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The mean stopping power for high-energy muons in matter can be described by 〈−dE/dx〉 =
a(E) + b(E)E, where a(E) is the electronic stopping power and b(E) is the energy-scaled con-
tribution from radiative processes—bremsstrahlung, pair production, and photonuclear interac-
tions. a(E) and b(E) are both slowly-varying functions of the muon energy E where radiative
effects are important. Tables of these stopping power contributions and continuous-slowing-down-
approximation (CSDA) ranges (which neglect multiple scattering and range straggling) are given
for a selection of elements, compounds, mixtures, and biological materials for incident kinetic en-
ergies in the range 10 MeV to 100 TeV. Tables of the contributions to b(E) are given for the same
materials.
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1. Introduction

The mean stopping power for high-energy muons (or other heavy charged particles1) in a material
can be described by [1]

〈−dE/dx〉 = a (E) + b (E)E , (1)

where E is the total energy, a(E) is the electronic stopping power, and b(E) is due to radiative
processes—bremsstrahlung, pair production, and photonuclear interactions:

b ≡ bbrems + bpair + bnucl (2)

The notation is convenient because a(E) and b(E) are slowly varying functions of E at the high
energies where radiative contributions are important. b(E)E is less than 1% of a(E) for E <∼
100 GeV for most materials.

The “continuous-slowing-down-approximation” (CSDA) range is obtained from the integral

R (E) =

∫ E

E0

[a (E′) + b (E′)E′]
−1

dE′ (3)

where E0 is sufficiently small that the result is insensitive to its exact value. At very high energies,
where a and b are (essentially) constant,

R (E) ≈ (1/b) ln (1 + E/Eµc) , (4)

where Eµc = a/b is the muon critical energy. The muon critical energy can be defined more precisely
as the energy at which electronic losses and radiative losses are equal, in analogy to one of the ways
of defining the critical energy for electrons. It is obtained by finding Eµc such that

a (Eµc) = Eµcb (Eµc) . (5)

The CSDA range is of limited usefulness, particularly at higher energies, because of the effect of
fluctuations. (Fluctuations in radiative losses are discussed briefly in Section 4.6.) For example, the
cosmic ray muon intensity falls very rapidly with energy, so that the flux observed deep underground
is quite different from that to be expected from Eq. (3). We nonetheless calculate the CSDA range
given by Eq. (3) as an indicator of actual muon range.

The important and well-studied subjects of stopping power fluctuations and range straggling in
electronic energy loss [2,3] are not treated, even though they are much more serious for muons than
for heavier particles: The fractional range straggling (

√

variance(range)/range) scales as
√

1/M
for particles with the same velocity, and hence is three times larger for a 100 MeV muon than
for a 900 MeV proton. In copper the fractional straggling varies from 4% at 10 MeV, through a
minimum of 2.8% at 300 MeV, then rising through 5.7% at 10 GeV. Above ∼ 100 GeV straggling
due to fluctuations in bremsstrahlung losses begins to dominate.

Multiple scattering is also neglected, but with more justification. One measure of multiple
scattering is provided by the “detour factor” [3], the ratio of the average penetration depth to the
average path length for a stopping particle. The detour factor is 0.98 in the worst case (uranium
at our lowest energy). This ratio increases rapidly toward unity as the energy is increased or if the
atomic weight of the absorber is decreased.

1 The radiative loss formulae given in this paper apply only to a spin-1/2 pointlike heavy particles, where
“heavy” means “much more massive than an electron.” Insofar as we know, the solution for spin-0 particles
has never been published.
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Table 1: Definitions of most of the variables used in this report. The electronic
charge e and the kinematic variables β = v/c and γ = 1/

√
1 − β2 have their usual

definitions. Constants are from CODATA Recommended Values of the Fundamen-

tal Physical Constants: 1998 [7]. Parenthetical numbers after the values give
the 1-standard deviation uncertainties in the last digits. In Sect. 4 the convention
c = 1 is used.

Symbol Definition Units or Value

α Fine structure constant e2/4πε0h̄c 1/137.035 999 76(50)
M Incident particle mass MeV/c2

Mµ Muon mass 105.658 356 8(52) MeV/c2

E Incident particle energy γMc2 MeV
T Kinetic energy (γ − 1)Mc2 MeV
p Momentum γβMc MeV/c

mec
2 Electron mass × c2 0.510 998 902(21) MeV

re Classical electron radius e2/4πε0mec
2 2.817 940 285(31) fm

NA Avogadro’s number 6.022 141 99(47) × 1023 mol−1

ze Charge of incident particle
Z Atomic number of medium
A Atomic mass of medium g mol−1

(Occasionally: atomic mass number) dimensionless
K/A 4πNAr2

emec
2/A 0.307 075 MeV g−1 cm2 for A = 1 g mol−1

I Mean excitation energy eV (Nota bene! )
δ Density effect correction to electronic energy loss

h̄ωp Plasma energy
√

4πNer3
e mec

2/α 28.816
√

ρ 〈Z/A〉 eV for ρ in g cm−3

Ne Electron density
wj Fraction by weight of the jth element in a compound or mixture (

∑

wi = 1)
nj number of the jth kind of atoms in a compound or mixture
Eµc Muon critical energy GeV
ν Fractional energy transfer in an incident particle interaction
ε νE, the energy transfer in a single interaction

Tables of muon energy loss from a 1985 CERN internal report by Lohmann, Kopp, and Voss [4]
have become the de facto world standard. This careful work serves as the benchmark for the
present effort. Later theoretical work enables us to improve the calculations for low-Z elements
(2 ≤ Z ≤ 10) and to make minor improvements elsewhere.

It is our intention to make this report sufficiently self-contained that the interested user can
replicate our calculations, even though this results in our giving often-tedious detail. The necessary
constants for electronic loss calculations and tables of b(E) for elements, for the mean radiative loss
calculations, are also available as ASCII files at http://pdg.lbl.gov/AtomicNuclearProperties.
These tables are more extensive than the subset of data actually presented in this paper.

There is one serious dilemma: We believe that the density effect corrections via the careful
parameterizations of Sternheimer et al. [5] are more dependable than those calculated via their
general algorithm [6]. But, as will be discussed in Section 3.2, better values for mean excitation
energies are now available for a variety of materials. The changes are sometimes as great as 10%.
Over much of our energy region of interest (for βγ >∼ 1000) however, the density effect has “replaced”
the mean excitation energy by the plasma energy, so that improvements in the mean excitation
energy have no effect on the stopping power. We therefore continue to use sometimes-obsolete
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excitation values. How this affects our results will be discussed in Section 3.2. On the other hand,
corrections to the densities used by Sternheimer et al. [5] are easily accommodated if the changes
are small; this is done in several cases.

We present tables of stopping power and mean range for muons from kinetic energy T = 10 MeV
to 100 TeV for most elements and a variety compounds and mixtures. Tables of b(E) are given for
the same materials. In the case of elemental gases, tables are also given for the liquid state.

The symbols and constants used in this report are explained in Table 1.

2. Overview

The behavior of stopping power (= 〈−dE/dx〉) in copper over twelve decades of muon kinetic energy
is shown by the solid curves in Fig. 1. Data below the breaks in the curves are from ICRU 49 [3],
while data above the breaks are from our present calculations. Approximate boundaries between
regions described by different theories or phenomenologies are indicated by the shaded vertical
bands. While our main interest is at higher energies, some understanding of the behavior at lower
energies is useful, in particular for starting range integrals.

For β < α, below the first grey band in Fig. 1, the muon velocity is small compared with that
of the valence electrons in the absorber. Following the work of Fermi and Teller [9], Lindhard
and collaborators have constructed a successful semi-phenomenological model to describe ionizing
energy losses in this regime, approximating the electronic structure of solids by a Fermi electron
gas distribution [10]. The stopping power is found to be proportional to the projectile velocity.
This region is marked by the dashed curve with the dotted extension in Fig. 1. However, below
β ≈ 0.001–0.01 nonionizing energy losses via nuclear recoil become increasingly significant [3],
finally dominating energy loss at very low energies.

Above β ≈ 0.05 or 0.1 (the second grey band in Fig. 1) one may make the opposite approxima-
tion, neglecting electronic motion within atoms. There is no satisfactory theory for the intermediate
region, α < β < 0.1 (but see Ref. 11). There is, however, a rich experimental literature, which
Andersen and Ziegler have used to construct phenomenological fits bridging the regions in which
there is adequate theoretical understanding [12]. This is the interval between the grey bands
shown in Fig. 1.

Electronic (ionization + excitation) losses in the high-velocity region are well described by
Bethe’s theory based on a first-order Born approximation [13], to which are added a number of
corrections for the low-energy region and to account for the polarization of the medium at high
energies. The curve falls to a broad minimum whose position for solid absorbers decreases from
βγ = 3.5 to 3.0 as Z goes from 7 to 100. The mean electronic loss at the minimum value as a
function of Z is shown in Fig. 2. The rise in Fig. 1 with further increases of the projectile energy
(labeled “without δ” in Fig. 1) is less marked when the polarization effects are taken into account
(dash-dotted curve).

Electronic losses at very high energies are somewhat modified by bremsstrahlung from the
atomic electrons [14] (see Section 3.5) and other effects, such as form factor corrections [15].
These are of decreased importance because radiative energy losses begin to be significant above a
few hundreds of GeV for even intermediate-Z absorbers. For example, radiative losses in copper
dominate above Eµc = 315 GeV. The radiative contribution, and hence the entire energy loss rate,
increases nearly linearly with energy above 1 TeV or so.
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Figure 1: Stopping power (= 〈−dE/dx〉) for positive muons in copper as a func-
tion of kinetic energy T (top figure, 12 orders of magnitude range) and as a function
of momentum p = Mβcγ (bottom figure, 9 orders of magnitude). Solid curves indi-
cate the total stopping power. Data below the break at T ≈ 0.5 MeV are scaled by
the appropriate mass ratios from the π− and p tables in ICRU 49 [3], and data at
higher energies are from the present calculations. Vertical bands indicate bound-
aries between different theoretical approximations or dominant physical processes.
The short dotted lines labeled “µ− ” illustrate the “Barkas effect” [8]. “Nuclear
losses” indicates non-ionizing nuclear recoil energy losses, which are negligible here.
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Figure 2: Minimum ionization as a function of Z. The straight line is fitted for
Z ≥ 6.

