

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Petascaling Machine Learning Applications with MR-MPI

R. Oguz Selvitopi
a
, Gunduz Vehbi Demirci

a
, Ata Turk

a
, Cevdet Aykanat

a*

aBilkent University, Computer Engineering Department, 06800 Ankara, TURKEY

Abstract

This whitepaper addresses applicability of the Map/Reduce paradigm for scalable and easy parallelization of

fundamental data mining approaches with the aim of exploring/enabling processing of terabytes of data on

PRACE Tier-0 supercomputing systems. To this end, we first test the usage of MR-MPI library, a lightweight

Map/Reduce implementation that uses the MPI library for inter-process communication, on PRACE HPC

systems; then propose MR-MPI-based implementations of a number of machine learning algorithms and

constructs; and finally provide experimental analysis measuring the scaling performance of the proposed

implementations. We test our multiple machine learning algorithms with different datasets. The obtained results

show that utilization of the Map/Reduce paradigm can be a strong enhancer on the road to petascale.

1. Introduction

Large-scale machine learning problems exist in a large number of social and industrial applications, such as

social network analysis, consumer/voter preference analysis, anomaly detection, credit card fraud

control/management systems, and postal automation. On the other hand, Map/Reduce is a framework originally

developed at Google to ease development of parallel and distributed codes [1]. There are many studies that aim

to harness the processing power and ease provided by the Map/Reduce framework for tackling large-scale

machine learning problems [16]. The MapReduce paradigm has proved its success by being realized and

efficiently utilized on many large-scale projects [2-5]. In this study, we test the scalability and applicability of

the Map/Reduce parallel programming paradigm on fundamental data mining approaches with the aim of

exploring/enabling processing of terabytes of data on PRACE Tier-0 supercomputing systems. To this end, we

first test the usage of MR-MPI library, a lightweight Map/Reduce implementation that uses the MPI library for

inter-process communication, on PRACE HPC systems; then propose MR-MPI-based implementations of a

number of machine learning algorithms and constructs; and finally provide experimental analysis measuring the

scaling performance of the proposed implementations.

2. Background

2.1 Map/Reduce Framework

Map/Reduce is a paradigm originating from functional programming, where higher order functions map and

reduce are applied to a list of elements to return a value. The Map/Reduce framework provides a runtime system

that manages mapper and reducer tasks, providing automatic scalability and fault tolerance. With the help of this

framework, it is possible to ignore complex parallel programming structures like message passing and

synchronization and the programmer only needs to design a mapper and a reducer function for each distinct

map/reduce phase. Along with reducing programming complexity, another important feature of Map/Reduce is

that it can operate on massive data sets. That is, Map/Reduce is designed for scalability instead of speedup.

* Corresponding author. E-mail address: aykanat@cs.bilkent.edu.tr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144827926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

The most widely used open-source Map/Reduce implementation is the Apache Hadoop Project [2]. Hadoop is

developed in Java and makes use of TCP/IP ports for communication. Since PRACE Tier-0 systems fail in

supporting the requirements of Hadoop, alternative Map/Reduce implementations are considered. Among these,

the Map/Reduce-MPI (MR-MPI) library [10] developed at Sandia National Labs seems to be the most

appropriate choice for supercomputing systems.

2.2 MR-MPI Library

The scientific computing community tried to exploit the benefits of the MapReduce programming model [6-11].

In [10], the authors developed a lightweight library called MR-MPI. MR-MPI is developed in C++. It uses the

MPI library for inter-process communication. These properties enable MR-MPI to be used on HPC platforms

without an extra overhead. It also has additional functionalities that can be utilized for speed-up. In the original

Map/Reduce framework, it is required to submit each Map/Reduce phase as a separate job, which causes a

decrease in performance. In contrast, MR-MPI library does not have such requirements, which leads to a

performance increase especially in iterative algorithms like graph algorithms. In the original Map/Reduce

framework, initial key-value pairs produced by a map phase are all written to the disk system waiting for the

reducer tasks to read their own partitions via remote procedure calls. In the MR-MPI library, whenever a mapper

task produces all its key-value pairs, it is not obligated to write all of these key-value pairs to the disk but

instead, it is possible to communicate these key-value pairs with reducer tasks while storing them in memory.

MR-MPI also provides additional functions to manipulate key-value pairs between map tasks and reduce tasks.

For example one can reduce some of the key-value pairs and produce new key-values from them. Later it is

possible to unite old key-value pairs which are not reduced with the new key-value pairs for further reduction

operations. With MR-MPI lots of further optimizations can be achieved while designing new efficient

Map/Reduce algorithms.

