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Abstract

Computational Fluid Dynamics (CFD) is one of the field which can fully utilize the capacity of existing HPC systems.
There are many cases either from basic or applied research which are so complex that their numerical simulation with
requested accuracy requires very fine representation of the computational domain. To solve certain problems numerical
models consisting of hundred billions of cells are necessary. There are several approaches to create such huge meshes.
One of them is based on global mesh refinement and is also known as mesh multiplication. This approach was already
described in [1, 2]. Global refinement was already implemented into Code_Saturne enhancing its capability in terms of
mesh refinement. Meshes with sizes of up to one hundred billion of cells were generated on the fly. Since there are
many CFD problems where only local area is of interest (either areas close to boundaries, small geometrical entities
or in regions with high gradient of solved quantities), local refinement is another approach for mesh creation. In this
paper implementation of parallel local refinement applied to Code_Saturne is described. The bottleneck of local adaptive
refinement is that it breaks load balancing of the original mesh and requires a lot of global communications. Strategy
to re-partition the mesh before its refinement is a key issue for optimal resource utilization. To minimize the amount
of data transferred among cores it is necessary to do most of the communication during the preprocessing step on the
coarse mesh before refinement. Local mesh refinement strategy was tested and its scalability and performance within
Code_Saturne were analysed. Results are presented in this paper.

1. Introduction

Creating very large meshes of billion cells is a challenge and still very few open-source parallel mesh generators
are available nowadays. Such huge meshes cannot be easily stored, transferred and for many CFD solvers it
is even very difficult to read them. An alternative is to use mesh multiplication (global refinement) firstly
mentioned in [1, 2] to create very large meshes from an initial coarser mesh, already suitable for the CFD solver.

In global refinement, subdivisions of each of the cells of the original mesh into certain number of cells by using
midpoints of its edges and centres of its quadrangle faces were used. This approach ensures global connectivity
of the new vertices and helps to avoid unnecessary core-to-core communication (see Fig. 1). It also ensures that
new coordinates and indices of vertices are computed in the same way for every single sub-domain of the whole
mesh. When performing local refinement, cells of interest are split in the same way as for global refinement,
but processor load balance is key issue here. It is also important to deal with transition between cells of interest
and the surrounding cells.

Code_Saturne is used to demonstrate the performance of the algorithms. It is a multi-purpose CFD software,
which has been developed by EDF-R&D since 1997. The code was originally designed for industrial applications
and research activities in several scientific domains related to energy production. Code_Saturne has been released
as open source in 2007 and is distributed under a GPL licence.

In the next section, details about full hybrid global mesh refinement and achieved results are shortly men-
tioned. Link between full hybrid refinement as a prerequisite for local adaptive mesh refinement is then discussed.
Local mesh refinement could provide a strategy for future exascale computing where very huge meshes will be
required for solving of complex CFD problems.
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2. Full hybrid mesh multiplication and used data-structures

Mesh multiplication is the process of modifying an existing mesh mainly to increase accuracy of the solution.
During this process the size of the mesh i.e. the number of elements is increased and their shape may also be
changed. In our implementation, we focus on regular mesh multiplication, where the higher accuracy of the
solution is obtained by refining each element of the mesh. In case of 3D meshes, those could be created by
hexahedral, tetrahedral, pyramidal and/or prismatic types of elements.

To ensure global connectivity of the new elements after refinement and to avoid unnecessary core-to-core
communication it is necessary to create global numbering for each element during the preprocessing of the
original mesh. Subdivision of cells of the original coarse mesh is done by using midpoints of its edges, its centres
of rectangular faces and in case of hexahedral cells by using vertices in the centres of each cell.

2.1.  Full hybrid pre-processing and Algorithm

In Code_Saturne, mesh information is handled by the mesh_t structure which can only operate with global
numbering for vertices, faces and cells of the mesh. This structure of storing information is not sufficient for
efficient mesh refinement. Therefore it was necessary to extend the existing mesh storage format so it could
handle additional information about the mesh. During the pre-processing step of the algorithm information
about the edges had to be gathered and cell to faces connectivity had to be build. Local and global indices of
each edge were created. Some more numbering necessary for full hybrid refinement was created for each type
of cell (tetrahedra, hexahedras, ...) and for quadrangle faces (border, interior) as well. This information is
required to compute the new indices of the refined cells and the new created vertices during the refinement step
of the algorithm in order to avoid communication amongst sub-domains, (see Fig. 2).