3. Electronic energy losses of high-energy heavy particles

The physics formulae needed to describe the average electronic energy losses of a high-energy
(β � αZ) massive (6= electron) charged particle as it passes through matter have been reviewed
elsewhere [3, 16–24]. ICRU 49 is particularly useful, although it is limited to protons and alpha
particles (except for a short π− table) and to proton energies less than 10 GeV, corresponding to
E < 1.1 GeV for muons. In this energy region nuclear recoil contributes negligibly to energy loss,
and radiative losses, which typically become important above tens of GeV, and radiative losses can
be added as an independent contribution.

For the moment, we leave open the possibilities that the charge is ze and that the particle
might be something other than a muon. We briefly review the subject here in order to emphasize
high-energy behavior.

3.1. Major contributions

The electronic stopping power2 is calculated by summing the contributions of all possible inelastic
scatterings. These are normally from lower to higher (bound or unbound) electronic energy states,
so the particle loses a small amount of energy in each scattering. The kinetic energy of the scattered
electron is Q.

In his derivation of the stopping power, Bethe [25] introduced the concept of “generalized
oscillator strength” which is closely related to the inelastic-scattering form-factor [20]. The
following summarizes the detailed discussions by Rossi [17], Fano [19], and Bichsel [24].

1. Low-Q region. Here the reciprocal of the 3-momentum transfer (roughly an impact parameter)
is large compared with atomic dimensions. The scattered electrons have kinetic energies up to
some cutoff Q1, typically 0.01–0.1 eV [17]. For this region, Bethe approximated the generalized
oscillator strength by the dipole oscillator strength f(ε) which is the generalized oscillator

2 Variously called S, a(E), or the electronic part of the total mean energy loss rate 〈−dE/dx〉.
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strength f(ε, q) for zero momentum transfer q (ε is the energy loss in a single collision). f(ε)
is closely related to the optical absorption coefficient. He derived the following contribution to
S:

Slow =
K

2
z2 Z

A

1

β2

[

ln
Q1

I2/2meβ2c2
+ ln γ2 − β2

]

(6)

Here ln I =
∫

f(ε) ln ε dε. The denominator I2/2meβ
2c2 in the first (logarithmic) term is the ef-

fective lower cutoff on the integral over dQ/Q. This term comes from “longitudinal excitations”
(the ordinary Coulomb potential), and the next two terms from transverse excitations.

The low-Q region is associated with large impact parameters and hence with long distances.
Polarization of the medium can seriously reduce this contribution, particularly at high energies
where the transverse extension of the incident particle’s electric field becomes substantial. The
correction is usually made by subtracting a density-effect term δ, inside the square brackets of
Eq. (6). This important correction is discussed in Sect. 3.4.

2. Intermediate- and high-Q regions. In an intermediate region atomic excitation energies are not
necessarily small compared with Q, but transverse excitations can be neglected. At higher
energies Q can be equated to the energy given to the electron, neglecting its binding energy.
When the integration of the energy-weighted cross sections is carried out from Q1 to some
upper limit Qupper, one obtains

Shigh =
K

2
z2 Z

A

1

β2

[

ln
Qupper

Q1

− β2 Qupper

Qmax

]

. (7)

Here Qmax is the kinematic maximum possible electron recoil kinetic energy, given by

Qmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)
2 . (8)

Qupper is normally equal to Qmax (as will be the case after the conclusion of this section), and
cannot exceed Qmax. The more general form given in Eq. (7) is useful in considering restricted
energy loss, which is of relevance in considering the energy actually deposited in a thin absorber.
At high energies (such that Qupper/Qmax � 1) the first term in the square brackets dominates.
If Qupper is restricted to some maximum value, e.g. 0.5 MeV, then Shigh is essentially constant
for Qmax > Qupper. If Qupper = Qmax the high-Q region stopping power rises with energy as
lnQmax. In other words, the increase of Shigh with energy is associated with the production of
high-energy recoil electrons, or δ-rays.

A very small projectile mass dependence of the electronic stopping power is introduced by
Qmax, which otherwise depends only on projectile velocity.

In Fano’s discussion the low-energy approximation Qmax ≈ 2mec
2β2γ2 = 2mep

2/M 2 is implicit.
Accordingly, Eq. (7) is more closely related to Rossi’s form (see his Eqns. 2.3.6 and 2.5.4). This
low-energy approximation is made in many papers of the Bevatron era, but is in error by a
factor of two for a muon with T = 10.8 GeV. Note that Qmax → E at very high energies.
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3.2. Mean excitation energy

“The determination of the mean excitation energy is the principal non-trivial task in the evaluation
of the Bethe stopping-power formula” [26]. Recommended values have varied substantially with
time. Estimates based on experimental stopping-power measurements for protons, deuterons, and
alpha particles and on oscillator-strength distributions and dielectric-response functions were given
in ICRU 37 [27]. These were retained in ICRU 49 [3], where a useful comparison with other
results is given, and they are used in the EGS4 [28] electron/photon transport code. These values
(scaled by 1/Z) are shown in Fig. 3. The error estimates are from Table 2 in Ref. 26. As can be
seen, I/Z ' 10 ± 1 eV for elements heavier than sulphur.

The figure also shows Bichsel’s more recent determination of I for selected heavy elements [29].
He estimates uncertainties from 1.5% to 5%; the 5% errors are shown. The change from the ICRU 37
values is less than 7% in all of the 19 cases except for samarium (7.5%), tungsten (7.5%), bismuth
(9.3%) and thorium (9.5%). In addition, the mean excitation energy for liquid water has been
more recently determined to be 79.7 ± 0.05 eV [31], significantly higher than the ICRU 37 value,
75.0 eV. This reference also gives mean excitation energies for a variety of biological materials of
interest here. In addition, Leung has described further corrections to stopping power theory due to
relativistic effects of the target electrons [32]. Such effects could increase the stopping power by
as much as 2% for high-Z targets. Bichsel has observed that this would be equivalent to lowering
the mean excitation energy values for high-Z materials by as much as 10%.

We are strongly motivated to use the ICRU 37 mean excitation energies because of the avail-
ability of density effect parameters based on these values [5], yet in many cases the more recent
values are superior and should be used. To investigate the consequences of errors or changes in the
mean excitation energies, we ran a version of our code in which I was increased by 10% and no other
changes were made. In the Tµ = 10–100 MeV region, the stopping power increased by somewhat
over 1% for carbon and iron. For lead it decreased by 2.6%–1.4% over this energy range. Since we
did not modify the density-effect parameters, in particular C (see Eq. (12)), there was a residual
≈ 0.4% at high energies. The density-effect correction essentially replaces I by the plasma fre-
quency h̄ωp for p/M >∼ 1000, so the stopping power is completely insensitive to I for T >∼ 100 GeV,
or for the lower half of our stopping power tables. The range integral always has contributions
from lower-energy parts, but these also become increasingly insignificant as the energy increases.
We therefore feel justified in using the older data, for which dependable density-effect parameters
are available.

3.3. Low-energy corrections

The distant-collision contribution to the stopping power given by Eq. (6) was obtained by Bethe [25]
with the approximation that the velocities of atomic electrons are small compared with that of the
projectile. More precisely, Bethe’s approximation was to replace the generalized oscillator strength
by the dipole oscillator strength f(ε) in obtaining this result. This leads to correction terms [16]
which are different for each atomic shell. The “shell correction” for the jth shell is represented by
−2Cj/Z, so that an additional term −C/Z = −∑Cj/Z appears in the square brackets of Eq. (6).
Other ways to calculate the shell correction are discussed in Ref. 3. Unfortunately, the algorithms
are not easy for the non-expert to implement.

The shell correction is not important at the energies of interest in this report. For example,
the stopping power correction is 0.3% for a 10 MeV muon in iron, and 3% in uranium. It falls
rapidly with increasing energy. But even at intermediate energies it plays a role in “starting” the
range integral. To investigate its importance, and to compare our results with the proton stopping
power and range-energy tables in ICRU 49 [3], we have used the simple but long-obsolete analytic
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Figure 3: Mean excitation energies (divided by Z) as adopted in ICRU 37 [27]
(filled points). Those based on experimental measurements are shown by symbols
with error flags; the interpolated values are simply joined. The grey point is for
liquid H2; the black point at 19.2 is for H2 gas. The open circles show more modern
determinations by Bichsel [29]. The dotted curve is from the approximate formula
of Barkas [30].

approximation for the shell correction introduced by Barkas [30]: 3 The accuracy of our results is
addressed in Section 3.7.

In early Bevatron experiments Barkas et al. [8] found that negative pions had a somewhat
greater range than positive pions with the same (small) initial energy. This was attributed to a
departure from first-order Born theory [33], and is normally included by adding a term zL1(β)
to the stopping-power formula. The effect has been measured for a number of negative/positive
particle pairs, most recently for antiprotons/protons at the CERN LEAR facility [34]. It is
illustrated by the µ− stopping-power segment shown in Fig. 1.

Bethe’s stopping power theory is based on a first-order Born approximation. To obtain Bloch’s
result, a term z2L2(β) is added if results accurate at low energies are desired.

These corrections are discussed in detail in ICRU 49, and are mentioned here for completeness.
They are not significant at the energies of concern in this report.