MR-MPI enables the utilization of native MPI functions, thus deviating from conventional Map/Reduce

implementations. MR-MPI supports in-core and out-of-core modes of operations, which allow processors to

utilize disks in situations where data is too big to fit in main memory. However, it does not provide any fault

tolerance or data redundancy capability.

MR-MPI provides several operations that perform various tasks. Since these are important for our work, we

review them here briefly:

 map: Generates key-value (KV) pairs by calling a user program. This is serial and requires no

communication between processors. In default settings, each processor is assigned an equal number of

mappers.

 add: Adds KV pairs from one object to another. Requires no communication and is performed serially.

 convert: Converts KV pairs into key- multivalue (KMV) pairs. Prior to calling the convert function, the

KV pairs may contain duplicate keys and their related values. After calling convert, the values of the

same key are concatenated to be a single KMV pair.

 collate: Aggregates KV pairs across processors and then converts them into KMV pairs. This operation

requires communication and is actually equivalent to an aggregate operation followed by a convert

operation.

 reduce: Calls back the user program to process KMV pairs. This operation requires no communication

and processes a KMV pair to generate KV pair. The KMVs owned by processors are guaranteed to be

unique. At the end of the reduce operation, each processor will own a list of unique KV pairs.

3

3. Machine Learning with MR-MPI

Within this project, we test the MR-MPI library to see its performance on machine learning algorithms and

constructs such as All Pairs Shortest Path (APSP), All Pair Similarity Search (APSS), and Decision Trees (DT).

APSP is generally used for measuring importance (via metrics such as betweenness centrality) in social

networks. APSS is a widely used kernel in many data mining and machine learning domains. The output of the

APSS -a similarity graph- can be used as input to graph transduction [18], graph clustering [19] or near-duplicate

detection algorithms. Moreover, the computed similarity graph can also be utilized in the widely used classical

k-means [20] or k-nearest neighbor searches [21]. DTs are among the most widely used learning algorithms in

machine learning since they are adaptable, easy to interpret, and known to produce highly accurate models.

3.1 All Pairs Shortest Path (APSP)

The input graph to the APSP problem consists of 𝑛 vertices and can be represented by an 𝑛 by 𝑛 adjacency

matrix (also referred to as distance matrix). There are two basic algorithms we have implemented using the

Map/Reduce paradigm for solving this problem. The first one is the Repeated Squaring method in which the

adjacency matrix is multiplied by itself log 𝑛 times to compute the shortest path between all pairs of vertices.

The asymptotic complexity of a single multiplication is O 𝑛3 , thus repeated squaring takes O 𝑛3 log 𝑛 -time.

The second approach is the Floyd-Warshall algorithm which uses a dynamic programming formulation to obtain

a better asymptotic complexity, O 𝑛3 . The Floyd-Warshall algorithm consists of 𝑛 iterations, where in iteration

𝑖, row 𝑖 and column 𝑖 are used to compute and update possibly all entries of the distance matrix. Although

repeated squaring is more amenable to parallelization, the sparse matrix multiplied by itself in this method

becomes denser as the computation proceeds.

The repeated squaring algorithm utilizes matrix multiplication of the form 𝐴𝐵 as a kernel operation. Based on

1D matrix partitioning, the matrix multiplication problem can be solved in two different ways with the

Map/Reduce paradigm. The first method requires a single Map/Reduce phase and the second method requires

two consecutive Map/Reduce phases. The former method requires rowwise partitioning of matrix 𝐴, whereas the

latter one requires columnwise partitioning of matrix 𝐴 together with conformal rowwise partitioning of matrix

𝐵. We opted to use the latter one because it scales better than the single-phase approach. In the two-phase

approach, each column 𝑖 of matrix 𝐴 is multiplied by row 𝑖 of matrix 𝐵. This operation is called outer product

and each outer product produces a matrix consisting of partial results which are later combined to produce the

resulting similarity matrix. On the other hand, in the one-phase approach, an inner product operation is

performed between each row 𝑖 of matrix 𝐴 and all columns of matrix 𝐵. Each inner product operation produces a

single element of the resulting output matrix. The one-phase approach necessitates replication of all columns of

matrix 𝐵 among the processors that participate in multiplication, whereas the two-phase requires no replication

at all [17]. Hence, the one-phase approach incurs more communication, which hinders its scalability. Moreover,

even though the second approach needs two phases, MR-MPI library does not need intermediate key-value pairs

to be written to the distributed file system, which provides low latency between two consecutive Map/Reduce

phases. Hence, the two-phase approach is more amenable to parallelization.

