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Abstract: In this paper, we study skew cyclic and quasi cyclic codes over the ring S =

F2 + uF2 + vF2 where u2 = u, v2 = v, uv = vu = 0. We investigate the structural properties

of them. Using a Gray map on S we obtain the MacWilliams identities for codes over S. The

relationships between Symmetrized, Lee and Hamming weight enumerator are determined.
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§1. Introduction

Since the revelation in 1994 [10], there are a lot of works on codes over finite rings. The

structure of certain type of codes over many finite rings are determined such as cyclic, quasi-

cyclic. Recently, it is introduced the class of skew codes which are generalized the notion cyclic,

quasi-cyclic in [5,6,12,14].

In [1], T. Abualrub, P. Seneviratre studied skew cyclic codes over F2 + vF2, v2 = v. In [2],

T. Abualrub, A. Ghrayeb, N. Aydın, I. Siap introduced skew quasi-cyclic codes. They obtained

several new codes with Hamming distance exceeding the distance of the previously best known

linear codes with comparable parameters.

In [4], they investigated the structures of skew cyclic and skew quasi-cyclic of arbitrary

length over Galois rings. They shown that the skew cyclic codes are equivalent to either

cyclic and quasi-cyclic codes over Galois rings. Moreover, they gave a necessary and sufficient

condition for skew cyclic codes over Galois rings to be free.

Jian Gao, L.Shen, F. W. Fu studied a class of generalized quasi–cyclic codes called skew

generalized quasi-cyclic codes. They gave the Chinese Remainder Theorem over the skew

polynomial ring which lead to a canonical decomposition of skew generalized quasi-cyclic codes.

Moreover, they focused on 1-generator skew generalized quasi-cyclic code in [7]. J.Gao also

presented skew cyclic codes over Fp + vFp in [8].

The MacWilliams identity supplies the relationship between the weight enumerator of a

linear code and that of its dual code [11]. The distribution of weights for a linear code is

important for its performance analysis such as linear programming bound, error correcting
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capabilities, etc. There are a lot of work about the MacWilliams identities in [3,9,15].

This paper is organized as follows. In section 2, we give some basic knowledges about the

finite ring S. In section 3, we define a new Gray map from S to F 3
2 , Lee weights of elements

of S and Lee distance in the linear codes over S. In section 4, we define a new non trivial

automorphism and we introduce skew codes over S. In section 5, we obtain the MacWilliams

identities and give an example.

§2. Preliminaries

Let S be the ring F2 + uF2 + vF2 where u2 = u, v2 = v, uv = vu = 0 and F2 = {0, 1}, a

finite commutative ring with 8 elements. S is semi local ring with three maximal ideals and a

principal ideal ring. It is not finite chain ring.

The ideals are follows;

I0 = {0}, I1 = S

Iu = {0, u}, Iv = {0, v}, I1+u+v = {0, 1 + u + v}
Iu+v = {0, u, v, u + v}, I1+u = {0, v, 1 + u, 1 + u + v}
I1+v = {0, u, 1 + v, 1 + u + v}

A linear code C over S length n is a S−submodule of Sn. An element of C is called a

codeword.

For any x = (x0, x1, · · · , xn−1), y = (y0, y1, · · · , yn−1) the inner product is defined as

x.y =

n−1∑

i=0

xiyi

If x.y = 0 then x and y are said to be orthogonal. Let C be linear code of length n over

S, the dual code of C

C⊥ = {x : ∀y ∈ C, x.y = 0} ,

which is also a linear code over S of length n. A code C is self orthogonal if C ⊆ C⊥ and self

dual if C = C⊥.

A cyclic code C over S is a linear code with the property that if c = (c0, c1, · · · , cn−1) ∈ C

then σ (C) = (cn−1, c0, · · · , cn−2) ∈ C. A subset C of Sn is a linear cyclic code of length n iff it

is polynomial representation is an ideal of S [x] / 〈xn − 1〉.
Let C be code over F2 of length n and ć = (ć0, ć1, · · · , ćn−1) be a codeword of C. The

Hamming weight of ć is defined as wH (ć) =
∑n−1

i=0 wH (ći) where wH (ći) = 1 if ći = 1 and

wH (ći) = 0 if ći = 0. Hamming distance of C is defined as dH (C) = min dH (c, ć) , where for

any ć ∈ C, c 6= ć and dH (c, ć) is Hamming distance between two codewords with dH (c, ć) =

wH (c − ć) .