3 Explicitly,
C =

(

0.422377η−2 + 0.0304043η−4 − 0.00038106η−6
)

× 10−6I2

+
(

3.858019η−2 − 0.1667989η−4 + 0.00157955η−6
)

× 10−9I3 ,
(9)

where η = βγ and I is in eV. This form is reasonably good only for η > 0.13 (T = 7.9 MeV for a proton,
0.89 MeV for a muon).
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3.4. Density effect

As the particle energy increases its electric field flattens and extends, so that the distant-collision
part of dE/dx (Eq. (6)) increases as lnβγ. However, real media become polarized, limiting this
extension and effectively truncating part of this logarithmic rise. This “density effect” has been
extensively treated over the years; see Refs. 5, and 6, and 28, and references therein. The approach
is to subtract a density-effect correction, δ, from the distant-collision contribution, resulting in the
δ/2 term in Eq. (15). At very high energies,

δ/2 → ln (h̄ωp/I) + lnβγ − 1/2 , (10)

where h̄ωp is the plasma energy defined in Table 1. As can be seen from Eq. (15), the effect of
Eq. (10) is to replace I with h̄ωp and to eliminate the explicit β2γ2 dependence in the first (log)
term in the square brackets. The remaining rise of the electronic stopping power comes from Qmax,
given by Eq. (8). The effect of the density correction is shown in Fig. 1.

At some low energy (related to x0 below) the density effect is insignificant, and above some high
energy (see x1 below) it is well described by the asymptotic form given in Eq. (10). Conductors
require special treatment at the low-energy end. Sternheimer has proposed the parameterization [35]

δ =















2 (ln 10) x − C if x ≥ x1;

2 (ln 10) x − C + a (x1 − x)
k

if x0 ≤ x < x1;
0 if x < x0 (nonconductors);
δ010

2(x−x0) if x < x0 (conductors) ,

(11)

where x = log10(p/M) = log10 βγ. C is obtained by equating the high-energy case of Eq. (11) with
the limit of Eq. (10), so that

C = 2 ln (I/h̄ωp) + 1 . (12)

The other parameters (a, k, x0, x1, and δ0) are adjusted to give a best fit to the results of detailed
numerical calculations for a logarithmically spaced grid of energy values. Note that C is the negative
of the C used in earlier publications. A variety of different parameter sets are available. In some
cases these result from a different fitting procedure having been used with the same model, and
although the parameters look different the resulting δ is not sensibly different. For elements, the
PEGS4 data [28] use the values from Ref. 36.

In a series of papers by Sternheimer, Seltzer, and Berger, the density-effect parameter tables
are extended to nearly 300 elements, compounds, and mixtures. The chemical composition of the
materials is given in Ref. 26.4 The agreement with more detailed calculations or results obtained
with other parameter sets is usually at the 0.5% level [37]; however, see Table IV in Ref. 38. We
use the tables given in Ref. 5 for most of the present calculations.5

The densities used in these tables are occasionally in error, or, in the case of some polymers
with variable density, out of the usual range. In this and other cases we use Eq. (A.8) [6] to adjust
the parameters; these are marked by footnotes in the tables in Section 5.

4 Slightly incorrect compositions (and therefore density effect parameters) are given for lanthanum oxy-
sulfide (corrected in a footnote in Ref. 37), cellulose acetate, cellulose nitrate, polypropylene, and perhaps
other materials. These will be corrected, and an approximately equal number of new materials added, in a
forthcoming publication [39].

5 Given the power of modern computers, experts now calculate the density effect from first principles
rather than use these formulae [39]. One problem along the way is knowing the mean excitation energy,
which can be different for condensed and gas states of the same substance and even depends upon density. In
our case radiative effects dominate over most of the relevant energy range, and no great error is engendered
by employing the user-friendly parameterized forms.
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There remains the problem of obtaining the density-effect parameters if they have not been
tabulated for the material of interest. This issue is of particular importance here in the case of
cryogenic liquids such as N2, but is also of interest when dealing with a compound or mixture not
tabulated by Sternheimer, Berger, and Seltzer [5]. The algorithm proposed by Sternheimer and
Peierls [6] is discussed in Appendix A.

To some degree, both the adjustment of the parameters for a different density and the Stern-
heimer–Peierls algorithm can be checked by using those cases in the tables where parameters are
given for different densities of the same material. When the “compact carbon” parameters are
adjusted to the two other tabulated carbon densities, the difference in stopping power and range
with those obtained directly is less than 0.2%. Calculation of parameters for a cryogenic liquid
using the Sternheimer-Peierls algorithm can be checked for hydrogen and water. This method was
used to calculate parameters for liquid hydrogen at bubble chamber density (0.060 g/cm3), using
the excitation energy for the liquid; at worst, at minimum ionization, 〈−dE/dx〉 was low by 2.5%,
while the range was high by 1.1%. Deviations were smaller elsewhere. When the algorithm was
used to calculate parameters for water using the excitation energy for steam, the result was 1%
higher at minimum ionization than that obtained directly with the water parameters. Only a slight
improvement was obtained by using the excitation energy given for water.

Hydrogen is always a worst case. Sternheimer, Berger, and Seltzer [5] tabulate parameters
for both hydrogen gas and liquid hydrogen under bubble chamber conditions, so we have made
calculations in both directions via the Sternheimer-Peierls algorithm and by scaling densities via
Eq. (A.8). We conclude that the stopping power results in this report obtained with parameters
scaled to different densities are accurate to within the overall 0.5% agreement level estimated by
Seltzer and Berger [37], and that the parameters calculated for cryogenic liquids (except hydrogen)
using the Sternheimer-Peierls algorithm could produce stopping power errors of slightly over 1% at
minimum ionization, and less elsewhere.

3.5. Other high-energy corrections

Bremsstrahlung from atomic electrons in the case of incident muons was considered in a 1997 paper
by Kelner, Kokoulin, and Petrukhin [14]. There are four lowest-order diagrams: Photon emission
by the muon before and after photon exchange with the electron, and emission by the electron
before and after photon exchange. The former diagrams result in losses nearly proportional to E,
and are described by Eq. (19). The latter are properly part of electronic losses, and produce an
additional term in the stopping power. To leading powers in logarithms, this loss is given by:

∆

∣

∣

∣

∣

dE

dx

∣

∣

∣

∣

=
K

4π

Z

A
α

[

ln
2E

Mµc2
− 1

3
ln

2Qmax

mec2

]

ln2 2Qmax

mec2
(13)

As Kelner et al. observe, this addition is important at high energies, amounting to 2% of the
electronic loss at 100 GeV and 4% at 1 TeV. It is included in our calculations.

An additional spin-correction term, (1/4)(Qmax/E)2, is included in the square brackets Eq. (7)
if the incident particle is a muon (point-like and spin 1/2) [17]. Its contribution to the stopping
power asymptotically approaches 0.038 (Z/A) MeV g−1cm2, reaching 90% of that value at 200 GeV
in most materials. In iron its fractional contribution reaches a maximum of 0.75% at 670 GeV.
Although this contribution is well within uncertainties in the total stopping power, its inclusion
avoids a systematic bias.

At energies above a few hundred GeV, the maximum 4-momentum transfer to the electron can
exceed 1 GeV/c, so that, in the case of incident pions, protons, and other hadrons, cross sections
are modified by the extended charge distributions of the projectiles. One might expect this “soft”
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cutoff to Qmax to reduce the electronic stopping power. This problem has been investigated by
J. D. Jackson [15], who concluded that corrections to dE/dx become important only at energies
where radiative losses dominate. At lower energies the stopping power is almost unchanged, since
its average, dominated by losses due to many soft collisions, is insensitive to the rare hard collisions.
For muons the spin correction replaces this form-factor correction.

Jackson and McCarthy [40] have pointed out that the Barkas correction calculated by Fermi
(but see their Ref. 20) persists at high energies; hence, a term should be added to the close-collision
part of Eq. (15):

Kz3 Z

A

πα

2β
(14)

This correction, which is ±0.00176 MeV g−1 cm2 for z = ±1, Z/A = 1/2 and β = 1, produces
range differences of a few parts per thousand between positive and negative muons near minimum
ionization. At higher energies sign-indifferent radiative effects dominate. We neglect this correction.

3.6. Bethe-Bloch equation

We summarize this discussion with the Bethe-Bloch equation for muons in the form used in this
paper:

〈

−dE

dx

〉

electronic

= K
Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Qmax

I2
− β2 − δ

2
+

1

8

Q2
max

(γMc2)
2

]

+ ∆

∣

∣

∣

∣

dE

dx

∣

∣

∣

∣

(15)

The final term, for bremsstrahlung from atomic electrons, is given by Eq. (13).

Except for the very small projectile mass dependence introduced by Qmax, this expression
depends only on the projectile velocity. This means that a value of the stopping power for a
particle with mass M1 and kinetic energy T1 is the same as the stopping power for a particle with
mass M2 at T2 = (M2/M1)T1. Similarly, R/M is a function of T/M (or E/M , or p/M).

3.7. Comparison with other ionizing energy loss calculations

Comparisons with the ICRU 49 proton tables have been made by running our code with the proton
mass. A summary of the stopping power comparisons is given in Table 2, and of the CSDA range
comparisons in Table 3. In general the agreement is regarded as adequate, but is worse at high
atomic number and low energy. The simple shell correction given by Eq. (9) has been used, and
under these conditions somewhat overcorrects.

ICRU 49 concludes that the “differences between tabulated and experimental stopping powers
are mostly smaller than 1% and hardly ever greater than 2%,” and in the case of compounds and
mixtures “the uncertainties are approximately three times as large as in the case of elements” [3].

Our muon tables start at T = 10 MeV, corresponding to a proton energy of about 100 MeV,
so that only 100 MeV and above is relevant in the proton comparisons. For uranium the stopping
power at 100 MeV is low by 0.8% and the range high by 1.9%. Without the shell correction the
stopping power for this case is high by 1.7% and the range low by 2.5%. We make the shell correction
only for elements. We conclude that in a worst-case scenario, PuCl4 (which we do not tabulate)
at 10 MeV, our results could be in error by nearly 3%. For lower-Z materials the agreement is
consistent with ICRU 49. In any case the agreement improves rapidly with increasing energy.

Lohmann et al. [4] list muon electronic losses separately for hydrogen, iron, and uranium. Since
they do not consider the contributions of bremsstrahlung from atomic electrons (Eq. (13)), we have
made comparisons with this correction “turned off.” Under these conditions, our results disagree
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Table 2: Comparison of stopping power calculations for protons (in MeV g−1 cm2)
with those of ICRU 49 [3] and Bichsel 1992 [29].

