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Abstract—Process monitoring plays a vital role in order to
sustain optimal operation and maintenance of the plant in process
industry. As an essential stage in process monitoring, data-
driven fault detection and diagnosis techniques have evolved
quickly owing to the prosperity of multivariate feature extraction
methods. In addition to the application of basic feature extraction
methods, hybrid algorithms combining different methods have
also been invented for better monitoring performance. In the
meantime, little study has been done towards the fault diagnosis
techniques under this 2-stage feature extraction framework. To
deal with complex faults which will have impact on multiple
process variables and the relationships among them, the Prin-
cipal Component Analysis (PCA) enhanced Canonical Variate
Analysis (CVA) based fault detection and diagnosis algorithm is
investigated in this paper. PCA is used to pre-process the raw
measurements and extracts the principal components as better
indicators of process condition; CVA is conducted sequentially
to further project the principal components to canonical variate
space and the detection statistics are calculated based on these
canonical variates. When a fault has been detected, the con-
tributions of original process variables in monitoring statistics
are derived to identify influential variables and locate the fault.
To validate, along with other multivariate statistical monitoring
techniques, this PCA-enhanced CVA algorithm is applied to a
benchmark data set collected from an industrial scale multiphase
flow facility in Cranfield University for performance evaluation.

Keywords—multivariate process monitoring, fault detection and
diagnosis, contribution plots, feature extraction

I. INTRODUCTION

Multivariate statistical feature extract method has been the

trend in data-driven process monitoring for over a decade and

is still prosperous nowadays. Apart from the most commonly

used Principal Component Analysis (PCA) and its kin, Canon-

ical Variate Analysis (CVA) has also been studied intensively

and applied to various aspects of process monitoring [1]–

[3]. CVA is a powerful tool with not only the ability of

dynamic process monitoring but also establishing state space

model from data. Since monitoring algorithms based on PCA

and its dynamic extensions suffer from the inaccuracy of

the model they build, introducing CVA will compensate and

improve model quality. Simultaneously, canonical variates and

residuals generated from principal components instead of raw

data can be better representations of the process dynamics as

well as random errors. Previously, Samuel and Cao [4] have

established a PCA-enhanced latent variable CVA based fault

detection method and applied it to the Tennessee Eastman

challenge process.

In addition to fault detection, this PCA-enhanced CVA

algorithm is also anticipated to reinforce fault diagnosis per-

formance and provide better insights for process operation and

maintenace. However, unlike the rapid development of hybrid

methods in fault detection, a knowledge gap is identified that

these methods lack a commonly acknowledged approach for

fault identification and diagnosis. As an example of data-

driven fault diagnosis methods, contribution plots [5] have

been extensively applied to identifying variables associating

to a certain fault and locating the fault. Rooting in the idea

that the process variable that the fault has a significant impact

on is supposed to have larger contribution to the monitoring

statistics, the study of contribution plots is persistent and

profound. To fill in the gap, this work utilizes contribution

plots and establishes a general structure of contribution prop-

agation for fault diagnosis based on 2-stage feature extraction

process monitoring techniques. Moreover, the contribution

propagation solution to this PCA-enhanced CVA algorithm is

derived and validated via identifying influential variables in

an industrial case study. It is reasonable to infer that con-

tribution of influential variables will be properly emphasized

if contributions transmitted through multiple levels of feature

extraction methods have been quantitatively analysed.

The remainder of this paper is organized as follows. The

fault detection algorithm of PCA-enhanced CVA monitoring

approach is revisited in Section II. For fault diagnosis, a

general formulation of contribution propagation is proposed

for contribution plots calculation of a type of 2-stage feature

extraction based monitoring techniques, to which the PCA-

enhanced CVA algorithm belongs, in Section III in order

to identify the process variable with large contribution with

respect to the monitoring statistics. The contribution plots

for the PCA-enhanced CVA monitoring technique are derived

under this framework. Section IV presents a case study on
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the benchmark data set collected from the multiphase flow

facility. In this case study, the fault detection and diagnosis

performance of PCA-enhanced CVA is compared with various

linear multivariate statistical methods. The applicability of

PCA-enhanced CVA algorithm is further verified by its appli-

cation to the data from large scale real-life process in addition

to simulated benchmark data sets. Section V summarizes the

findings in this work and illustrates potential directions of

extension in future study.