Algorithm 1 displays the two-phase matrix multiplication algorithm. At the beginning of the algorithm, two MR-

MPI library objects named as 𝐴 and 𝐵 are initialized. Object 𝐴 stores the key-value objects which are read from

the distributed file system using parallel I/O functions of the MPI library. Key-value pairs are of the form

 𝑖, 𝑗 𝑎𝑖𝑗 and correspond to nonzero entries of matrix 𝐴. Here, 𝑖, 𝑗 is the key that stores the row and column

indices of the respective nonzero element 𝑎𝑖𝑗 . The 𝐵 object is initially empty. To obtain a columnwise partition

of matrix 𝐴 object, we use a mapper function which transforms the key-value pairs 𝑖, 𝑗 𝑎𝑖𝑗 into 𝑗 𝑖, 𝑎𝑖𝑗 . In

a similar manner, to obtain a conformal rowwise partitioning of the 𝐵 object, we use a mapper function which

transforms the key-value pairs 𝑖, 𝑗 𝑏𝑖𝑗 into 𝑖 𝑗, 𝑏𝑖𝑗 . A collate operation is then performed where all the key-

value pairs are hashed according to key fields and are distributed among processors. When the collate phase is

complete, nonzero entries of columns of matrix 𝐴 and rows of matrix 𝐵 with the same key field are all collected

by the

4

Algorithm 1: Two-phase matrix multiplication algorithm that computes 𝐴𝐵.

same processor, thus achieving conformal columnwise and rowwise partitioning of matrices 𝐴 and 𝐵,

respectively. Then, all key-value pairs with the same key are merged into a single key-multi value object of the

form 𝑗 𝑖, [𝑎𝑖𝑗] and a reduce operation is performed with a user defined function that contains a similarity

operator within the outer product operation forming a new local intermediate matrix (denoted as 𝐶) with partial

results. The formed entries of the local intermediate matrices are of the form 𝑖, 𝑘 𝑐𝑖𝑘 , which are then used to

be mapped in a columnwise fashion to generate the output key-value pairs 𝑘 𝑖, 𝑐𝑖𝑘 . Finally, a collate operation

is performed to distribute each column of the local intermediate matrices produced by the outer product

operations. After this phase, partial results of different intermediate matrices that have the same column indices

are gathered by the same processor. Therefore, it is possible to compute columns of the resulting matrix locally

by all processors.

Algorithm 2 displays the high-level MR-MPI pseudo-code of the repeated squaring algorithm. Note that each

iteration of Algorithm 2 effectively implements the matrix multiplication algorithm given in Algorithm 1, where

the same input matrix is multiplied by itself at each iteration and the output matrix of the current iteration

becomes the input matrix of the following iteration.

Input: MapReduce object A = non-zero coordinates with weights: 𝐾𝑒𝑦 = 𝑟𝑜𝑤𝑖 , 𝑐𝑜𝑙𝑗 , 𝑉𝑎𝑙𝑢𝑒 = (𝑎𝑖𝑗)

 MapReduce object B = non-zero coordinates with weights: 𝐾𝑒𝑦 = 𝑟𝑜𝑤𝑖 , 𝑐𝑜𝑙𝑗 , 𝑉𝑎𝑙𝑢𝑒 = (𝑏𝑖𝑗)

Map columns using 𝐴 as input:

 Input: 𝐾𝑒𝑦 = 𝑟𝑜𝑤𝑖 , 𝑐𝑜𝑙𝑗 , 𝑉𝑎𝑙𝑢𝑒 = (𝑎𝑖𝑗)

 Output: 𝐾𝑒𝑦 = 𝑐𝑜𝑙𝑗 , 𝑉𝑎𝑙𝑢𝑒 = (′𝐴′ , 𝑟𝑜𝑤𝑖 , 𝑎𝑖𝑗)

Map rows using 𝐵 as input:

 Input: 𝐾𝑒𝑦 = 𝑟𝑜𝑤𝑖 , 𝑐𝑜𝑙𝑗 , 𝑉𝑎𝑙𝑢𝑒 = (𝑏𝑖𝑗)

 Output: 𝐾𝑒𝑦 = 𝑟𝑜𝑤𝑖 , 𝑉𝑎𝑙𝑢𝑒 = (′𝐵′ , 𝑐𝑜𝑙𝑗 , 𝑏𝑖𝑗)