10 MeV 100 MeV 1 GeV 10 GeV

Hydrogen gas (Z = 1)
This calculation 101.7 15.29 4.496 4.539
ICRU 49 101.9 15.30 4.497 4.539

Graphite (Z = 6, ρ = 1.7 g/cm
3
)

This calculation 40.72 6.514 1.942 1.883
ICRU 49 40.84 6.520 1.946 1.881

Iron (Z = 26)
This calculation 28.54 5.045 1.575 1.603
ICRU 49 28.56 5.043 1.574 1.601

Tin (Z = 50)
This calculation 22.26 4.177 1.351 1.426
ICRU 49 22.02 4.165 1.349 1.423

Lead (Z = 82)
This calculation 17.52 3.532 1.189 1.291
ICRU 49 17.79 3.552 1.186 1.288
Bichsel 1992 17.79 3.592

Uranium (Z = 92)
This calculation 16.68 3.388 1.144 1.243
ICRU 49 16.90 3.411 1.140 1.242
Bichsel 1992 16.86 3.450

Liquid water
This calculation 45.94 7.290 2.210 2.132
ICRU 49 45.67 7.289 2.211 2.126

by at most 2 in the 4th decimal place, presumably from different rounding of the density-effect
parameters.

4. Radiative losses

The radiative contribution to muon stopping power is conveniently written as b(E)E [1], where
b(E) is a slowly-varying function of energy which is asymptotically constant. As indicated earlier,
it is usually written as a sum of contributions from bremsstrahlung, direct pair production, and
photonuclear interactions:

b ≡ bbrems + bpair + bnucl (2)

Here we describe the calculation of these contributions. Note that the convention c = 1 is used in
all the formulae in this section.

In this section we specialize to M = Mµ, although the results apply to any massive spin-1/2
pointlike particle. To a very rough approximation, the bremsstrahlung contribution scales as 1/M 2,
and the pair-production part as 1/M . The results below probably apply fairly well to charged pion
radiative energy losses, although to the best of our knowledge radiative losses by spin-0 particles
has not been treated.
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Table 3: Comparison of CSDA range calculations for protons (in g cm−2) with
those of ICRU 49.

10 MeV 100 MeV 1 GeV 10 GeV

Hydrogen gas
This calculation 0.0534 3.636 158.7 2254.
ICRU 49 0.0535 3.633 158.7 2254.

Graphite (Z = 6, ρ = 1.7 g/cm
3
)

This calculation 0.1361 8.634 367.4 5333.
ICRU 49 0.1377 8.627 367.0 5337.

Iron (Z = 26)
This calculation 0.2013 11.36 459.2 6383.
ICRU 49 0.2064 11.37 459.6 6389.

Tin (Z = 50)
This calculation 0.2623 13.90 540.9 7272.
ICRU 49 0.2764 13.95 541.9 7291.

Lead
This calculation 0.3315 16.79 620.7 8120.
ICRU 49 0.3528 16.52 621.7 8143.

Uranium
This calculation 0.3462 17.56 645.2 8432.
ICRU 49 0.3718 17.24 646.8 8456.

Liquid water
This calculation 0.1201 7.710 325.4 4703.
ICRU 49 0.1230 7.718 325.4 4700.

4.1. Bremsstrahlung

The cross section for electron bremsstrahlung was obtained by Bethe and Heitler [41]. In the case
of muons, it is necessary to take into account nuclear screening, which was first done consistently
by Petrukhin and Shestakov [42]. A simple approximation for medium and heavy nuclei (Z > 10)
was derived. Lohmann, Kopp, and Voss [4] also used this approximation, but for Z < 10 they set
the nuclear screening correction equal to zero. As a result, their bremsstrahlung contribution for
low-Z nuclei is overestimated by about 10%.

The CCFR collaboration [43] revised the Petrukhin and Shestakov [42] results, pointing out
that Ref. 42 overestimates the nuclear screening correction by about 10%. Kelner et al. [44] later
observed that the CCFR conclusion probably resulted from an incorrect treatment of the Bethe-
Heitler formula. Their new calculations were in good agreement with the old ones by Petrukhin
and Shestakov for medium and heavy nuclei, but in addition they proposed an approximation for
light nuclei. An independent analysis was performed by the Bugaev group (see, e.g., Ref. 45). The
results of Petrukhin and Shestakov and the Bugaev group for bremsstrahlung on screened nuclei
agree to within a few percent.

All of the results mentioned above were derived in the Born approximation. It was recently
shown [45] that the non-Born corrections in the region of low and high momentum transfers have
the same order of magnitude but opposite signs. As a consequence, they nearly compensate each
other.
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The differential cross section for muon bremsstrahlung from a (screened) nucleus as given in
Ref. 44 is used for the present paper:

dσ

dν

∣

∣

∣

∣

brems, nucl

= α

(

2Z
me

Mµ

re

)2 (4

3
− 4

3
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)

Φ(δ)

ν
(16)

Here ν is the fraction of the muon’s energy transferred to the photon, and

Φ (δ) = ln

(

BMµZ−1/3/me

1 + δ
√

e BZ−1/3/me

)

− ∆n (δ) , (17)

where Dn = 1.54A0.27, B = 182.7 (B = 202.4 for hydrogen), e = 2.7181 . . ., δ = M 2
µν/2E(1 − ν),

and the nuclear screening correction ∆n is given by

∆n = ln

(

Dn

1 + δ (Dn

√
e − 2) /Mµ

)

. (18)

The Thomas-Fermi potential for atomic electrons is assumed. A more precise calculation of the
radiation logarithm using the Hartree-Fock model is described in Ref. 46, and the results agree
with the Thomas-Fermi results within about 1% at high energies (total screening); the agreement
is better at low energies. Since there is not yet a Hartree-Fock result for screening in the case of
bremsstrahlung from atomic electrons, we prefer to use the form factors based on the Thomas-Fermi
potential throughout.

To account for bremsstrahlung losses on atomic electrons, Z 2 in Eq. (16) is usually replaced
with Z(Z + 1) (e.g., see Ref. 4). A much better approximation for the contribution from electrons,
taking into account electronic binding and recoil, is given by [14]:
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In this case
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where B = 1429 for all elements but hydrogen, where B = 446, and δ = M 2ν/2E(1− ν), as above.

The cross section for bremsstrahlung as a function of fractional energy transfer ν is shown in
Fig. 4. Although pair production dominates the radiative contributions to the stopping power,
bremsstrahlung dominates at high ν.

The average energy loss 〈−dE/dx〉 due to bremsstrahlung is calculated by integrating the sum
of these cross sections, as in Eq. (21) below.

4.2. Direct e+e− pair production

The cross section for direct e+e− pair production in a Coulomb field was first calculated by
Racah [47]. Atomic screening was later taken into account by Kelner and Kotov [48]. With their
approach, the average energy loss is obtained through a three-fold numerical integration. With
the simple parameterization of the screening functions proposed by Kokoulin and Petrukhin [49],
one obtains a double differential cross section for e+e− production. This formula is widely used in
muon transport calculations (for example, see Ref. 4). Based on this work, a (rather complicated)
analytic form for the energy spectrum of pairs created in screened muon-nucleus collisions was
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derived by Nikishov [50]. The explicit formula is given in Appendix B. The average energy loss
for pair production is calculated by numerical integration:

bpair, nucl = − 1

E

dE

dx

∣
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∣
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NA
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∫ 1

0

ν
dσ

dν
dν (21)

The same expression as for the nucleus is usually used to calculate the pair production con-
tribution from atomic electrons, with Z 2 replaced with Z (e.g., Ref. 4). A more precise approach
has recently been developed by Kelner [51], who proposed a simple parameterization of the energy
loss based on a rigorous QED calculation. This formula for the electronic contribution to pair
production energy loss by muons is valid to within 5% of the more laborious numerical result for
E > 5 GeV, and is used for the present calculations:
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Here g = 4.4 × 10−5 for hydrogen and g = 1.95 × 10−5 for other materials.

The cross section for direct pair production as a function of fractional energy transfer ν is
shown in Fig. 4.

4.3. Photonuclear interactions

Several approaches have been developed to calculate the muon photonuclear cross section. The
most widely used is that of Bezrukov and Bugaev [52]:
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Here ε is the energy loss of the muon and σγN(ε) is the photoabsorption cross section defined below.
Other values are given by

ν =
ε

E
, t =
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1 − ν
, κ = 1 − 2
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2
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, (24)

x = 0.00282A1/3σγN(ε), m2
1 = 0.54 GeV2, and m2

2 = 1.8 GeV2. This cross section gives results
consistent with other calculations to within 30% [4]. Recent measurements of photonuclear
interaction of muon in rock performed by the MACRO collaboration [53] agree quite well with
Monte Carlo simulations based on the Bezrukov and Bugaev cross section.

The total cross section σγN(ε) for the photon-nucleon interaction appears as a normalization
parameter in Ref. 52, which proposes a simple parameterization:

σγN (ε) (in µb) = 114.3 + 1.647 ln2 (0.0213 ε) (25)

This approximation is good enough only for muon energy loss ε > 5 GeV. For smaller ε, we use
the experimental data given by Armstrong et al. [54]. The energy loss contribution is calculated
by numerical integration of the differential cross section given by Eq. (23). The use here of a more
precise photo-absorption cross section for ε < 5 than was used in the original model [52] does not
change the photonuclear part of 〈−dE/dx〉 appreciably.

The cross section for photonuclear interactions as a function of fractional energy transfer ν is
shown in Fig. 4.
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Figure 4: Differential cross section for total and radiative processes as a function
of the fractional energy transfer for muons on iron.
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Table 4: Comparison of btot calculations with those deduced from Lohmann et
al. [4] and, in the case of standard rock, with Gaisser and Stanev [55]. btot is
listed in units of 10−6 g−1 cm2.