Let a ∈ F 3n
2 with a = (a0, a1, · · · , a3n−1) =

(
a(0)

∣∣a(1)
∣∣ a(2)

)
, a(i) ∈ Fn

2 for i = 0, 1, 2. Let

ϕ be a map from F 3n
2 to F 3n

2 given by ϕ (a) =
(
σ
(
a(0)

) ∣∣σ
(
a(1)

)∣∣ σ
(
a(2)

))
where σ is a cyclic
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shift from Fn
2 to Fn

2 given by σ
(
a(i)
)

= ((a(i,n−1)), (a(i,0)), (a(i,1)) , · · · , (a(i,n−2))) for every

a(i) = (a(i,0), · · · , a(i,n−1)) where a(i,j) ∈ F2, 0 ≤ j ≤ n− 1. A code of length 3n over F2 is said

to be quasi cyclic code of index 3 if ϕ (C) = C.

§3. Gray Map

Let x = a + ub + uc be an element of S where a, b, c ∈ F2. We define Gray map Ψ from S to

F 3
2 by

Ψ : S → F 3
2

Ψ (a + ub + vc) = (a, a + b, a + c)

The Lee weight of elements of S are defined wL (a + ub + vc) = wH(a, a + b, a + c) where

wH denotes the ordinary Hamming weight for binary codes. Hence, there is one element whose

weight is 0, there are u, v, 1 + u + v elements whose weights are 1, there are 1 + u, 1 + v, u + v

elements whose weights are 2, there is one element whose weight are 3.

Let C be a linear code over S of length n. For any codeword c = (c0, · · · , cn−1) the

Lee weight of c is defined as wL (c) =
∑n−1

i=0 wL (ci) and the Lee distance of C is defined as

dL (C) = min dL (c, ć) , where for any ć ∈ C, c 6= ć and dL (c, ć) is Lee distance between two

codewords with dL (c, ć) = wL (c − ć) . Gray map Ψ can be extended to map from Sn to F 3n
2 .

Theorem 3.1 The Gray map Ψ is a weight preserving map from (Sn,Lee weight) to (F 3n
2 , Ham−

ming weight). Moreover it is an isometry from Sn to F 3n
2 .

Theorem 3.2 If C is an [n, k, dL] linear codes over S then Ψ (C) is a [3n, k, dH ] linear codes

over F2, where dH = dL.

§4. Skew Codes over S

We are interested in studying skew codes using the ring S = F2 +uF2 +vF2 where u2 = u, v2 =

v, uv = vu = 0.. We define non-trivial ring automorphism θ on the ring S by θ (a + ub + vc) =

a + vb + uc for all a + ub + vc ∈ S.

The ring S[x, θ] = {a0 + a1x + · · · + an−1x
n−1 : ai ∈ S, n ∈ N} is called a skew polyno-

mial ring. This ring is a non-commutative ring. The addition in the ring S[x, θ] is the usual

polynomial addition and multiplication is defined using the rule, (axi)(bxj) = aθi(b)xi+j . Note

that θ2(a) = a for all a ∈ S. This implies that θ is a ring automorphism of order 2.

Definition 4.1 A subset C of Sn is called a skew cyclic code of length n if C satisfies the

following conditions,

(i) C is a submodule of Sn;

(ii) If c = (c0, c1, · · · , cn−1) ∈ C, then σθ (c) =
(
θ(cn−1), θ(c0), · · · , θ(cn−2)

)
∈ C.
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Let (f(x)+ (xn −1)) be an element in the set Sn = S [x, θ] /(xn −1) and let r(x) ∈ S [x, θ].

Define multiplication from left as follows:

r(x)(f(x) + (xn − 1)) = r(x)f(x) + (xn − 1)

for any r(x) ∈ S [x, θ].

Theorem 4.2 Sn is a left S [x, θ]-module where multiplication defined as in above.

Theorem 4.3 A code C in Sn is a skew cyclic code if and only if C is a left S [x, θ]-submodule

of the left S [x, θ]-module Sn.

Theorem 4.4 Let C be a skew cyclic code in Sn and let f(x) be a polynomial in C of minimal

degree. If f(x) is monic polynomial, then C = (f(x)) where f(x) is a right divisor of (xn − 1).

Theorem 4.5 Let n be odd and C be a skew cyclic code of length n. Then C is equivalent to

cyclic code of length n over S.

Proof Since n is odd, gcd(2, n) = 1. Hence there exist integers b, c such that 2b + nc = 1.