Collate conformal columns of 𝐴 and rows of 𝐵: Row and column numbers are Key

Reduce:

 Input: 𝐾𝑒𝑦 = 𝑐𝑜𝑙𝑖 𝑜𝑟 𝑟𝑜𝑤𝑖 , 𝑀𝑢𝑙𝑡𝑖𝑉𝑎𝑙𝑢𝑒 = ′𝐴′ , 𝑟𝑜𝑤𝑗 , 𝑎𝑗𝑖 𝑜𝑟(′𝐵 ′ , 𝑐𝑜𝑙𝑗 ,𝑏𝑖𝑗)

 ColumnVectorA, rowVectorB = split MultiValues according to the tags in the values

 𝐶 = 𝑐𝑜𝑙𝑢𝑚𝑛𝑉𝑒𝑐𝑡𝑜𝑟𝐴 × 𝑟𝑜𝑤𝑉𝑒𝑐𝑡𝑜𝑟𝐵

 For each 𝑐𝑖𝑘 ∈ 𝐶do

 Output: 𝐾𝑒𝑦 = 𝑟𝑜𝑤𝑖 , 𝑐𝑜𝑙𝑘 , 𝑉𝑎𝑙𝑢𝑒 = (𝑐𝑖𝑘)

Map columns using 𝐶 as input:

 Input: 𝐾𝑒𝑦 = 𝑟𝑜𝑤𝑖 , 𝑐𝑜𝑙𝑘 , 𝑉𝑎𝑙𝑢𝑒 = (𝑐𝑖𝑘)

 Output: 𝐾𝑒𝑦 = 𝑐𝑜𝑙𝑘 , 𝑉𝑎𝑙𝑢𝑒 = (′𝐶 ′ , 𝑟𝑜𝑤𝑖 , 𝑐𝑖𝑘)

Collate: collect all partial results in the same column

 Input: 𝐾𝑒𝑦 = 𝑐𝑜𝑙𝑘 , 𝑀𝑢𝑙𝑡𝑖𝑉𝑎𝑙𝑢𝑒 = (′𝐶 ′ , 𝑟𝑜𝑤𝑖 , 𝑐𝑖𝑘)

 Output: 𝐾𝑒𝑦 = 𝑐𝑜𝑙𝑘 , 𝑉𝑎𝑙𝑢𝑒 = 𝑀𝑢𝑙𝑡𝑖𝑉𝑎𝑙𝑢𝑒

Reduce:

 Input: 𝐾𝑒𝑦 = 𝑐𝑜𝑙𝑘 , 𝑀𝑢𝑙𝑡𝑖𝑉𝑎𝑙𝑢𝑒 = ′𝐶 ′ , 𝑟𝑜𝑤𝑖 , 𝑐𝑖𝑘
 For each 𝑐𝑖𝑘 ∈ 𝐶𝑖 do

 𝑟𝑖𝑘+= 𝑐𝑖𝑘

 Output: 𝐾𝑒𝑦 = 𝑟𝑜𝑤𝑖 , 𝑐𝑜𝑙𝑘 , 𝑉𝑎𝑙𝑢𝑒 = (𝑟𝑖𝑗)

5

Algorithm 2: High-level MR-MPI pseudo-code for APSP with repeated squaring.

Algorithm 3: High-level MR-MPI pseudo-code for APSP with Floyd-Warshall.

Algorithm 3 presents the high-level MR-MPI pseudo-code for the Floyd-Warshall algorithm. The input to this

algorithm is an 𝑛 by 𝑛 matrix. This input matrix is represented with the Map/Reduce object 𝐴 whose key-value

pairs are of the form 𝑣𝑖 , 𝑣𝑗 𝑤𝑖𝑗 , where 𝑣𝑖 and 𝑣𝑗 are the source and the target nodes, respectively, and 𝑤𝑖𝑗 is

the distance between these two nodes. Lines 1-3 in the algorithm perform a columnwise partitioning of the

matrix by transforming the key-value pairs into the form 𝑣𝑗 𝑣𝑖 , 𝑤𝑖𝑗 . The key-value pairs that correspond to

the same column entries in the distance matrix are stored and processed by the same processor. Hence, the

distance computation in each iteration can be performed locally. The main loop in Algorithm 3 is executed 𝑛

times and at each iteration 𝑘, the 𝑘𝑡ℎcolumn is replicated to all reducer tasks. This is achieved by the user-