Total energy = 10 GeV 100 GeV 1 TeV 10 TeV 100 TeV

Hydrogen
This calculation 0.941 1.345 1.773 2.079 2.284
Lohmann et al. 1.081 1.463 1.814 2.046 —

Carbon
This calculation 1.278 1.972 2.548 2.859 3.030
*Lohmann et al. 1.3 2.14 2.679 2.958 —

Iron
This calculation 3.290 5.701 7.392 8.110 8.371
Lohmann et al. 3.312 5.795 7.444 8.128 —

Uranium
This calculation 8.234 14.614 18.747 20.308 20.760
Lohmann et al. 8.046 14.790 18.870 20.360 —

Water
This calculation 1.439 2.279 2.959 3.313 3.497
*Lohmann et al. 1.5 2.49 3.125 3.459 —

Standard rock
This calculation 1.840 3.028 3.934 4.365 4.563
*Lohmann et al. 1.8 3.10 3.960 4.361 —
Gaisser & Stanev 1.91 3.12 4.01 4.40 —

Oxygen
This calculation 1.502 2.397 3.108 3.468 3.650
*Lohmann et al. 1.6 2.62 3.290 3.620 —

* Obtained from the Lohmann et al. energy loss tables assuming our values for
electronic losses (without the bremsstrahlung correction given by Eq. (13)).
The subtraction loses significance at 10 GeV, where the radiative contribution
is small.

4.4. Comparison with other works on muon radiative losses

Selected b values from our present calculations and according to Lohmann et al. [4] are listed in
Table 4 and plotted in Fig. 5 as a function of muon energy. Since Lohmann et al. did not give the
decomposition of the stopping powers except for H, Fe, and U, values of btot for the materials given
in the right half of the figure were obtained by assuming our values of the ionizing losses (without
the bremsstrahlung correction given by Eq. (13), which was omitted in Ref. 4). This is justified
because for the fiducial cases H, Fe, and U our results agree with their values to within rounding
errors in the 4th place.

For Z > 10 the results are nearly identical. For smaller atomic number, and at low energies,
two effects are responsible for the differences:

1. In the nuclear part of bremsstrahlung, nuclear screening has only a weak energy dependence,
and produces about a 4% reduction for hydrogen and a 10% reduction for carbon. This is
apparent in our lower values of btot for carbon and water as compared with Lohmann et al.

2. The cross sections for bremsstrahlung and pair production from atomic electrons decrease at
low energies because of electron recoil. In our calculations Lohmann et al.’s Z(Z + 1) factor is
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Figure 5: b-values for a sampling of materials. Solid lines represent our results,
while the dashed/dotted lines are from Lohmann et al. [4]. The circles for
standard rock are from Gaisser and Stanev [55].
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replaced by Z(Z+0) in the low-energy limit, so that for hydrogen our contributions to these pro-
cesses for 1–10 GeV are smaller by nearly a factor of two. Similarly, in the low-energy limit our
bremsstrahlung and pair production contributions for carbon are 6/7 of Lohmann et al.’s values.

The CERN RD 34 collaboration has measured the energy loss spectrum of 150 GeV muons
in iron [56]. The energy deposition was measured in prototype hadron calorimeter modules
for the ATLAS detector. Most probable electronic loss was subtracted, as was background from
photonuclear interactions (which in this case is only about 7% of the total cross section). The
remaining sensitivity was to energy loss by pair production (dominant at the smallest energy trans-
fers, 0.01 < ν < 0.03), knock-on electrons (δ rays, included in the high-energy tail of the electronic
loss and dominating for 0.03 < ν < 0.12), and bremsstrahlung (dominant for ν > 0.12). The RD 34
experimental results shown in Fig. 6 are expressed as the fractional deviation from the present
calculations, where the Kelner et al. [14] model (basically that of Petrukhin and Shestakov) is used
to obtain the bremsstrahlung component important at large ν. The fractional deviations from our
results are also shown for the CCFR collaboration’s revision of the Petrukhin and Shestakov cross
section [43] and Rozental’s formula [57]. The present calculation describes the data reasonably
well, while the others are evidently less successful.
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Figure 6: RD 34 measurements of energy losses by 150 GeV muons in iron [56],
shown as fractional deviations from the present calculation, including bremsstrahlung
via Kelner et al. [14]. Heavy error bars indicate statistical errors only, while
the light bars include systematic errors combined in quadrature. Deviations of
alternate models from our calculations are shown by the solid line (Rozental’s for-
mula [57]) and the dashed line (the CCFR collaboration’s revision of the Petrukhin
and Shestakov cross section [43]) .
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4.5. Muon critical energy

Equation (5) defines the muon critical energy Eµc as the energy for which electronic and radiative
losses are equal. Eµc for the chemical elements is shown in Fig. 7. The equality of electronic
and radiative losses comes at a higher energy for gases than for solids and liquids because of the
smaller density-effect correction for gases. Empirical functions have been fitted to these data for
gases and for solids/liquids, in both cases excluding hydrogen from the fits. Since Eµc depends
upon ionization potentials and density-effect parameters as well as Z, the fits cannot be exact.
Potassium, rubidium, and cesium are 3.6%, 3.2% and 3.4% high, respectively, while beryllium is
3.8% low. Most of the other solids and liquids fall within 2.5% of the fitted function. Among gases
the worst fit is for neon (1.9% high).

 100

 200

 400

700

1000

2000

4000

E
µc

 (G
eV

)

1 2 5 10 20 50 100
Z

7980 GeV_____________
 (Z + 1.94)0.885

6590 GeV_____________
 (Z + 1.92)0.880

H He Li Be B CNO Ne SnFe

Solids
Gases

Figure 7: Muon critical energy for the chemical elements. As discussed in the
text, the fitted functions shown in the figure cannot be exact, and are for guidance
only.

4.6. Fluctuations in radiative energy loss

The radiative cross sections at several energies are shown in Fig. 4. The bremsstrahlung cross
section varies roughly as 1/ν over most of the range (where ν is the fraction of the muon’s energy
transferred in a collision), while for pair production the distribution varies as ν−3 to ν−2 (see also
Ref. 58). “Hard” losses are therefore more probable in bremsstrahlung, and in fact energy losses
due to pair production may very nearly be treated as continuous. The photonuclear cross section
has almost the same shape as the bremsstrahlung cross section at high ν, but it is about an order
of magnitude lower.

An example illustrating the fluctuations is shown in Fig. 8. The distribution of final muon
momenta was obtained by following 105 1 TeV/c muons through 3 m (2360 g/cm2) of iron, using
the MARS14 Monte Carlo code [59]. Our result is in nearly exact agreement with results obtained
earlier with TRAMU [58]. The most probable loss is 8 GeV, or 3.4 MeV g−1cm2. Our tables list
a stopping power in iron as 9.82 MeV g−1cm2 for a 1 TeV muon, so that the mean loss should be
23 GeV, for a final energy (≈ momentum × c) of 977 GeV, far below the peak. This is also the
mean calculated from the simulated output.
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Figure 8: The momentum distribution of 1 TeV/c muons after traversing 3 m
of iron, as obtained with the MARS14 Monte Carlo code [59]. The comparative
rarity of very low final momenta follows from the approach of the cross sections
to zero as ν → 0.

The full width at half maximum is 9 GeV/c, or 0.9%. The median is 988 GeV/c. 10% of the
muons lost more than 3.2% of their energy and 2.6% lost more than 10% of their energy. Three
out of the 105 candidates stopped in the iron, presumably because of very inelastic photonuclear
interactions.

The classic case of the propagation of very high-energy muons in “standard rock” is discussed
in Ref. 60 and references therein. Of special interest is Figure 3 of that paper, showing the survival
probabilities as a function of depth for muons from 1 TeV to 106 TeV. The effects of the “radiative
tail” are enormous; at 106 TeV only about 15% of the muons reach the CSDA range. At 10 TeV
about half of them do, giving some indication of the usefulness of our CSDA ranges.

Treatment of radiative loss fluctuations in local energy deposit, range, or direction is beyond
the scope of this paper. It is usually handled by Monte Carlo methods [58,60,61], although
moment expansions are sometimes used when likelihoods need to be assigned to individual events.
Electronic-loss straggling of high energy muons is described using a modified Vavilov distribution
in Ref. 62.

5. Tabulated data

The contents of the main tables are shown in Tables 5–9. In this section we discuss the rationale
in the selection of the elements, simple compounds, polymers, and biological materials for which
tables of muon range-energy loss and radiative loss parameters are provided.

All “common” elements were selected. This included all elements with Z ≤ 38 (strontium),
most elements through Z = 58 (cerium), and the more common heavy elements through Z = 94
(plutonium). Dysprosium (Z = 66) was included to avoid a large gap in Z between cerium and
tantalum (Z = 73). The list is given in Table 5.

Cryogenic liquid forms of most of the elemental room-temperature gases (radon is the exception)
are fairly common in laboratories, and hence were included as well. Because of differences in the
density effect corrections, ionization energy loss differ between liquid and gaseous forms. Radiative
losses are not affected by density, but the muon critical energy, where the electronic and radiative
losses are the same, can be quite different. We have excluded gaseous bromine, (boiling point
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58.8◦ C, although it is tabulated by Sternheimer et al. [5]. For carbon, two forms with different
densities appear. In all, 74 range/energy-loss tables are given for 63 elements

We should not overemphasize these differences: Related materials have similar stopping-power
properties when these are listed in MeV cm2/g (as we do) rather than in MeV/cm. Liquid and
gaseous xenon are not dissimilar in spite of a density ratio of 540. Plutonium is more than twice as
dense as bismuth, but their stopping powers differ by only 5% at minimum ionization. The stopping
powers of hydrocarbons are quite similar, as are those of many polymers and biological materials.

Atomic weights are given to the available significance. This varies with element, since the
isotopic composition of samples from different sources varies. In general the atomic weights of
elements with only one isotope are known to great precision [63].

The same “commonness” criterion was applied to the selection of the simple compounds listed
in Table 6, with some qualifications: We limited ourselves to the compounds listed by Sternheimer
et al. [5], which meant that certain common compounds such as NaCl were not available. Common
inorganic scintillators (BaF2, BGO, CsI, LiF, LiI, NaI) are present. Materials such as trichloroethy-
lene are included because of their role in important physics experiments. The list contains perhaps
more hydrocarbons than necessary, in part to show the change of stopping power behavior as the
H/C ratio changes (note the difference between acetylene and ethane). Liquid water and steam are
both listed. Dry ice was included with some difficulty.

