and use this equation to fit their model results to data. This
approach can give rise to misleading conclusions because one cannot state
that a model’s solution correctly fits to the data unless equations that model
the number of hepatocytes have at least reasonable results. In most of the
models, it is assumed that the number of hepatocytes is constant during the
first days of therapy, and this fact is not verified in the simulation results.
However, the solution of the equation that models the number of virions can
fit perfectly, but unless the solution of equations that model the number of
hepatocytes fits the data, the model does not necessarily explain the data
correctly.
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As an example, the model described in [49] can be analyzed. The result
of the simulation of the model that was proposed in that paper is presented
in figure 1. Figure 2a presents the same results but with the number of un-
infected and infected hepatocytes included. It can be noted that the total
number of hepatocytes after approximately 30 days decreases to approxi-
mately 4.4 · 106 cells/mL. This number is approximately 12% less than the
number of hepatocytes in the liver that is not infected, as defined by the num-
ber of hepatocytes in the stable, uninfected state, which is equal to 4.98 · 106

cells/mL. This reduction in the number of hepatocytes is highly improbable.
Moreover, a greater problem arises during the analysis of what occurs be-

fore the beginning of the treatment. The model assumes that the parameters
ε and η model the treatment correctly and that other parameters model the
remaining significant aspects of the infection in the patient’s body. Accord-
ing to this assumption, after setting ε and η to 0, the equations should model
how the number of infected hepatocytes changes before the beginning of the
treatment. This case is presented in figure 2b, and it shows that the number
of hepatocytes decreases to 3.14 ·106 cells/mL after only 10 days of infection.
That finding means that the volume of the liver decreases by almost 40% in
10 days after having been infected, which is evidently not true. In addition,
after three days, the number of uninfected cells decreases to approximately
3 · 103 cells/mL. This finding means that almost all of the cells become very
quickly infected, which does not commonly occur [55].
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(a) After the beginning of the therapy
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(b) Before the therapy

Figure 2: Simulation of the viral kinetics and the number of infected and uninfected
hepatocytes after the beginning of the therapy (a) and before the beginning of the therapy
(b). (η, ε = 0)

The analysis that is described in this section shows that even using very
well known and commonly applied tools and algorithms, some important
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analyses can be omitted. In this article, another more versatile method of
modeling is presented and used to analyze problems in the above-described
model more deeply.

3. HCV infection model based on multi-agent simulations

As an alternative to the model based on differential equations, the model
using multi-agent simulation (MAS) will be presented in this section. Such a
model uses the concept of agents cooperating in some environment and usu-
ally gives many more analytical possibilities. The definition of the model is
presented in section 3.1; then, there is a brief presentation of the interactions
between the agents in section 3.1, and finally, the solution to the problem
of finding the parameter values is discussed in section 3.2. The aim of this
section is to give the reader the overview that is required to understand the
described work. More details on the implementation that allows us to repro-
duce the results are presented later in section 4. A detailed description of
the advantages of using a multi-agent model is presented in section 5.

3.1. Model architecture

The multi-agent model uses the concept of agents interacting among
themselves and the environment in which they are placed. In biological
simulations that involve many cells, it is often required to simulate interac-
tions between millions of agents that represent cells. Such a complex system
is sometimes called a massively multi-agent system (MMAS) [56, 57]. In the
case of the HCV model, there are three types of agents: infected hepatocytes,
uninfected hepatocytes and free virions interacting in the environment of the
human body. However, each of these types can occur in the simulation in
hundreds of thousands of copies.

The diagram presented in figure 3 shows the interactions between the
agents and the environment that are simulated iteratively while presenting
the flow of time. Each circle represents all of the copies of agents of a spe-
cific type; hence, the arrows represent the interaction between the selected
representative agents of that type and some other agent. Hepatocytes can
proliferate (reproduce), and they die after some time. The death is mod-
eled as being killed by the environment, and in the process of proliferation,
only the single agent takes part. These processes are almost identical for
infected and uninfected cells. Only the rate of the processes is different. Un-
infected cells can be infected by virions and then emit progeny virions that
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can be cleared by the immune system (again modeled by being killed by the
environment).

Figure 3: Interactions between agents and the environment.