T8 A4 4

-8 45 s

Fig. 1. 3D element refinement. (a) hexahedra, (b) prisms, (c) pyramids, (d) tetrahedra.

3. Tests and results for full hybrid refinement

Performance and scalability tests of the Parallel Mesh Multiplication algorithm have been carried out on dif-
ferent machines with different architectures. It contains ANSELM (Bullx), HECToR (CRAY XE6), Blue Joule
and Mira (both IBM Blue Gene/Q). For most tests, the simulation was stopped after few time-steps to save
computational resources, e.g. 10 time-steps for the 1.6 , 3.2 billion cell meshes and 5 time-steps for the 105
billion cell mesh. A 26B cell mesh case was also performed only for testing the refinement algorithm scalability,
and no time-steps of the Navier-Stokes solver were run.

3.1. Test example

The configuration consists of staggered distributed tube bundles (see Fig. 3 and 4), where Large Eddy Simu-
lations (LES) are performed. The setup is the one experimentally studied by Simonin and Barcouda [8], and
the original mesh (or elemental pattern) is made of a whole tube in its centre and four quarter of tubes in
the corners. It contains about 13 million cells (2-D cross-section: 100,040 cells; 3"¢ direction: 128 layers) and
is denoted by 13M. Two other relatively coarse meshes are built, by mesh joining, the former by glueing two
elemental patterns together to get an about 26 million cell mesh (26M) and the latter by glueing four elemental
patterns to get an about 51 million cell mesh (51M).

We present the results of an implementation of a multilevel mesh multiplication (global refinement) algo-
rithm for multi-billion cell mesh simulations. The mesh multiplication algorithm starts from a coarse mesh
and subdivides each of its cells into a given numbers of cells, subdivides the boundaries and computes the
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Fig. 2. Elements re-ordering, computing of indices of elements in full refined mesh

Fig. 3. One single elemental pattern (13M) Fig. 4. Four elemental patterns joined (51M)

global indices of the new elements. There is no limitation for the number of refinements to be computed by the
algorithm, apart from the memory available on the machine. Up to 4 levels of refinement are used in the tests
showed here. Meshes containing about 6.6 , 13 and even 105 billion cells (6.6B, 13B and 105B respectively)
were generated on the fly using this technique. Some timings obtained for the BlueJoule machine are presented
in Tables 1, 2 and more results obtained for the 105B case on Mira are shown in Table 3.

Table 1. Performance for two elemental pattern joined (Blue Joule) up to 1.6 billion with 10 time steps computed

Two elemental patterns: 26M — 1.6B

no. mpi tasks ref. levels mesh refinement (s) avg. time / step (s) total computation (s)

16384 2 3.35 96 1114
32768 2 2.79 55 633
65536 2 2.7 26 511

4. Adaptive mesh generation

4.1.  Introduction

The refinement problem can be described as a technique involving insertion of additional vertices to the mesh
in order to produce meshes leading to higher accuracy of the solution. Adaptive mesh refinement is used to
effectively solve numerical systems of partial differential equations while saving computational resources. Instead
of uniformly processing a mesh, which could be created by the full refinement algorithm, we place more nodes
to the areas, where we anticipate large local error of the solution or which are of some importance for the final
solution.



Table 2. Performance of four elemental patterns joined (Blue Joule) for 3.2 billion cells with 10 time steps and 26 billion
cells with no time step computed

Four elemental patterns: 52M — 3.2B, 52M — 26B

no. mpi tasks ref. levels mesh refinement (s) avg. time / step (s) total computation (s)

16384 2 4.13 191 2109
32768 2 3.55 95 1110
65536 2 2.79 68 1080
16384 3 23.7 - -
32768 3 14.5 - -

Table 3. Performance for two elemental patterns (Mira) up to 105 billion cells

Two elemental patterns: 26M — 105B

no. mpi tasks ref. levels mesh refinement (s) avg. time / step (s) total computation (s)
262144 4 8.39 701 3797

524288 4 8.92 376 2273

Different methods exist to perform mesh adaptation, as for example described in [9]. We used a technique,
where the mesh is modified to locally increase its mesh size depending on the class of CFD problem used and
the type of domain. The new mesh is built according to a required mesh size and precision. This is a very
effective process because the mesh size is well adapted to the particular problem and required accuracy of the
solution.