Polymers are listed in Table 7. Their energy loss behavior is quite similar except in the case of
Teflon, which contains no hydrogen. “Thin film” polymers (Mylar, Kapton) were omitted. Polymers
used for plastic scintillators (acrylic, polystyrene, polyvinyltolulene) are included. In some cases
the name, like acrylic or polycarbonate, describes a family of polymers. The chemistry given is
typical, and no great variation is to be expected except perhaps for “Bakelite,” which is not very
well characterized. Where space permits, the formula is given in such a way as to convey as much
structural information as possible.

Mixtures of interest are given in Table 8. Muon energy loss in air is of great current interest,
given atmospheric neutrino observations. Photographic emulsion is of more historic interest. Except
for dry air (and, by definition, standard rock) none of the materials is particularly well characterized.
The somewhat arbitrary concrete recipe is taken from The Reactor Handbook [64], and may be
found, along with the other compositions, in Ref. 26.

For at least two generations, the depth of underground muon experiments has been reduced
to depth in “standard rock.” This is by definition the overburden of the Cayuga Rock Salt Mine
near Ithaca, New York, where K. Greisen and collaborators made seminal observations of muons at
substantial depths [1]. Ref. 1 says only “Most of the ground consists of shales of various types, with
average density 2.65 g/cm2 and average atomic number 11.” Menon and Murthy later extended the
definition: 〈Z2/A〉 = 5.5, 〈Z/A〉 = 0.5, and and ρ = 2.65 g/cm2 [65]. It was thus not-quite-sodium.
Lohmann et al. [4] further assumed the mean excitation energy and density effect parameters were
those of calcium carbonate, with no adjustments for the slight density difference. We use their
definition for this most important material.

Sternheimer et al. [5] list 14 biological materials and “phantoms,” mixtures which have nearly
identical responses to radiation as the biological materials they replace. Omitted materials can be
approximated by those on the list: Brain (ICRP), lung (ICRP), skin (ICRP), testes (ICRP), soft
tissue (ICRU 4-component), and striated muscle (ICRU) are quite similar to soft tissue (ICRP), as
are several included materials such as eye lens (ICRP) and skeletal muscle (ICRP). Compact bone
(ICRU) is similar to cortical bone (ICRP).
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Table 5: Index of tables for selected chemical elements. Physical states are indicated by
“G” for gas, “D” for diatomic gas, “L” for liquid, and “S” for solid. Gases are evaluated
at one atmosphere and 20◦ C. The corresponding cryogenic liquids are evaluated at their
boiling points at one atmosphere, and carbon is evaluated at several typical densities.
Atomic weights are given to their experimental significance. Except where noted, densities
are as given by Sternheimer, Berger, and Seltzer [5].

Element Symbol Z A State ρ 〈−dE/dx〉min Eµc 〈−dE/dx〉 b Notes
[g/cm3] [MeV cm2/g] [GeV] & Range

Hydrogen gas H 1 1.00794 D 8.375× 10−5 4.103 3611. I– 1 VI– 1
Liquid hydrogen H 1 1.00794 L 7.080× 10−2 4.034 3102. I– 2 VI– 1 1
Helium gas He 2 4.002602 G 1.663× 10−4 1.937 2351. I– 3 VI– 2
Liquid helium He 2 4.002602 L 0.125 1.936 2020. I– 4 VI– 2 2
Lithium Li 3 6.941 S 0.534 1.639 1578. I– 5 VI– 3
Beryllium Be 4 9.012182 S 1.848 1.595 1328. I– 6 VI– 4
Boron B 5 10.811 S 2.370 1.623 1169. I– 7 VI– 5
Carbon (compact) C 6 12.0107 S 2.265 1.745 1056. I– 8 VI– 6
Carbon (graphite) C 6 12.0107 S 1.700 1.753 1065. I– 9 VI– 6
Nitrogen gas N 7 14.00674 D 1.165× 10−3 1.825 1153. I–10 VI– 7
Liquid nitrogen N 7 14.00674 L 0.807 1.813 982. I–11 VI– 7 2
Oxygen gas O 8 15.9994 D 1.332× 10−3 1.801 1050. I–12 VI– 8
Liquid oxygen O 8 15.9994 L 1.141 1.788 890. I–13 VI– 8 2
Fluorine gas F 9 18.9984032 D 1.580× 10−3 1.676 959. I–14 VI– 9
Liquid fluorine F 9 18.9984032 L 1.507 1.634 810. I–15 VI– 9 2
Neon gas Ne 10 20.1797 G 8.385× 10−4 1.724 906. I–16 VI–10
Liquid neon Ne 10 20.1797 L 1.204 1.695 759. I–17 VI–10 2
Sodium Na 11 22.989770 S 0.971 1.639 711. I–18 VI–11
Magnesium Mg 12 24.3050 S 1.740 1.674 658. I–19 VI–12
Aluminum Al 13 26.981538 S 2.699 1.615 612. I–20 VI–13
Silicon Si 14 28.0855 S 2.329 1.664 581. I–21 VI–14 1
Phosphorus P 15 30.973761 S 2.200 1.613 551. I–22 VI–15
Sulfur S 16 32.066 S 2.000 1.652 526. I–23 VI–16
Chlorine gas Cl 17 35.4527 D 2.995× 10−3 1.630 591. I–24 VI–17
Liquid chlorine Cl 17 35.4527 L 1.574 1.608 504. I–25 VI–17 2
Argon gas Ar 18 39.948 G 1.662× 10−3 1.519 571. I–26 VI–18
Liquid argon Ar 18 39.948 L 1.396 1.508 483. I–27 VI–18 2
Potassium K 19 39.0983 S 0.862 1.623 470. I–28 VI–19
Calcium Ca 20 40.078 S 1.550 1.655 445. I–29 VI–20
Scandium Sc 21 44.955910 S 2.989 1.522 420. I–30 VI–21
Titanium Ti 22 47.867 S 4.540 1.477 401. I–31 VI–22
Vanadium V 23 50.9415 S 6.110 1.436 383. I–32 VI–23
Chromium Cr 24 51.9961 S 7.180 1.456 369. I–33 VI–24
Manganese Mn 25 54.938049 S 7.440 1.428 357. I–34 VI–25
Iron Fe 26 55.845 S 7.874 1.451 345. I–35 VI–26
Cobalt Co 27 58.933200 S 8.900 1.419 334. I–36 VI–27
Nickel Ni 28 58.6934 S 8.902 1.468 324. I–37 VI–28
Copper Cu 29 63.546 S 8.960 1.403 315. I–38 VI–29
Zinc Zn 30 65.39 S 7.133 1.411 308. I–39 VI–30
Gallium Ga 31 69.723 S 5.904 1.379 302. I–40 VI–31
Germanium Ge 32 72.61 S 5.323 1.370 295. I–41 VI–32
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Table 5: continued

Element Symbol Z A State ρ 〈−dE/dx〉min Eµc 〈−dE/dx〉 b Notes
[g/cm3] [MeV cm2/g] [GeV] & Range

Arsenic As 33 74.92160 S 5.730 1.370 287. I–42 VI–33
Selenium Se 34 78.96 S 4.500 1.343 282. I–43 VI–34
Bromine Br 35 79.904 L 3.103 1.385 278. I–44 VI–35 2
Krypton gas Kr 36 83.80 G 3.478× 10−3 1.357 321. I–45 VI–36
Liquid krypton Kr 36 83.80 L 2.418 1.357 274. I–46 VI–36 2
Rubidium Rb 37 85.4678 S 1.532 1.356 271. I–47 VI–37
Strontium Sr 38 87.62 S 2.540 1.353 262. I–48 VI–38
Zirconium Zr 40 91.224 S 6.506 1.349 244. I–49 VI–39
Niobium Nb 41 92.90638 S 8.570 1.343 237. I–50 VI–40
Molybdenum Mo 42 95.94 S 10.220 1.330 232. I–51 VI–41
Palladium Pd 46 106.42 S 12.020 1.289 214. I–52 VI–42
Silver Ag 47 107.8682 S 10.500 1.299 211. I–53 VI–43
Cadmium Cd 48 112.411 S 8.650 1.277 208. I–54 VI–44
Indium In 49 114.818 S 7.310 1.278 206. I–55 VI–45
Tin Sn 50 118.710 S 7.310 1.263 202. I–56 VI–46
Antimony Sb 51 121.760 S 6.691 1.259 200. I–57 VI–47
Iodine I 53 126.90447 S 4.930 1.263 195. I–58 VI–48
Xenon gas Xe 54 131.29 G 5.485× 10−3 1.255 226. I–59 VI–49
Liquid xenon Xe 54 131.29 L 2.953 1.255 195. I–60 VI–49 2
Cesium Cs 55 132.90545 S 1.873 1.254 195. I–61 VI–50
Barium Ba 56 137.327 S 3.500 1.231 189. I–62 VI–51
Cerium Ce 58 140.116 S 6.657 1.234 180. I–63 VI–52
Dysprosium Dy 66 162.50 S 8.550 1.175 161. I–64 VI–53
Tantalum Ta 73 180.9479 S 16.654 1.149 145. I–65 VI–54
Tungsten W 74 183.84 S 19.300 1.145 143. I–66 VI–55
Platinum Pt 78 195.078 S 21.450 1.128 137. I–67 VI–56
Gold Au 79 196.96655 S 19.320 1.134 136. I–68 VI–57
Mercury Hg 80 200.59 L 13.546 1.130 136. I–69 VI–58
Lead Pb 82 207.2 S 11.350 1.122 134. I–70 VI–59
Bismuth Bi 83 208.98038 S 9.747 1.128 133. I–71 VI–60
Thorium Th 90 232.0381 S 11.720 1.098 124. I–72 VI–61
Uranium U 92 238.0289 S 18.950 1.081 120. I–73 VI–62
Plutonium Pu 94 244.064197 S 19.840 1.071 117. I–74 VI–63

Notes:

1. Density effect parameters adjusted to this density using Eq. (A.8).

2. Density effect parameters calculated via the Sternheimer-Peierls algorithm discussed in Appendix A.
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Table 6: Index of tables for selected simple compounds. Physical states are indicated by
“G” for gas, “D” for diatomic gas, “L” for liquid, and “S” for solid. Gases are evaluated
at one atmosphere and 20◦ C. Except where noted, densities are those given by Stern-
heimer, Berger, and Seltzer [5]. Composition not explained may be found in Seltzer and
Berger [26] or in the file properties.datat http://pdg.lbl.gov/AtomicNuclearProperties.