II. PCA-ENHANCED CVA PROCESS MONITORING REVISIT

A. 2-stage PCA-enhanced CVA Feature Extraction Method

According to [4], CVA fault detection algorithm is enhanced

by using latent variables extracted by PCA as its input instead

of the original measured variables. Firstly, PCA projects the

original measurement data in v-dimensional variable space

to a reduced r-dimensional principal component space with

maximum explanation of variations in original variables. The

model structure of PCA is illustrated as follows:

Y = XP (1)

where X ∈ R
n×v with zero mean and unit variance is the

standardized original data set, Y ∈ R
n×r is the extracted

principal components and P ∈ R
v×r is the projection matrix.

The projection matrix P is obtained by eigenvalue decompo-

sition of sample covariance matrix XTX . Hence the principal

component vector y is linear projection of original variable

vector x.

CVA is a linear dynamic feature extraction method from

which the canonical variates with maximum correlation be-

tween past and future vectors can be acquired. Instead of using

original data matrix X , PCA-enhanced CVA algorithm adopts

the principal components Y extracted by PCA as the input

to CVA and get canonical variates Z ∈ R
n×d and residuals

E ∈ R
n×r.

At certain time stamp t, past and future vectors yp(t) and

yf (t) are formed by Eqn 2 with fixed vector lengths p and f :

yp(t) = [ỹT (t− 1), ỹT (t− 2), ..., ỹT (t− p)]T

yf (t) = [ỹT (t), ỹT (t+ 1), ..., ỹT (t+ f)]T
(2)

where ỹ(t) = y(t) − ȳ such that ȳ is the mean of principal

components y over time.

Furthermore, past and future Henkel matrices Yp ∈ R
rp×m

and Yf ∈ R
rf×m comprise of m = n− p− f + 1 past/future

vector pairs, making the time lagged data matrices for feature

extraction starting at time stamp p (the minimal initial time

point for constructing past vector):

Yp = yp(p),yp(p+ 1), ...,yp(p+m− 1)]

Yf = [yf (p),yf (p+ 1), ...,yf (p+m− 1)]
(3)

Analogically to PCA, the quasi-covariance matrix H is

defined by covariance and cross-covariance matrices of Yp and

Yf :

Σpp = Y T
p Yp; Σff = Y T

f Yf ; Σfp = Y T
f Yp (4)

H = Σ
− 1

2

ff ΣfpΣ
− 1

2
pp (5)

Consequentially, The projection matrices J and L are the

normalized results of singular value decomposition result of

H:

H = UΛV T (6)

J = VdΣ
− 1

2
pp ; L = (Ir − VdV

T
d )Σ

− 1
2

pp (7)

The canonical variate vector z and residual vector e are

both linear projections of past vector yp at time t:

z(t) = Jyp(t); e(t) = Lyp(t) (8)

B. Fault Detection with PCA-enhanced CVA

After features have been extracted from original data, mon-

itoring statistics are to be calculated using these features and

compared with their control limits for fault detection. Qin

[6] has studied a variety of monitoring metrics in data-driven

process monitoring. The most widely used ones among all are

the T 2 statistics for detection of systematic variation and Q
statistics for random error. For CVA, T 2 and Q statistics are

calculated in the canonical variate space and residual space,

respectively.

T 2(t) = zT (t)z(t); Q(t) = eT (t)e(t) (9)

Based on normal data, upper control limits with confidence

level α, i.e. T 2
UCL(α) and QUCL(α), of statistics in Eqn 9 are

defined as:

P (T 2 > T 2
UCL(α)) = α; P (Q > QUCL(α)) = α (10)

Due to the potential non-Gaussianity of the process vari-

ables, the distribution functions in Eqn 10 and corresponding

control limits are estimated via Kernel Density Estimation [7].