defined function kthColMapper, adding these key-value pairs to the Map/Reduce object T, performing a collate

operation to distribute column 𝑘 to all reducers, and finally performing a reduce operation (kthColReducer) to

gather the corresponding entries of 𝑘𝑡ℎ column in a single contiguous vector (lines 5-7). Recall that the convert

function converts all values of a key to a single key-multivalue object by aggregating these values in a

contiguous data structure. The convert operation in line 8 converts distinct key-value objects to key-multivalue

objects, which is an obligation of the MR-MPI library since reduce operations can only be performed on key-

multivalue objects in MR-MPI. Finally, the reduce operation is performed with the user-defined function

kthIterationReducer to update all key-value pairs using 𝑘𝑡ℎ column and the recursive formulation of the Floyd-

Warshall algorithm. The updated values are stored in Map/Reduce object A and of the form 𝑣𝑗 𝑣𝑖 , 𝑤𝑖𝑗 .

Require: 𝐴 = 𝑖, 𝑗 𝑎𝑖𝑗 , 𝑛

 1: Init MapReduce objects 𝐴

 2: 𝑘 = 1

 3: while 𝑘 < 𝑛 − 1 do

 4: 𝐴 ← 𝐴. map 𝑚𝑎𝑝𝑝𝑒𝑟1𝐷𝐶𝑊
 5: 𝐵 ← 𝐴. map 𝑚𝑎𝑝𝑝𝑒𝑟1𝐷𝑅𝑊
 6: 𝐴 ← 𝐵. add
 7: delete 𝐵

 8: 𝐴. collate NULL
 9: 𝐴. reduce 𝑟𝑒𝑑𝑢𝑐𝑒𝑟𝑂𝑃
10: 𝐴 ← 𝐴. map 𝑚𝑎𝑝𝑝𝑒𝑟1𝐷𝐶𝑊
11: 𝐴. collate NULL
12: 𝐴. reduce 𝑟𝑒𝑑𝑢𝑐𝑒𝑟𝑆𝑃
13: 𝑘 ← 𝑘 × 2

14: return 𝐴

Require: 𝐴 = 𝑖, 𝑗 𝑤𝑖𝑗 , 𝑛

 1: 𝐴 ← 𝐴. map 𝑚𝑎𝑝𝑝𝑒𝑟1𝐷𝐶𝑊
 2: 𝐴. collate NULL
 3: 𝐴. reduce 𝑟𝑒𝑑𝑢𝑐𝑒𝑟1𝐷𝐶𝑊
 4: for 𝑘 = 0 to 𝑛 − 1 do

 5: 𝑇 ← 𝐴. map 𝑘𝑡ℎ𝐶𝑜𝑙𝑀𝑎𝑝𝑝𝑒𝑟
 6: 𝑇. collate NULL
 7: 𝑇. reduce 𝑘𝑡ℎ𝐶𝑜𝑙𝑅𝑒𝑑𝑢𝑐𝑒𝑟
 8: 𝐴. convert NULL
 9: 𝐴. reduce 𝑘𝑡ℎ𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑑𝑢𝑐𝑒𝑟
10: return 𝐴

6

Algorithm 4: High-level MR-MPI pseudo-code for APSS.

3.2 All Pairs Similarity Search (APSS)

The APSS problem is defined for a given set of vectors as finding all vector pairs the similarities of which are

above a given similarity threshold. In this problem, a given set of 𝑚-dimensional 𝑛 vectors are represented by an

𝑛 by 𝑚 input matrix 𝐴 by placing vectors which represent high dimensional data at the row positions of the

matrix. In this representation, APSS reduces to multiplication of the input matrix 𝐴 with its transpose 𝐴𝑇. Matrix

multiplication is performed by using a similarity operator instead of each scalar multiply-and-add operation that

is used in the standard multiplication.

The basic difference between the APSP algorithm with repeated squaring and the APSS algorithm is that the

APSP involves the matrix multiplication of the form 𝐴𝐴 whereas APSS involves the matrix multiplication of the

form 𝐴𝐴𝑇. A columnwise partition of matrix 𝐴 already induces a conformal rowwise partition of matrix 𝐴𝑇.

Hence, in the APSS algorithm, we can easily avoid the expensive map, collate and reduce operations in the first

phase of the two-phase matrix multiplication algorithm given in Algorithm 1. Another important difference is

that the APSP algorithm with repeated squaring performs log 𝑛 successive matrix multiplications whereas APSS

performs only once. So, the APSS algorithm reduces to the algorithm given in Algorithm 4.