Compound or mixture 〈Z/A〉 State ρ 〈−dE/dx〉min Eµc 〈−dE/dx〉 b Notes
[g/cm3] [MeV cm2/g] [GeV] & Range

Acetone (CH3CHCH3) 0.55097 L 0.790 2.003 1160. II– 1 VII– 1
Acetylene (C2H2) 0.53768 G 1.097× 10−3 2.025 1400. II– 2 VII– 2
Aluminum oxide (Al2O3) 0.49038 S 3.970 1.647 705. II– 3 VII– 3
Barium fluoride (BaF2) 0.42207 S 4.890 1.303 227. II– 4 VII– 4
Beryllium oxide (BeO) 0.47979 S 3.010 1.665 975. II– 5 VII– 5
Bismuth germanate (BGO, Bi4(GeO4)3) 0.42065 S 7.130 1.251 176. II– 6 VII– 6
Butane (C4H10) 0.59497 G 2.493× 10−3 2.278 1557. II– 7 VII– 7
Calcium carbonate (CaCO3) 0.49955 S 2.800 1.686 630. II– 8 VII– 8
Calcium fluoride CaF2 0.49670 S 3.180 1.655 564. II– 9 VII– 9
Calcium oxide (CaO) 0.49929 S 3.300 1.650 506. II–10 VII–10
Carbon dioxide (CO2) 0.49989 G 1.842× 10−3 1.819 1094. II–11 VII–11
Solid carbon dioxide (dry ice) 0.49989 S 1.563 1.787 927. II–12 VII–11 2
Cesium iodide (CsI) 0.41569 S 4.510 1.243 193. II–13 VII–12
Diethyl ether ((CH3CH2)2O) 0.56663 L 0.714 2.072 1220. II–14 VII–13
Ethane (C2H6) 0.59861 G 1.253× 10−3 2.304 1603. II–15 VII–14
Ethanol (C2H5OH) 0.56437 L 0.789 2.054 1178. II–16 VII–15
Lithium fluoride (LiF) 0.46262 S 2.635 1.614 903. II–17 VII–16
Lithium iodide (LiI) 0.41939 S 3.494 1.272 207. II–18 VII–17
Methane (CH4) 0.62334 G 6.672× 10−4 2.417 1715. II–19 VII–18
Octane (C8H18) 0.57778 L 0.703 2.123 1312. II–20 VII–19
Paraffin (CH3(CH2)n≈23CH3) 0.57275 S 0.930 2.088 1287. II–21 VII–20
Plutonium dioxide (PuO2) 0.40583 S 11.460 1.158 136. II–22 VII–21
Liquid propane (C3H8) 0.58962 L 0.493 2.198 1365. II–23 VII–22 1
Silicon dioxide (fused quartz, SiO2) 0.49930 S 2.200 1.699 708. II–24 VII–23 1
Sodium iodide (NaI) 0.42697 S 3.667 1.305 223. II–25 VII–24
Toluene (C6H5CH3) 0.54265 L 0.867 1.972 1203. II–26 VII–25
Trichloroethylene (C2HCl3) 0.48710 L 1.460 1.656 568. II–27 VII–26
Water (liquid) (H2O) 0.55509 L 1.000 1.992 1032. II–28 VII–27
Water (vapor) (H2O) 0.55509 G 7.562× 10−4 2.052 1231. II–29 VII–27

Notes:

1. Density effect parameters adjusted to this density using Eq. (A.8). Ref. 5 lists 2.32 g/cm3 for SiO2,
which may be the density of cristobalite. The density of crystalline quartz is about 2.65 g/cm3, and the
density of fused quartz is typically 2.20 g/cm3.

2. Density effect parameters calculated via the Sternheimer-Peierls algorithm discussed in Appendix A.
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Table 7: Index of tables for selected high polymers. Except where noted, densities are
those given by Sternheimer, Berger, and Seltzer [5]; actual densities of polymers will
vary. Composition not explained may be found in Seltzer and Berger [26] or in the file
properties.dat at http://pdg.lbl.gov/AtomicNuclearProperties.

Compound or mixture 〈Z/A〉 ρ 〈−dE/dx〉min Eµc 〈−dE/dx〉 b Notes
[g/cm3] [MeV cm2/g] [GeV] & Range

Bakelite [C43H38O7]n 0.52792 1.250 1.889 1110. III– 1 VIII– 1
Nylon (type 6, 6/6) [C12H22O2N2]n 0.54790 1.180 1.973 1156. III– 2 VIII– 2 1
Polycarbonate [OC6H4C(CH3)2C6H4OCO]n 0.52697 1.200 1.886 1104. III– 3 VIII– 3
Polyethylene [C2H4]n 0.57034 0.890 2.079 1282. III– 4 VIII– 4 1
Polymethylmethacrylate (acrylic) 0.53937 1.190 1.929 1107. III– 5 VIII– 5
Polystyrene [C6H5CHCH2]n 0.53768 1.060 1.936 1183. III– 6 VIII– 6
Polytetrafluoroethylene (Teflon) [C2F4]n 0.47992 2.200 1.671 853. III– 7 VIII– 7
Polyvinylchloride (PVC) [CH2CHCl]n 0.51201 1.300 1.779 696. III– 8 VIII– 8
Polyvinyltoluene [2-CH3C6H4CHCH2]n 0.54141 1.032 1.956 1194. III– 9 VIII– 9

Notes:

1. Density effect parameters adjusted to this density using Eq. (A.8).

Table 8: Index of tables for selected mixtures. Physical states are indicated by “G” for
gas and “S” for solid. Gases are evaluated at one atmosphere and 20◦ C. Densities are
those given by Sternheimer, Berger, and Seltzer [5]. Composition may be found in Seltzer
and Berger [26] or in the file properties.dat at
http://pdg.lbl.gov/AtomicNuclearProperties.

Compound or mixture 〈Z/A〉 State ρ 〈−dE/dx〉min Eµc 〈−dE/dx〉 b
[g/cm3] [MeV cm2/g] [GeV] & Range

Air (dry, 1 atm) 0.49919 G 1.205× 10−3 1.815 1114. IV– 1 IX– 1
Concrete 0.50274 S 2.300 1.711 700. IV– 2 IX– 2
Lead glass 0.42101 S 6.220 1.255 175. IV– 3 IX– 3
Photographic emulsion 0.43663 S 6.470 1.313 235. IV– 4 IX– 4
Plate glass 0.49731 S 2.400 1.684 670. IV– 5 IX– 5
Standard rock 0.50000 S 2.650 1.688 693. IV– 6 IX– 6
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Table 9: Index of tables for selected biological materials. Physical states are indicated
by “L” for liquid and “S” for solid. Densities are those given by Sternheimer, Berger,
and Seltzer [5]. Composition may be found in Seltzer and Berger [26] or in the file
properties.dat at http://pdg.lbl.gov/AtomicNuclearProperties.

Biological material 〈Z/A〉 State ρ 〈−dE/dx〉min Eµc 〈−dE/dx〉 b
or phantom [g/cm3] [MeV cm2/g] [GeV] & Range

A-150 tissue-equivalent plastic 0.54903 S 1.127 1.978 1158. V– 1 X– 1
Adipose tissue (ICRP) 0.55947 S 0.920 2.029 1183. V– 2 X– 2
Blood (ICRP) 0.54995 L 1.060 1.971 1032. V– 3 X– 3
Cortical bone (ICRP) 0.52130 S 1.850 1.803 748. V– 4 X– 4
C-552 air-equivalent plastic 0.49969 S 1.760 1.760 953. V– 5 X– 5
Eye lens (ICRP) 0.54977 S 1.100 1.971 1057. V– 6 X– 6
MS20 tissue substitute 0.53886 S 1.000 1.934 1056. V– 7 X– 7
Skeletal muscle (ICRP) 0.54938 S 1.040 1.970 1032. V– 8 X– 8
Soft tissue (ICRP) 0.55121 S 1.000 1.982 1063. V– 9 X– 9
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Fassó (SLAC) was kind enough to make available his ASCII files of the density-effect coefficients
and composition, vastly aiding verification of our parameters. Steve Seltzer (NIST) answered our
questions and made available code which produced computer-readable files of the main tables of
ICRU 49, making comparisons with our results much easier. Hans Bichsel, our “ghost author,”
first provided us with an exhaustive and supportive referee’s report. This led to many changes
and additions, including two new figures. Then, via conversations and email, further changes were
made, and his suggested wording was used in parts of Sections 3.1 and 3.3. Finally, Bob Naumann
(Dartmouth) carefully checked and corrected our structures for polymers. This work was supported
by the U.S. Department of Energy under contract No. DE-AC03-76SF00098.

LBNL-44742 29 Atomic Data and Nuclear Data Tables, Vol. 76, No. 2, July 2001



D. E. GROOM, N. V. MOKHOV, and S. STRIGANOV Muon Stopping Power and Range

Appendix A. Stopping power and density-effect parameters for compounds

and mixtures

For most of the materials for which tables are given in this report, the relevant effective excitation
energy and density-effect parameters have already been tabulated, and should be used. This section
concerns how to deal with an untabulated compound or mixture.