In online fault detection, monitoring statistics calculated with

the real-time measurements are compared with these control

limits to determine the fault occurrence based on the condition

shown in Eqn 11.

(
T 2(t) > T 2

UCL

) || (Q(t) > QUCL) (11)

III. CONTRIBUTION PLOTS BASED FAULT DIAGNOSIS OF

PCA-ENHANCED CVA

This section discusses the general formulation of contri-

bution plots under 2-stage feature extraction framework and

derives the solution to PCA-enhanced CVA method.



A. Contribution Plots for 2-stage Feature Extraction Based
Monitoring Techniques

Eqn 12 formulates the structure of a general 2-stage feature

extraction based fault detection method.

y =g(x;P )

z = f1(y; J); e = f2(y;L)

T 2 = zTz Q = eTe

(12)

where

x: original measured variables

P, g: first layer parameters and model structure g is not

used here.

y: intermediate features from first layer

J, f1: second layer parameters and model structure for

feature variables representing systematic error

L, f2: second layer parameters and model structure for

residuals representing random error

z, e: features from second layer representing systematic

and random error

T 2, Q: testing statistics for systematic and random error

In this formulation, the original data set X =
[x(1),x(2), ...,x(n)]T is initially processed by the first feature

extraction method to obtain the intermediate feature data

Y = [y(1),y(2), ...,y(n)]T . Y is further processed by the

second layer of feature extraction method to attain the feature

variables Z = [z(1), z(2), ..., z(n)]T and residual variables

E = [e(1), e(2), ..., e(n)]T . The final monitoring statistics are

based on z and e. It is obvious that aforementioned PCA-

enhanced CVA algorithm falls into this category.

The objective of contribution plots based fault diagnosis

is to gain the contribution of original process variables to the

final monitoring statistics such as T 2 and Q. In order to do so,

Figure 1 illustrates the propagation of variable contributions

under this 2-stage feature extraction framework.

Fig. 1. Illustration of 2-stage contribution propagation in T 2

The following equations hold for individual variables

xi ∈ x, yj ∈ y and zk ∈ z:
∑v

i=1 contxi,yj = yj ;∑r
j=1 contyj ,zk = zk; contzk,T 2 = zTk zk. Analogy can be

made for the contribution plots to Q statistics. The general

philosophy behind is to calculate the weighted combination of

the contributions of intermediate features to the final statistics

(contyj ,T 2 and contyj ,Q), in which the weighting coefficients

are the contribution of original variable to the intermediate

features (contxi,yj
).

In general, the individual contributions of single variables

are displayed in Eqn 13, where {g(j);P(j)} and {f1(k); J(k)}
are subspace model structures and parameters with respect to

yj and zk, respectively.

contxi,yj
= g(j)(xi;P(j))

contyj ,zk = f1(k)(yj ; J(k))

contxi,zk =
r∑

j=1

f1(k)(yj ; J(k))g(j)(xi;P(j))

(13)

Determined by the specific feature extraction methods

adopted in two layers, the model structures g, f1 and f2
are related to the complexity of contribution plots calculation.

Both layers are linear in PCA-enhanced CVA; hence a close

form solution to the complete contribution plots of original

variables X to monitoring statistics can be derived.

B. PCA-enhanced CVA-based Contribution Plots Calculation

Following the general formulation proposed previously, the

contribution plots of this PCA-enhanced CVA algorithm can

be derived in 3 steps.

1) Contribution of the original process variable vector x to

the principal components y: the general process model

of PCA is:

yT = xTP =
v∑

i=1

xipi (14)

where x = [x1, x2, ..., xv]
T and xi is the ith process

variable, whilst pi ∈ R
r is the ith row vector of P .