3.3 Decision Trees

Decision Trees (DTs) are tree-structured plans of a set of attributes used for addressing learning-based prediction

problems. In decision tree learning, as training data we are given a training set of (x, y) pairs where x are d-

dimensional feature vectors (also called attributes or input vectors) and y are associated output variable (label),

and during testing, we are given an input vector and asked to predict the output variable. DTs perform this task

by splitting the data at each internal node and making a prediction at each leaf node. At the root of the tree, the

entire training dataset is examined to find the best split predicate for the root. The dataset is then partitioned

along the split predicate and the process is repeated recursively on the partitions to build the child nodes.

The Map/Reduce-based construction of the decision tree from a given input set is performed in multiple

Map/Reduce iterations. There can be various Map/Reduce implementations but here we describe the approach

presented in [15]. In this algorithm, each Map/Reduce iteration builds one level of the decision tree. In an

iteration, a mapper considers a number of possible splits on its subset of the data and for each split it stores

partial statistics, which are sent to reducers. A reducer collects all partial statistics and sends them back to the

master node to determine the best split. A master node grows the respective level of the tree and also decides if

nodes should be split further. We refer to mappers and reducers as worker nodes. The stopping criteria are based

on two main conditions: (i) when the number of records falls below a pre-determined threshold or (ii)

information gain at the corresponding node is below a predetermined value, the node is not further expanded.

The main stages of a single iteration are described below:

1. The master node distributes data and decision tree information to worker nodes.

2. Each worker maps its own portion of data by computing split information using split values of all

attributes.

3. A collate operation is performed to distribute the KV pairs (generated by mappers) to reducers.

4. Each reducer finds the best local split for each active node of the tree and sends them back to master

node.

5. The master node receives partial local best split attributes from worker nodes and chooses best attribute

for the currently active nodes. Then, it decides which tree nodes to expand.

Require: 𝐴 = 𝑖, 𝑗 𝑎𝑖𝑗

 1: Init MapReduce object 𝐴

 2: 𝐴 ← 𝐴. map 𝑚𝑎𝑝𝑝𝑒𝑟1𝐷𝐶𝑊
 3: 𝐴 ← 𝐴. map 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑂𝑃
 4: 𝐴. collate NULL
 5: 𝐴. reduce 𝑟𝑒𝑑𝑢𝑐𝑒𝑟𝑆𝑃
 6: return 𝐴

7

4. Experiments

To test the MR-MPI library, we first ported this library to Hermit (Cray XE6) system [12] and developed MR-

MPI based implementations of the APSP, APSS and DT algorithms. We should note that compiling and testing

MR-MPI in almost all HPC systems can be performed with ease since MR-MPI is only dependent on the MPI

library, which is already well linked and optimized in most HPC systems. To obtain peak performance, MR-MPI

must be tuned with the parameters of the parallel file system (Hermit provides Lustre [14] parallel file system).

We made use of parallel MPI-I/O for data transfers performed between the memory and the disk.

4.1 All Pairs Shortest Path

For the APSP experiments we have used three random graphs that are generated recursively with power-law

degree distributions. These kinds of graphs are commonly used to represent social networks. The properties of

these random graphs are displayed in Table 1. APSP algorithms are run on 128, 256 and 512 cores for the

rgraph1, rgraph2 and rgraph3 datasets, respectively, to conduct weak scaling performance tests. The obtained

results for these datasets are displayed in Table 2.

Name Type Nodes Edges Description

rgraph1 Directed 256 2560 Randomly generated network

rgraph2 Directed 512 5120 Randomly generated network

rgraph3 Directed 1024 10240 Randomly generated network

Table 1: APSP Dataset properties

For APSP, we considered two alternative implementations, one based on repeated squaring (RSQ) and one based

on the Floyd-Warshall (FW) algorithm. The results show that RSQ obtains better running times compared to

FW. The reason is that the number of Map/Reduce iterations is log 𝑛 for RSQ, whereas it is 𝑛 for the FW

algorithm.

Considering the cubic complexity of the APSP problem, we note that when we double the input data size, the

problem size (as defined in [22]) increases 23 = 8 times. So, when we double both the input data size and the

number of processors, the computational load of a single core increases four-fold. As seen in Table 2, parallel

running times increase less than four-fold, thus showing that the our MR-MPI-based APSP algorithms exhibit

successful weak scaling performance.

Dataset: rgraph1 rgraph2 rgraph3

Number of processors: 128 256 512

RSQ 21.36 57.22 152.47

FW 147.91 534.19 1187.81

Table 2: APSP runtimes (in seconds) for weak-scaling experiments.