It is usual to think of a compound or mixture as made up of thin layers of the pure elements
(or, better, constituent compounds for which tabulated data are available) in the right proportion
(Bragg additivity [66]) . Let nj be the number of the jth kind of atom in a compound (it need not
be an integer for a mixture), and wj its weight fraction:

wj = njAj

/

∑

k

nkAk A.1

Then
〈

dE

dx

〉

=
∑

j

wj

dE

dx

∣

∣

∣

∣

j

A.2

When the Bethe-Bloch equation is inserted and the radiative terms added, the Z-dependent terms
can be sorted out to find that the mixture or compound is equivalent to a single material with

〈

Z

A

〉

=
∑

j

wj

Zj

Aj

=
∑

j

njZj

/

∑

j

njAj

ln 〈I〉 =
∑

j

wj (Zj/Aj) ln Ij

/

∑

j

wj (Zj/Aj) =
∑

j

njZj ln Ij

/

∑

j

njZj

〈b (E)〉 =
∑

j

wjbj (E)

A.3

There are pitfalls in actually using Eq. (A.3) to calculate 〈I〉. Since the electrons in a compound
are more tightly bound than in the constituent elements, the effective Ij are in general higher than
those of the constituent elements. Exceptions are provided by diatomic gases and by metals in
metallic alloys or compounds. Berger and Seltzer discuss ways to extend the Bragg additivity rule
in lieu of a detailed calculation [26]:

(a) For a select list of materials (carbon and some common gases), they propose alternate mean
excitation energies in their Table 5.1 (or Table 6 in Ref. 26).

(b) For other elements, the excitation energies are multiplied by 1.13 before calculation of the mean
(the “13% rule”). Although it is is not said, it would seem sensible to apply this rule in the case
of a tightly-bound material such as CsI, and not apply it in the case of a metallic compound
like Nb3Sn.

(c) Both are superseded by experimental numbers when available, as in the case of SiO2.

Bragg additivity has little meaning in calculating the density-effect correction. If the material
of interest is not available in the tables of Ref. 5, then the algorithm given by Sternheimer and
Peierls [6] should be used. Their recipe is given more succinctly in the EGS4 manual [28], and the
following algorithm is adopted from that version for the parameterization of Section 3.4.

(a) I is obtained as described above

(b) k is always taken as 3.00

(c) C = 2 ln(I/h̄ωp) + 1, with the plasma energy h̄ωp obtained using the expression from Table 1.
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(d) For solids and liquids,

x1 =



















2.0 if I < 100 eV, and x0 =

{

0.2 if C < 3.681
0.326C − 1.0 otherwise

3.0 if I ≥ 100 eV, and x0 =

{

0.2 if C < 5.215
0.326C − 1.5 otherwise

A.4

(e) In the case of gases,

x0 =



















































1.6 and x1 = 4.0 if C < 10.0
1.7 and x1 = 4.0 if 10.0 ≤ C < 10.5
1.8 and x1 = 4.0 if 10.5 ≤ C < 11.0
1.9 and x1 = 4.0 if 11.0 ≤ C < 11.5
2.0 and x1 = 4.0 if 11.5 ≤ C < 12.25
2.0 and x1 = 5.0 if 12.25 ≤ C < 13.804
0.326C − 1.5

and x1 = 5.0 if C ≥ 13.804

A.5

(f)

a =
C − 2 (ln 10) x0

(x1 − x0)
3 . A.6

We have used this algorithm to calculate the density-effect coefficients for cryogenic liquids,
which are not tabulated by Sternheimer, Berger, and Seltzer [5]. In this case, I for the gas was used.

One problem remains: Given the density-effect parameters, either from the literature [5] or
from the algorithm given above, how does one modify them for the same material at a different
density? This problem occurs for gases at different pressures, or for solid and liquids at different
densities than those tabulated. In an early paper [6], Sternheimer noted that under quite general
conditions

δr (p) = δ
(

p
√

r
)

, A.7

where r = ρ/ρ0, the ratio of desired to tabulated densities, and the subscript r indicates the quantity
evaluated at the desired density. This implies [6] that

Cr = C − ln r

x0r = x0 − 1
2
log10 r

x1r = x1 − 1
2
log10 r .

A.8

It is easily shown by matching different regions in Eq. (11) that the parameters a and k are
unchanged by the transformation.

This method was used to correct the parameters for several materials for which we prefer
different densities, for example the density of fused silica. Liquid hydrogen is tabulated for the
“bubble chamber density,” for which we scaled the parameters to the density of liquid hydrogen at
its boiling point at a pressure of one atmosphere.

Both algorithms were checked by calculating 〈−dE/dx〉 several ways, taking advantage of the
fact that Ref. 5 lists both gaseous and liquid helium, three densities of carbon, and both steam and
liquid water. The comparisons are discussed at the end of Sect. 3.4.
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Appendix B. Direct pair production from screened nuclei

Nikishov’s analytic form for the cross section is given by [50]

dσ

dν

∣

∣

∣

∣

pair, nucl

=
(2αreZ)

2

π

(1 − ν)

ν

[

(f1 + θf3) ln

(

2ε

me

)

+ φ2 + θφ4 + I

]

, B.1

where ε = νE is the energy transferred to the e+e− pair, and θ = m2
e/M

2. The functions in the
square brackets are given by

f1 + θf3 =
44

45z
− 16

45
− 4

9
θ −

(

7

9
+

8

45
z +

7

18
zθ

)

ln z

+

[

16

45
z +

38

45
− 44

45z
+

4

3 (z + 4)
+

(

7

9
z − 2

9
+

8

3 (z + 4)

)

θ

]

B (z) ln
z2

z1

,
B.2

φ2 + θφ4 =

(

7

36
+

2

45
z +

7

72
zθ

)(

ln2 z2

z1

+ π2 + 2 ln2 z

)

+

(

7

18
+

3

20
z +

7

36
zθ

)

ln z +
653

270
− 28

9z
+

2

3
θ

+

[

− 3

10
z − 92

45
+

52

45z
−
(

2

9
− 7

18
z

)

θ

]

B (z) ln
z2

z1

+ B (z)

[

− 8

45
z − 19

45
− 8

45z
−
(

2

9
+

7

18
z

)

θ

] [

Li2 (y) + 2Li2

(

1

z2

)

+
3

2
ln2 z2

z1

]

+

(

8

z
+ zθ

)

B (z)

3 (z + 4)
×
[

6Li2

(

1

z2

)

− Li2 (y) +
1

2
ln2 z2

z1

]

,

B.3

where

z =
ν2

θ (1 − ν)
, z1,2 = B (z) ∓ 1

2
, B (z) =

√

1

4
+

1

z
, y =

z1 + z2

z2
2

,

Li2 is the dilogarithm function (Spence’s integral evaluated for n = 2) [67], and

I =

(

7

9
+

8

45
z +

7

18
zθ
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16

45
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7

9
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4
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θ
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2
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1
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(
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8
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−
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2J
(2)
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,

B.4

where

w = s
√

z, s =
2
√

γγ′Z1/3

183
√

e
≈

√
γγ′Z1/3

151
,

u = w + z, γ = P0/M, γ′ = P ′

0/M

B.5
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(u1,2, B(u) and w1,2, B(w) are the analogs of z1,2, B(z), i. e., u1,2 = B(u) ∓ 1
2
, etc.),

H = Li2

(

z

u + 4

)

− Li2

(

z + 4

u + 4

)

+ Li2

(

z

z + 4
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− 2Li2

(
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)
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(
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u (z + 4)

)
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)
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4
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+
π2

6
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4

w

)
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B.6
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and, finally,
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Explanation of Tables4

TABLE I: Muon energy loss rate and CSDA range for selected chemical elements.

The contents of Table I and other information are given in Table 5.

The header defines the element and state, and gives the parameters used to calculate
the electronic stopping power:

Z: Atomic number.

A: Atomic weight.

ρ: Density. Gas density is evaluated at 20◦ C.

I: Mean excitation energy.

a—δ0: Sternheimer et al. density effect parameters, as introduced in Sect. 3.4 and Eq. (11).

The body of the table presents ionizing energy loss (Eq. (15)) and the components
of radiative loss rate (see Eqs. (1) and (2), as well as CSDA range obtained by
integrating the total (Eq. (3)), as a function of the muon’s initial kinetic energy T .
The spacing of the independent variable is fairly uniform on a logarithmic scale.
The corresponding momentum p is also given. The table is interrupted to show the
points at which minimum ionization and muon critical energy (Eq. (5)) occur.

A radiative loss field is left blank if the stopping power contribution is less than 0.0001.

TABLE II: Muon energy loss rate and CSDA range for simple compounds.

The contents of TABLE II and other information are given in Table 6. The format
is identical with TABLE I, except that 〈Z/A〉 (Eq. (A.3)) replaces Z and A.

TABLE III: Muon energy loss rate and CSDA range for high polymers.

The contents of TABLE III and other information are given in Table 7. The format
is identical with TABLE II.

TABLE IV: Muon energy loss rate and CSDA range for mixtures.

The contents of TABLE IV and other information are given in Table 8. The format
is identical with TABLE II.

TABLE V: Muon energy loss rate and CSDA range for biological compounds.

The contents of TABLE V and other information are given in Table 9. The format
is identical with TABLE I, except that 〈Z/A〉 (Eq. (A.3))) replaces Z and A.

TABLE VI: b values for the elements listed in Table I.

Interpolation in log E is used to generate the b values shown in TABLE I and for
the ionizing loss calculations. The contents are listed in Table 5.

TABLE VII: b values for the compounds listed in TABLE II.

TABLE VII has the same format as TABLE III except that 〈Z/A〉 replaces Z and A.
The contents are listed in Table 6.

TABLE VIII: b values for the high polymers listed in TABLE III.

TABLE VII has the same format as TABLE VII. The contents are listed in Table 7.

TABLE IX: b values for the mixtures listed in TABLE IV.

TABLE VII has the same format as TABLE VII. The contents are listed in Table 8.

TABLE X: b values for the biological compounds listed in TABLE V.

TABLE VII has the same format as TABLE VII. The contents are listed in Table 9.

4 Computer-readable versions of these tables can be found at http://pdg.lbl.gov/AtomicNuclearProperties
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