Each interaction is described by one or more parameters, for example the
proliferation or clearance rate. All of the parameters except for s and q are
equivalents of coefficients that are used in the differential equation presented
in section 2.1, and all of them are presented in table 1. In the multi-agent
model, the parameters s and q are omitted because they describe processes
in the human body that are present in very limited quantities and do not
influence the process of infection [49].
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Parameter Description
β infection rate
dT death rate of uninfected hepatocytes
dI death rate of infected hepatocytes
rT proliferation rate of uninfected hepatocytes
rI proliferation rate of infected hepatocytes

Tmax maximal capacity of liver (number of all hepatocytes)
p production rate of free virions
c clearance rate of virions by the immune system
ε decrease in the production rate p when using therapy
η decrease in the infection rate β when using therapy

Table 1: Parameters used in the model

3.2. Finding the parameter values

The largest difficulty during the analysis of the model was finding the val-
ues of the parameters presented in table 1 for a specific patient. In the case
of differential equations, broadly applied algorithms can be used for data fit-
ting. Unfortunately, multi-agent simulation requires the use of nonstandard,
more complex algorithms that cannot be easily described using mathematical
equations. For this reason, the values of the parameters cannot be determined
before the simulation. To find them, the inverted simulation method can be
used [58]. The general idea of this method is presented in figure 4.
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Figure 4: Methods for simulating the models. The left diagram presents the commonly
used simulation flow. The right diagram presents the modified, inverted simulation
method.

In the case of the simulation of a complex model that is characterized
by many parameters using a regular simulation method, the values of the
parameters are always known from the beginning of the simulation or can
be easily determined, for example, using data fitting. When the simulation
completes, the results and the execution of the simulation are evaluated.
If they do not reflect the reality precisely enough, then the model can be
modified.

In the inverted simulation method, the objective function is defined (for
example, a best fit of the results to the data), and then, a genetic algorithm
or other metaheuristic is used to optimize this function and obtain the values
of the parameters. Finally, the found values of the parameters and the exe-
cution of the simulation for this set of parameters are evaluated. If required,
the model is further modified. This method also allows us to perform the
analysis of the solution sensitivity. It is possible that by running simulations
multiple times, we receive different values of the parameters. By checking
their distribution, we can decide which parameters are important when de-
signing the antiviral therapy. The significant parameters are those that have
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a low standard deviation.

4. Computational experiment

4.1. Computer implementation of the GA

The inspiration for the implementation of the genetic algorithm was pro-
vided by the research on real parameter optimization using the GA [59]. The
suggestions proposed in this paper were implemented, and the variant of the
algorithm for which the performance was the best was chosen. According to
this paper, the real coding of the parameters was used, which means that
each parameter was encoded as a real number scaled to the (0, 1) interval in
such a way that the chromosome was represented as a sequence of real num-
bers. The algorithm used fitness proportionate (roulette-wheel) selection and
one-point crossover that divides each chromosome at the same point between
two numbers that represent successive parameters and exchanges them. The
mutation rate was 0.1, which means that it changed the value v of the real
parameter by choosing randomly the value from the range (max(0, v−0.1), v)
or (v,min(1, v + 0.1)), depending on the randomly chosen mutation direc-
tion. The mutation probability was 0.05, which also, according to [59], was
the best choice in most cases.

One of the most important steps during the design and implementation of
the algorithm was to define and verify the optimized objective function. The
goal was to fit the results of the simulation to clinical data. Let X denote
the values that were generated during the simulation, and X̂ denotes values
obtained from clinical experiments. The following three objective functions
that were minimized were considered:

maxxi∈X,x̂i∈X̂ |xi − x̂i| (4)

maxxi∈X,x̂i∈X̂
|xi − x̂i|

x̂i
(5)

∑
xi∈X,x̂i∈X̂

|xi − x̂i| (6)

The results obtained using function (4) were the best. All of the results
that are presented in the further sections were generated using this function.
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When using function (5), it happens that the number of virions was very small
in the clinical data and the number of virions calculated by the simulation
was several times larger. In such a scenario, the ratio defined by function
(5) was large; however, the difference was biologically irrelevant. Function
(6) does not distinguish cases in which a single measurement has a very
large difference from the case where all of the measurements have average
differences, the latter case being more desirable.

