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Introduction

We use the definition set out in the first international Conference on learning analytics and Knowledge
and assumed by the Society for Learning Analytics Research: “Learning analytics is the measurement,
collection, analysis and reporting of data about learners and their contexts, for purposes of
understanding and optimizing learning and the environments in which it occurs.”* Bichsel, proposes an
analytics maturity model used to evaluate the progress in the use of academic and learning analytics.
In the progress, there are positive results, but most institutions are below 80% level. Most institutions
also scored low for data analytics tools, reporting, and expertise [2]. In addition, a task with the
methods of Data Mining and Learning Analytics is analyze them (precision, accuracy, sensitivity,
coherence, fitness measures, cosine, confidence, lift, similarity weights) to optimize and adapt them
[9]. Learning Analytics (LA) was and continues to be an emerging technology [7]. The time necessary
to implement Horizon is one year or less, but how many institutions, teachers, learners and data
analytics tools are ready?. The principal aim of this paper is to give mathematical issues of SIA's
asymmetric rules for formal approximate to hierarchical clustering in LA.

Learning Analytics (LA) and clustering

Cluster in Learning Analytics is and remains as an emerging method, as shown in the following
scientific articles: Papamitsiu [11] to examine the literature on experimental case studies conducted in
the domain Learning Analytics and Educational Data Mining, from 2008 to 2013 and to find that in
Learning Analytics 60% of literature using classification or cluster, and 40% regression, text mining,
association rule mining, social network analysis, discovery with models, visualization or statistics. A
recent study [6] show that the current methods used in Learning Analytics are decision tree, clustering,
association rules, time sequence analysis and visualization techniques and [6] show that Non-
hierarchical algorithm are 73% (K-means, C-means, Fuzzy K-means, K-prototypes ,Fuzzy Clustering)
and hierarchical type algorithm are 27% (Agglomerative Clustering, Markov Clustering, Discrete
Markov Model). The novelty of the approach is the possibility to use additional options of SIA’s
asymmetric rules in LA’s clustering.

Statistical Implicative Analysis (SIA) and asymmetric rules.
Statistical implicative analysis is a non-symmetric method of analyzing data crossing subjects or
objects with variables of any type: Boolean, numerical, modal, vectorial, sequential, interval, fuzzy
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and rank2. Statistical Implicative Analysis [8] was created for Regis Gras [7], 48 years ago SIA is a
statistical theory which provides a group of data analytics tools to extract knowledge. The approach is
performed starting from the generation of asymmetric rules [5] similar to dendrograms used in the
hierarchical clusters [14]. But can asymmetric rules be used like a hierarchical cluster? An intuitive
approximation between asymmetric rules and hierarchical clusters was given in [13], this is a visual
perception between simple white and black images, one of the conclusions is that the 69.14% the
participants in the experiment agrees or strongly agrees with the kind of grouping presented by the
hierarchy trees and asymmetric rules in Statistical Implicative Analysis. In Elia paper [4] is performed
a comparative example between hierarchical clustering of variables, implicative statistical analysis and
confirmatory factor, the concept of function is addressed by the teaching, analyzing the level of
understanding that students present in this type of abstract definitions. The outcomes of the three
methods were found to coincide and to complement each other. Anastasiadou in order to study the
appropriate approach that a teacher should use when teaching the theory concerning probability
distributions, compares two statistical tools principal components analysis and asymmetric rules,
components analysis. In the conclusions she writes Hierarchical Clustering of Variables and
Implicative Statistical show stable and similar results but each one has its advantages and different
prospective [1]. [10] compares the implicit methods, hierarchical clustering, and confirmatory factor
analysis in the study of the learning of the geometric figure by 6th graders. The paper concludes that
the outcomes of the three methods were found to coincide. Some new possibilities to complement the
asymmetric rules are shown in [12], we can use supplementary variables to know what are the
subjects, or classes of subjects are more responsible for computed implications, contribution indicates
which subjects are more representative of implication and typicality indicates the typical subjects. All
previous research shows an approximation between the asymmetric rules of SIA and other hierarchical
methods, but they are not formal approximations. In this paper, we want to identify the formal way to
demonstrate that symmetric rules can be considered a hierarchical cluster method. We also make
contributions about which formal demonstrations to perform and some alternatives.

Math issues[3]

1) Let V be afinite not empty set of binary variables, prove that (V, «) is an indexed hierarchy, where
a= c(a, b )=[1-(-p logzp-(1-p)logz(1-p))?]*? if p>0.5, otherwise =0, c(a, b) is the cohesion of a R-
rule a—b of degree 1.

2) For all x the binary relation Ry on V, iR,j if i,jeC, being a(C) <x, is an equivalence relation

3) Let V be a finite not empty set of binary variables, prove that exist 1, such that (V, p) is a ultra-
metric space.

If 1), 2) and 3) are true, then we can represent (V, W) by a dendrogram with V-ends
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