In our implementation we are working with solvers based on finite volume discretisation and using tetrahedral
cell meshes. The local refinement involves two main tasks: Subdivision of the target tetrahedra and transition
between zones with different levels of refinement.

The technique we are using is sometimes called h-method or h-refinement (see [10] or [11]). There are
several approaches for subdividing tetrahedra, see [12] for bisection or [13] for 8-Tetrahedra Longest Edge
partition. Another type of tetrahedral refinement widely used in numerical computations is based on the
standard partition. The original tetrahedron is divided into eight sub-tetrahedra by using midpoints of its
edges. It is done by cutting four corners by planes through the midpoints of the edges and subdividing the
remaining octahedron into 4 tetrahedra by selecting one of the three possible internal diagonals. We are using
standard partition as a template for a full refined tetrahedron (tetra-6), see Fig. 5.

4.2.  Error cell detection

During the preprocessing stage of the initial mesh, the solver needs to compute an error indicator to tag cells
which should be refined. There are many methods used for error indicators such as methods based on geometry
of the domain, a-priory or a-posteriori error estimators for a particular solver and used method. The objective
of the work presented in this paper was not to create an algorithm for error detection. Consequently, we are
using for our testing purposes a simple selection method, where we force the algorithm to refine some particular
cells of our choice. This could of course be changed in the future, using any method returning an error indicator
based on any known estimation.

4.8.  Algorithm basics and refinement templates

The refinement process starts with tagging all the elements of level#n based on an error criterion. During
this process all the elements are marked, either as error elements (elements to be refined), transition elements
(elements sharing an edge with an error element) or as elements which should not be refined. Transition and
error elements are then assign to level #n+1. Subdividing transition elements lead to splitting theirs angle
and this could lead to a damageable degradation of the mesh quality in the worse case scenarios. To avoid
splitting any angle in the initial mesh more than once for more levels of local refinement, we are using nodal
neighbourhood. It means that in each level of adaptive refinement all the cells connected to the error elements
by nodes are fully refined too. Transition elements are connected to nodal neighbours, not directly to error
elements. For refining the elements of the mesh we use mid-edge subdivision. Each triangle is split into four
homothetic triangles, each tetrahedron is split into 4 homothetic elements and 4 non-homothetic ones. Special
point must be made regarding the transition elements. They need to ensure a conformal transition between two
different levels of refinement. In 2D, a transition element could be only a triangle with a single hanging node.



For that it is necessary to connect the pending node to the opposite vertex to split the triangle into two. In 3D
case, the transition element could be tetrahedron with a single edge to be split (tetra-1), two opposite edges
(tetra-2) or a single face (tetra-3). This needs to be done by using different templates. A single edge case is

split into two tetrahedra, two opposite edges and single face are split into four tetrahedra, see Fig.4.3.
Fig. 5. 3D tetrahedra templates

&

Fig. 6. Single face template Fig. 7. Two edges template

To identify transition elements, we mark all the edges of elements that could be refined (error elements) as
edges to refine (error edges). To ensure best quality after the refinement we are using templates which refine
only tetrahedra with faces with one or all error edges. At this point, we need to investigate, if there is no
element having a face with two error edges. If yes, we need to mark this element also as an error one and repeat
this process until there are only correct elements. At the end of this step, we identify transition elements, which
share single edge, two edges or a face with any nodal neighbour. The next step of the algorithm is to refine
all the elements using a particular template. The final mesh is created by adding all the unrefined elements
and all the children of the transition elements. All the children of the refined and of the nodal neighbours are
investigated in the next level of the adaptive mesh generation in the same way until the finest level is reached,
where the rest of the elements are added as well.

4.4. FExtended data structures

As we mentioned earlier for full hybrid refinement, it was necessary to extract some more information about the
mesh and to augment the original cs_mesh_t structure with more information. For adaptive mesh refinement
we had to augment this structure even further. For huge meshes addressing exascale problems using thousands
or even millions of processors, it is necessary to perform all the communication on the coarser mesh with much
smaller amount of data to transfer in order for every single processor to work independently. Prior to this, some
preprocessing has to be performed. A new structure called cs_mesh_adapt_t is created, containing a lot of new
information about the mesh. In the first step, we create edges in the same way as for full hybrid refinement.
Afterwards, we need to identify the error cells and mark all cells, faces and edges as ones to be either refined
or kept. We need to create local and global numbering for all types of those elements, which is then used for
unique index computation of new elements (cells, faces and vertices), as seen Fig. 9.