4.2. Computer implementation of the MAS

4.2.1. Algorithm

The environment in which agents interact (the liver) was modeled using
a rectangular grid. Although there is some precedent to use a hexagonal grid
[60], it was not chosen because it has worse performance and tests showed
that, in this case, the characteristics of the rectangular grid are sufficient.
Each agent in this environment has its own position, which is set at the
initialization phase randomly (using a uniform distribution). Each field of
the grid can be occupied by many cells. The neighborhood that was used
was composed of the eight nearest neighbors. Then, the simulation begins
and is composed of five phases:

1. Moving agents. In this phase, each movable agent is moved. In this
case, only free virions can move by flowing with the blood through the
liver. The direction of the movement is chosen randomly; however, the
movement in the direction that is consistent with the direction of the
blood flow is much more probable.

2. Interactions between agents and the environment. In this phase,
interactions between agents and the environment are simulated. Inter-
actions executed in this phase model remove cells from the liver, create
new hepatocytes by proliferation and emit new free virions into the
environment from the infected cells according to the definitions from
section 3.1. The position of the new cell is chosen randomly in the close
neighborhood of the source cell.

3. Updating the environment. After modifying the numbers and posi-
tions of the cells in the previous phases, some update of the environment
model is needed. This update does not model any biological process
but instead rebuilds some data structures that are required to make
the subsequent phases run faster.
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4. Interactions between agents. In this phase, interactions between
agents are simulated. In the described model, the only interaction is
the hepatocytes’ infection by free virions. The cell can be infected by
cells in its neighborhood with some probability.

5. Updating statistics. Finally, certain statistics must be updated and
saved to enable analysis of the simulation after its completion.

4.2.2. Complexity

The computational complexity of the single simulation is O(d · (n+m)),
where d denotes the number of iterations that are simulated, n denotes the
maximal number of all agents in some iteration, and m denotes the number
of cells in the grid that models the environment. Considering that both
n and m can be equal to several hundreds of thousands and d to several
thousands, a single simulation can be executed even for approximately 5 min.
Considering that the evaluation of a single population of chromosomes in the
genetic algorithm requires execution of 20 or 30 simulations and that finding
parameter values requires the evaluation of several hundreds of populations, it
can in total require many hours or even days of the computations to complete
a single experiment. To shorten the time of computations, the following
optimizations were used:

1. The simulation was implemented very efficiently in the C++ language,
which is much faster than, for example, Java or C#. All of the critical
and frequently executed fragments of code were carefully optimized.

2. The OpenMP library was used to execute many simulations in parallel
to make use of all four cores of the Intel i7 processor that were used
to conduct the experiments. The OpenMP 3.0 implementation that is
part of the g++ 4.5 compiler was used.

The above optimization decreased the execution time of a single experi-
ment to below 6 h, which is an acceptable amount of time.

4.2.3. Verification

The correctness of the implementation was verified by comparing it with
the Matlab simulation of the model based on differential equations. The most
complicated step of the algorithm was to find values of the parameters. For
this reason the goal of the verification was primarily to verify this procedure.
To achieve this goal, the data for all of the patients presented in [49] were
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taken, and the objective of the algorithm was to find the values of the pa-
rameters that characterize these specific infections. As a result, the correct
values of the parameters were found, and the multi-agent simulation was as
successful in simulating the course of infection as the original approach based
on the differential equations. The results of the verification for one of the
patients are presented in figure 5. It can be noted that both charts are very
similar.
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(a) Matlab simulation
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(b) Multi-agent simulation

Figure 5: Exemplary comparison of Matlab and multi-agent simulation.

4.3. Verification of the differential equation model

To verify if the initial model that was criticized in section 2.3 is inaccurate
or if it only has incorrect parameter values, an analysis was performed by
the proposed multi-agent simulation. The objective of the simulation was to
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check whether it is possible to find values of parameters that will generate
biologically reasonable results. Two inconsistencies that had been noted in
section 2.3 were verified:

1. Total number of hepatocytes being too low is verified in section 4.3.1.

2. Total number of uninfected hepatocytes being too low is verified in
section 4.3.2.

For each inconsistency, two cases were verified:

1. Basic verification when the simulated number of free virions is not
fitted to clinical data that describes the level of the virus. From the
biological point of view, such a verification is pointless. However, from
the computational point of view, it is a good initial selection. If this
verification cannot succeed, then we can be sure that a more complex
verification in which the level of the virions is considered will also fail.