4.2 All Pairs Similarity Search

For APSS experiments, we have used a realistic social graph named LiveJournal. The LiveJournal social graph is

taken from the Stanford University Large Network Dataset Collection [13]. LiveJournal is an on-line community

in which a significant fraction of members is highly active. It allows members to maintain journals and to declare

which other members are their friends. Each node in the graph corresponds to a member in the network and an

edge is added between nodes if the respective pair of members become friends. The properties of these datasets

are presented in Table 3.

Name Type Nodes Edges Description

LiveJournal (LJ) Directed 4,847,571 68,993,773 LiveJournal online social network

Table 3: APSS dataset properties.

The execution time results gathered from the APSS experiments are displayed in Figure 1. The APSS algorithm

is run on 1024, 2048 and 4096 cores for the LiveJournal dataset. As seen from the results, APSS scales nicely

8

until 4096 cores where parallelization overheads prevent linear strong scaling after 4096 cores. For this dataset, a

super linear speedup is achieved between 1024 and 2048 cores since the size of the data that is assigned to each

processor is bigger than the size of the memory available at each core which causes I/O operations to swap pages

of key-value pairs between memory and distributed file system. Additionally, as one can see the huge datasets

can be processed on the HPC systems in a very small period of time which might not be possible with other

parallel computing systems.

Figure 1: Running time of APSS algorithm with increasing number of cores.

Figure 2 shows the dissection of the running time of the APSS algorithm (described in Section 3.2) into different

stages. Recall that only the collate stage incurs communication whereas the other stages contain computational

load. In the figure, the map #2 stage involves the expensive local outer product operations. For scalable

performance beyond 4096 cores, intelligent partitioning algorithms that consider reducing communication

overhead incurred during the collate operation while maintaining computational balance during the map stage

are required.

Figure 2: APSS running time dissection for the LiveJournal dataset.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1024 2048 4096

Ti
m

e
 (

se
co

n
d

s)

Number of cores

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1024 2048 4096

Ti
m

e
 (

se
co

n
d

s)

Number of cores

Map #1

Map #2

Collate

Reduce

9

4.3 Decision Tree

We have tested our implementation on a real-life dataset with 500,000 records and 90 attributes [23]. Our test is

based on regression trees. In regression trees, attributes and the target attribute(s) are both ordered. Building of

the decision tree is performed with 64, 128, …, 2048 cores. We stop building the decision tree when the number

of levels in the tree exceeds 20. We used an SGI Altix 8600 (vilje) machine for our tests. Figure 3 displays the

execution times obtained for varying number of cores.

Figure 3: Running time of building decision tree with increasing number of cores.

The obtained execution times indicate a good scalable performance for building decision tree. Up to 1024 cores,

we almost get linear speedup. The performance starts to deteriorate at 2048 processors, which is due to the

increasing communication requirements. Even though decision tree building algorithm is highly iterative and

sequential in nature due to dependencies between successive levels of the tree, the execution times show that a

fast and optimized MapReduce library can attain quite good performance.

Figure 4: Decision tree build execution time dissection.

0
20
40
60
80

100
120
140
160
180
200
220

64 128 256 512 1024 2048

Ti
m

e
 (

se
co

n
d

s)

Number of cores

1

10

100

1000

10000

100000

1000000

64 128 256 512 1024 2048

Ti
m

e
 (

m
ili

se
co

n
d

s
--

lo
g

sc
al

e
)

Number of cores

model-comm

map

collate

reduce

partial-stat-comm

10

We present the running time dissection of building the decision tree in Figure 4. As seen from the figure, most of

the time is spent in either map stage or collate stage. At low core counts, map stage constitutes a high percentage

of total execution time. With increasing number of processors, the time spent in the collate stage increases while

the time spent in the map stage decreases. At 2048 cores, they almost become equal. This indicates that

communication requirements of the parallel decision tree building algorithm become bottleneck in obtaining a

scalable performance. Note the other two stages (model-comm and partial-stat-comm) which also require

communication. Since the data communicated in these stages are not large, they do not affect the parallel

efficiency of the algorithm as drastically as the collate stage.

5. Conclusions

We have implemented MR-MPI-based machine learning algorithms that are able to utilize the Map/Reduce

programming model in high performance computing systems. MR-MPI depends on only a few well-known and

widely used libraries and thus we did not have any problems in porting our code from one machine to another.