Adaptive tetrahedral refinement algorithm on all processors:

1. Input: coarse mesh.
2. Pre-processing:
(a) Create local/global numbering:

e Basic: vertices, cells, interior and border faces.
e Edges.

(b) Create face to edge connectivity.
(¢) Define cells.

3. Determine error cells:
(a) Mark all error cells.
(b) Mark all error faces and edges.
(c) Mark all transition cells, faces.
(d) Create local/global numbering;:

e Error edges, faces, cells.
e Non-error edges, faces, cells.
e Transition cells, faces.

4. All non-refined faces and cells from coarse mesh are copied to new mesh and re-indexed.
5. Refinement:

(a) Create a new vertex in the middle of each error edge.
(b) Refine all the error faces.

(¢) Refine all the transition faces.

(d) All new faces inherit family and group from parent.

6. Cell refinement (of each single error and transition cell):

(a) Preparation:
e Order faces of the cell to ensure positiveness of normal vectors.
e Prepare indices of vertices.

7. Cell subdivision:
(a) Refine the error cells.

e Refine error tetrahedra by standard template.
e Refine transition tetrahedra by particular template.

(b) Create new interior faces.
(¢) Assign proper face to cell connectivity to each new face and cell.

8. Output: refined mesh.
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Table 4. Performance of the cubic cavity example on ANSELM:

Adaptive cubic cavity case: 14M — 16M

no. mpi tasks

partitioning

mesh refinement (s)

avg. time step (s)

total computation (s)

128 44.7 29.9 105 1513
256 63 41.1 85 1231
512 101 95.3 165 1852
1024 179 70.8 210 2543

Full refinement cubic cavity case: 14M — 111M

no. mpi tasks partitioning mesh refinement (s) avg. time step (s) total computation (s)
128 37.1 8.27 701 7386
256 48.2 9.1 405 4904
512 73 10.9 297 3125
1024 177 29.8 583 6520
Adaptive cubic cavity case: 111M — 126M
no. mpi tasks partitioning mesh refinement (s) avg. time step (s) total computation (s)
128 71 65.8 712 7623
256 81.5 80.2 426 5120
512 116 96.5 321 3542
1024 186 127 605 7035

5. Tests and results for adaptive refinement

Performance and scalability tests of the Parallel Adaptive Mesh Multiplication algorithm have been carried out
on ANSELM (Table 4). The test case here simulates the laminar flow in a lid-driven cavity (cubic box with
a horizontal constant velocity imposed at the top wall). The original mesh was created from a unstructured
tetrahedral mesh using full mesh multiplication algorithm from Section 2. The mesh after one level of uniform
refinement has 14 million cells (14M), 111 million cells (111M) after two levels. A 14M mesh was locally refined
after single step of adaptive refinement to 16M, 111M mesh to 126M. Non-weighted partitioning was performed
by Morton space-filling curve algorithm. Simulation was stopped after 10 time-steps. For better comparison of
effectiveness of local adaptive mesh refinement is the last case refined using full mesh refinement from 14M to
111M. The accuracy of solutions of 14M—16M case and 14M — 111M was the same on the cells of importance.

6. Summary

It should be noted that the scalability of the whole process is strongly dependent on n.cells per core ratio
and total number of time steps computed. Partitioning of the mesh and local mesh refinement need lot of
global communication, but the time spent for preprocessing the mesh is nearly equal to time of single time step
computation. So if we are computing certain number of time steps on the same locally refined mesh it is very
efficient to use this algorithm instead of full refined mesh, where we need to have much bigger mesh for the
same accuracy.

The time spent in the algorithms used in Code_Saturne for both full uniform and local mesh multiplication
have proven to be modest in comparison with the time of whole computation (at most a couple of minutes
compared to hours or days).

7. Conclusion

In our contribution to the Code_Saturne project, we enhanced capability of mesh multiplication package to be
able to create full hybrid meshes up to hundreds of billion cells and adaptive tetrahedral meshes with up to
hundreds of million cells. More testing will be performed on other architectures and on different and/or more
complex (hybrid) meshes.



To be able to work with full hybrid meshes and to fully utilize all possibilities of mesh multiplication package
in Code_Saturne it will be necessary to implement other templates into local adaptive mesh refinement.

Local mesh refinement could provide strategy for future exascale computing where very huge meshes will be
required for solving of complex CFD problems.
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