So 2b = 1 − nc = 1 + zn where z > 0. Let a(x) = a0 + a1x + · · · + an−1x
n−1 be a codeword in

C. Note that x2ba(x) = θ2b(a0)x
1+zn + θ2b(a1)x

2+zn + · · · + θ2b(an−1)x
n+zn = an−1 + a0x +

· · · + an−2x
n−2 ∈ C. Thus C is a cyclic code of length n. 2

Corollary 4.6 Let n be odd. Then the number of distinct skew cyclic codes of length n over S

is equal to the number of ideals in S [x] /(xn −1) because of Theorem 7. If xn −1 =
∏r

i=0 psi

i (x)

where pi(x) are irreducible polynomials over F2. Then the number of distinct skew cyclic codes

of length n over S is
∏r

i=0(si + 1)2.

Example 4.7 Let n = 15 and g(x) = x4 + x3 + x2 + x + 1. Then g(x) generates a skew cyclic

codes of length 15. This code is equivalent to a cyclic code of length 15. Since x15 − 1 =

(x + 1)(x2 + x + 1)(x4 + x + 1)(x4 + x3 + 1)(x4 + x3 + x2 + x + 1), it follows that there are 28

skew cyclic code of length 15.

Definition 4.8 A subset C of Sn is called a skew quasi-cyclic code of length n if C satisfies

the following conditions:

(i) C is a submodule of Sn;

(ii) If e = (e0,0, · · · , e0,l−1, e1,0, · · · , e1,l−1, · · · , es−1,0, · · · , es−1,l−1) ∈ C, then τθ,s,l (e) =

(θ(es−1,0), · · · , θ(es−1,l−1), θ(e0,0), · · · , θ(e0,l−1), θ(es−2,0), · · · , θ(es−2,l−1)) ∈ C.

We note that xs − 1 is a two sided ideal in S [x, θ] if m|s where m = 2 is the order of θ. So

S [x, θ] /(xs − 1) is well defined.

The ring M l
s = (S [x, θ] /(xs − 1))l is a left Ms = S [x, θ] /(xs − 1) module by the following

multiplication on the left f(x)(g1(x), · · · , gl(x)) = (f(x)g1(x), · · · , f(x)gl(x)). If the map γ is

defined by

γ : Sn −→ M l
s
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(e0,0, · · · , e0,l−1, e1,0, · · · , e1,l−1, · · · , es−1,0, · · · , es−1,l−1) 7→ (c0(x), · · · , cl−1(x)) such that ej(x) =
∑s−1

i=0 ei,jx
i ∈ M l

s where j = 0, 1, · · · , l − 1 then the map γ gives a one to one correspondence

Sn and the ring M l
s.

Theorem 4.9 A subset C of Sn is a skew quasi-cyclic code of length n = sl and index l if and

only if γ(C) is a left Ss-submodule of M l
s.

§5. MacWilliams Identities

Let the elements of S be represented as S = {f1, f2, · · · , f8} = {0, 1, u, v, 1+ u, 1 + v, u + v, 1 +

u + v} where the order of elements is fixed.

Definition 5.1 Define χ : S −→ C∗ by χ(a+ub+vc) = (−1)a+b+c. χ is a non-trivial character

of each non-zero ideal I of S. Hence we have
∑

a∈I χ(a) = 0.

Lemma 5.2 Let C be a linear code over S of length n. Then for any m ∈ Sn,

∑

c∈C

χ(c.m) =





0, if m /∈ C⊥

|C| , if m ∈ C⊥

Theorem 5.3([11]) Let C be a linear code over S of length n and f̂(c) =
∑

m∈Sn χ(c.m)f(m).

Then
∑

m∈C⊥ f(m) = 1
|C|
∑

c∈C f̂(c).

Let A is a 8 × 8 matrix.A matrix defined by A(i, j) = χ(fifj). The matrix A is given as

follows

A =





1 1 1 1 1 1 1 1

1 −1 −1 −1 1 1 1 −1

1 −1 −1 1 1 −1 −1 1

1 −1 1 −1 −1 1 −1 1

1 1 1 −1 1 −1 −1 −1

1 1 −1 1 −1 1 −1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 1 1 −1 −1 1 −1





Definition 5.4 Let C be a linear code of length n over S, then LeeC(x, y) =
∑

c∈C x3n−wL(c)ywL(c)

can be called as the Lee weight enumerator of C and HamC(x, y) =
∑

c∈C xn−wH (c)ywH(c) can

be called as the Hamming weight enumerator of C. Besides,

SweC(x, y, z, w) =
∑

c∈C

xn0(c)yn1(c)zn2(c)wn3(c)

is the symmetric weight enumerator where ni(c) denote the number of elements of c with Lee
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weight 0, 1, 2, 3, respectively.