We realized MapReduce-based implementations for all pairs shortest path, all pairs similarity search and

decision tree building problems. Experimenting with different algorithms, we showed that achieving scalability

via the Map/Reduce paradigm for machine learning problems is quite viable. Experimental results also show that

for approaching petascale and exascale performance, we need intelligent partitioning methods that are centered

around minimizing communication requirements of the underlying MapReduce application. We believe that the

MR-MPI library has the possibility to make a great impact in scientific computing since it eases parallel

programming while providing high scalability for HPC platforms.

References

[1] Dean, J., & Ghemawat, S. (2008). Map/Reduce: simplified data processing on large clusters.

Communications of the ACM, 51(1), 107-113.

[2] White, T. (2009). Hadoop: The Definitive Guide: The Definitive Guide. O'Reilly Media.

[3] Olston, C., Reed, B., Srivastava, U., Kumar, R., & Tomkins, A. (2008, June). Pig latin: a not-so-foreign

language for data processing. In Proceedings of the 2008 ACM SIGMOD international conference on

Management of data (pp. 1099-1110). ACM.

[4] Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., ... & Murthy, R. (2009). Hive: a

warehousing solution over a map-reduce framework. Proceedings of the VLDB Endowment, 2(2), 1626-

1629.

[5] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., ... & Gruber, R. E. (2008).

Bigtable: A distributed storage system for structured data. ACM Transactions on Computer Systems

(TOCS), 26(2), 4.

[6] Cohen, J. (2009). Graph twiddling in a Map/Reduce world. Computing in Science & Engineering, 11(4), 29-

41.

[7] Ekanayake, J., & Fox, G. (2010). High performance parallel computing with clouds and cloud technologies.

In Cloud Computing (pp. 20-38). Springer Berlin Heidelberg.

[8] Kang, U., Tsourakakis, C. E., & Faloutsos, C. (2009, December). Pegasus: A peta-scale graph mining

system implementation and observations. In Data Mining, 2009. ICDM'09. Ninth IEEE International

Conference on (pp. 229-238). IEEE.

[9] Tu, T., Rendleman, C. A., Borhani, D. W., Dror, R. O., Gullingsrud, J., Jensen, M. O., ... & Shaw, D. E.

(2008, November). A scalable parallel framework for analyzing terascale molecular dynamics simulation

trajectories. In High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008.

International Conference for (pp. 1-12). IEEE.

11

[10] Plimpton, S. J., & Devine, K. D. (2011). Map/Reduce in MPI for large-scale graph algorithms. Parallel

Computing, 37(9), 610-632.

[11] http://Map/Reduce.sandia.gov/doc/Manual.html, Map/Reduce-MPI (MR-MPI) Library Documentation

[12] http://www.hlrs.de/?id=1546

[13] http://snap.stanford.edu/data/

[14] P. Schwan. Lustre: Building a file system for 1000-node clusters. In Proceedings of the 2003 Linux

Symposium, July 2003.

[15] Biswanath Panda, Joshua S. Herbach, Sugato Basu, and Roberto J. Bayardo. 2009. PLANET: massively

parallel learning of tree ensembles with Map/Reduce. Proc. VLDB Endow. 2, 2 (August 2009), 1426-1437.

[16] https://mahout.apache.org/

[17] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets. New York, NY, USA: Cambridge University

Press, 2011.

[18] Joachims T (2003) Transductive learning via spectral graph partitioning. In: In ICML, pp 290–297

[19] Brandes U, Gaertler M, Wagner D (2003) Experiments on graph clustering algorithms. In: Di Battista G,

Zwick U (eds) Algorithms - ESA 2003, Lecture Notes in Computer Science, vol 2832, Springer Berlin /

Heidelberg, pp 568–579, URL http://dx.doi.org/10.1007/978-3-540-39658-1_52

[20] Lloyd SP (1982) Least square quantization in pcm. IEEE Transactions on Information Theory Originally

published in 1957 in Bell Telephone Laboratories Paper

[21] Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Transactions on Information Theory

[22] Kumar, V., Grama, A., Gupta, A., & Karypis, G. (1994). Introduction to parallel computing (Vol. 110).

Redwood City: Benjamin/Cummings.

[23] https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD.

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework

Programme (FP7/2007-2013) under grant agreement no. RI-312763.

http://mapreduce.sandia.gov/doc/Manual.html
http://www.hlrs.de/?id=1546
http://snap.stanford.edu/data/
http://dx.doi.org/10.1007/978-3-540-39658-1_52