2. A more difficult, but realistic, experiment, apart from satisfying the
condition verified in the previous point, is that the number of virions
is required to fit the clinical data.

Both of these cases were easy to simulate when using the genetic algo-
rithm. The only work that had to be performed was a slight modification of
the fitness function.

4.3.1. Maximizing the total number of hepatocytes

The goal of this experiment was to check whether it is possible to obtain a
total number of hepatocytes that is close to the number of cells in the human
liver. To verify this possibility, the original clinical data set containing in-
formation about the number of virions was extended with information about
the expected number of hepatocytes in the liver. The number of data points
in which the level of the hepatocytes was verified was equal to the number
of data points that describe the virions, to give them equal significance, and
they were uniformly distributed during the period of treatment.

The results presented in figure 7 show that it is possible to model the
correct level of hepatocytes only if the number of virions does not have to fit
the clinical data. However, it is impossible otherwise, in the realistic case.
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Figure 6: Results of the simulation that maximizes the number of hepatocytes. It is
possible to receive the high number of hepatocytes only if the number of viruses does not
have to fit the clinical data.

4.3.2. Maximizing the number of uninfected cells

During the analysis of the model described in section 2.3, it was noticed
that the number of uninfected hepatocytes quickly falls to almost zero, which
contradicts the results from the clinical research. The goal of this experiment
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was to check if it is possible to model a reasonable number of uninfected cells.
The verification was similar to the procedure described in section 4.3.1. How-
ever, according to [55], different expected levels of uninfected hepatocytes
were defined. In successive experiments, the level of uninfected hepatocytes
was equal to 20%, 30%, and so on, up to 90% of all hepatocytes. According
to [55], if the model can predict the correct level of uninfected hepatocytes,
then it should correctly model some of the above levels.

Similar to the experiment described in section 4.3.1, the results showed
that it is possible to model the correct level of hepatocytes only if the number
of virions does not have to fit the clinical data. However, it is impossible oth-
erwise, in the realistic case. The results of the example experiment in which
the number of uninfected hepatocytes is equal to 90% of the hepatocytes are
presented in figure 7.
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Figure 7: Results of the simulation that maximizes the number of uninfected cells. It is
possible to receive the high number of uninfected cells only if the number of viruses does
not have to fit the clinical data.

5. Conclusions

In this paper, a multi-agent model of HCV infection was presented. It was
designed based on an already existing differential equation model, but the
new concept of using a multi-agent simulation was applied. This approach
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has many advantages in comparison to currently used modeling techniques
(see also [20]), such as:

1. Interactions are written using biological terms instead of mathemat-
ical variables and parameters. Consequently, they reflect the actual
complexity of the interaction network better. In addition, they can
be easily understood and defined by the users who do not have expert
mathematical knowledge.

2. It is easier to modify the interactions. Usually, after introducing a mod-
ification, only a simple change in the simulation’s definition is required
instead of a repetition of a complex mathematical analysis. Moreover,
some components of the simulation (for example, selected agents with
associated interactions) can be easily used in other simulations in com-
pletely different research.

3. The objective function and constraints can be more complex. They
do not have to be limited to data fitting but, for example, can de-
fine expected or maximal rates of some processes or change in defined
moments in time.

4. It is possible to define precise spatial dependencies and distinguish be-
tween different cells of the same type. In differential equations, all of
the cells of the same type are assumed to behave identically, whereas
in a multi-agent system, their behavior can depend on some attributes
(for example, genetic mutations and genetic code analysis [61]).

5. There are greater possibilities for analyzing the results because each
cell is simulated separately. In this way, we can analyze how a single
cell or a group of cells affects the results of the experiment.

6. It is easy to model randomness by introducing random variables.

For example, during the computational experiment, it was demonstrated
that it is trivial to define a custom objective function. In this case, the
maximization of some of the values was performed to verify one of the already
existing models. The experiment proved that the genetic algorithm can be
successfully used to optimize this function and draw valuable results.

Moreover, the inverted simulation method was proposed. This method
solves the problem of finding values of parameters used in models for some
specific patient. Using this method, anyone can analyze a viral infection
using techniques that are similar to models based on differential equations
but making use of all of the advantages of a multi-agent simulation. This
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method is an important tool that was not described in any earlier work
related to the use of multi-agent systems in viral infections modeling.
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