Definition 5.5 The complete weight enumerator of a linear code C over R is defined as

cweC(x1, x2, · · · , x8) =
∑

c∈C x
nf1

(c)
1 · · ·xnf8

(c)
8 where nfi

(c) is the number of appearances of fi

in the vector c.

The complete weight enumerator gives us a lot of information about the code, such as the

size of the code, the minimum weight of the code and the weight enumerator of the code for

any weight function.

We can define the symmetrized weight enumerator as follows.

Definition 5.6 Let C be a linear code of length n over S. Then define the symmetrized weight

enumerator of C as

SweC(x, y, z, w) = cweC(x, w, y, y, z, z, z, y)

Here x represents the elements that have weight 0 (the 0 element), y represents the elements

with weight 1 (the elements u, v, 1+u+v), z represents the elements with weight 2 (the elements

1 + u, 1 + v, u + v), w represents the elements with weight 3 (the element 1).

Theorem 5.7 Let C be a linear code of length n over S and let C⊥ be its dual. Then

cweC⊥(x1, x2, · · · , x8) = 1
|C|cweC(A.(x1 x2 · · · x8)

⊤) where ()⊤ denotes the transpose.

Theorem 5.8 Let C be a linear code of length n over S and let C⊥ be its dual. Then

SweC⊥(x, y, z, w) = 1
|C|SweC(x + w + 3y + 3z, x − w − 3y + 3z, x − w + y − z, x + w − y − z).

Proof The proof follows simply from calculating the matrix product

A.(x w y y z z z y)⊤

where ()⊤ denotes the transpose. 2
Theorem 5.9 Let C be a linear code of length n over S. Then,

(i) LeeC(x, y) = SweC(x3, x2y, y2x, y3);

(ii) LeeC⊥(x, y) = 1
|C|LeeC(x + y, x − y).

Proof (i) Let wL(c) = n1(c)+2n2(c)+3n3(c) where ni(c) denote the number of elements of

c with Lee weight 0, 1, 2, 3, respectively. Since n = n0(c) + n1(c) + n2(c) + n3(c), 3n−wL(c) =

3n0(c) + 2n1(c) + n2(c). From the definition,

LeeC(x, y) =
∑

c∈C

x3n−wL(c)ywL(c) =
∑

c∈C

x3n0(c)+2n1(c)+n2(c)yn1(c)+2n2(c)+3n3(c)

=
∑

c∈C

x3n0(c)(x2y)n1(c)(y2x)n2(c)y3n3(c) = SweC(x3, x2y, y2x, y3)
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(ii) From Theorems 5.7 and 5.8,

LeeC⊥(x, y) =
1

|C|SweC(x3 + 3x2y + 3y2x + y3, x3 − y3 − 3x2y + 3xy2,

x3 − y3 + x2y − xy2, x3 + y3 − x2y − xy2)

=
1

|C|SweC((x + y)3, (x + y)2(x − y), (x − y)2(x + y), (x − y)3)

=
1

|C|LeeC(x + y, x − y). 2
Theorem 5.10 Let C be a linear code of length n over S. Then we have

(i) HamC⊥(x, y) = 1
|C|HamC(x + 7y, x − y);

(ii) HamC(x, y) = SweC(x, y, y, y).

Proof (i) It is straightforward from [13].

(ii) The Hamming weight wH(c) is defined as wH(c) = n0(c) + n1(c) + n2(c) + n3(c).

HamC(x, y) =
∑

c∈C

xn−wH (c)ywH(c) =
∑

c∈C

xn0(c)yn1(c)+n2(c)+n3(c)

= SweC(x, y, y, y). 2
Example 5.11 Let C = {(0, 0), (v, v)} be a linear code of length 2 over S. The Lee weight

enumerator is LeeC(x, y) = x6 + x4y2; the Hamming enumerator is HamC(x, y) = x2 + y2. Lee

weight enumerator of C⊥ is LeeC⊥(x, y) = x6 + 4x5y + 7x4y2 + 8x3y3 + 7x2y4 + 5xy5 + y6;

Hamming weight enumerator of C⊥ is

HamC⊥(x, y) = x2 + 6xy + 25y2.
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