Therefore, for each variable xi, its contribution to the

entire principal components y is calculated by Eqn 15:

contxi,y = xipi (15)

2) Contribution of principal components y to testing statis-

tics: the contribution of jth principal component yj to

the T 2 and Q statistics at time t defined by Eqn 16

resembles the CVA-based contribution plots in [3].

contyj ,T 2(t) =

p∑

l=1

∣∣zT (t)Jjlyj(t− l)
∣∣ (16)

contyj ,Q(t) =

p∑

l=1

∣∣eT (t)Ljlyj(t− l)
∣∣ (17)

where z(t) and e(t) are canonical variates and residuals

obtained by CVA at time t.
3) Contribution of original variables to testing statistics:

noticing that based on Eqn 15, the contribution of xi to

yj at time t − l is contxi,yj
(t − l) = xi(t − l)pi,j , the



contribution of variable xi to T 2 statistics at time t can

be obtained by Eqn 18:

contxi,T 2(t) =
r∑

j=1

p∑

l=1

∣∣zT (t)Jjlcontxi,yj (t− l)
∣∣

(18)

=
∣∣zT (t)

∣∣ |J | |Ci,p(t)|

contxi,Q(t) =
r∑

j=1

p∑

l=1

∣∣eT (t)Ljlcontxi,yj (t− l)
∣∣

(19)

=
∣∣eT (t)

∣∣ |L| |Ci,p(t)|
where the Ci,p(t) ∈ R

pf is the tth column vector of past

Hankel matrix Ci,p of xipi constructed the same way

as Yp.

Similarly to other data-driven fault detection and diagnosis

techniques, the online monitoring procedure of PCA-enhanced

CVA is follows:

1) Retrieve the new sample vector x∗ and calculate its

principal vector y∗;

2) construct a past data vector y∗
p with length p for y∗;

3) calculate the canonical variate vector z∗ and e∗;

4) calculate the testing statistics T 2∗ and Q∗ and compare

with upper control limits;

5) if T 2∗ and/or Q exceed the limits, construct a past vector

x∗
p and obtain the contribution plots of all x∗

i so as to

identify the influential variables.

IV. CASE STUDY

In this section, the benchmark data set collected by exper-

iments on a multiphase flow facility with two types of faults

is used to validate the proposed fault detection and diagnosis

algorithm.

A. Process Description

The multiphase flow facility in the Process System En-

gineering lab of Cranfield University is a unique industrial

scale rig for researches and experiments on measuring, mon-

itoring and control of multiphase flows. Water, oil and air

are supplied from individual pipelines; by converging and

intersection of pipelines, 3-phase flows are mixed, making

a multiphase flow with liquid and gas. The multiphase flow

is transported, measured, separated and recycled successively

afterwards. Being fully automated, this facility can operate

in multiple normal operating conditions as well as simulate

various faulty scenarios with manually seeded faults. It is

also well equipped with measurement instrumentations which

contain both regular process variables such as pressure and

temperature, and mechanical condition variable such as pump

current. All measurement data are collected in real-time and

recorded by DeltaV system for further analysis. A more

detailed description of this benchmark case study and previous

work on statistical monitoring of it can be found in [8] and

[9].

The schematic with the layout of measurement instrumenta-

tions of this facility is shown in Figure 2. A total of 23 process

variables are measured and recorded in the benchmark data set

and variable descriptions are provided by Table IV-A.

To validate its capability in for fault detection and identifi-

cation of influenced variables, aforementioned PCA-enhanced

CVA monitoring algorithm is applied to the data sets collected

in presence of two types of faults in this facility and com-

pared with CVA, Dynamic PCA (DPCA) and Dynamic PLS

(DPLSs). All the contribution plots presented here are accumu-

lated results during the faulty period detected. The monitoring

performance metrics are the detection rate
N(detected sample)
N(faulty sample) and

false alarm rate
N(false alarm)

N(normal sample) .

B. Fault Detection and Diagnosis Results

1) Fault 1: top separator input blockage: In practice,

pipeline blockage is commonly an incipient fault and accu-

mulates over time. To mimic it, the control valve on the input

pipeline to top riser (VC404) is turned off gradually and the

measurements recorded in this procedure constitute the faulty

data set. The fault detection results presented in Table IV-B1

indicate that this fault can be easily detected by different

dynamic monitoring methods.

Figure 3 and 4 compare the contribution plots of all vari-

ables obtained by PCA-enhanced CVA and ordinary CVA.

Noticing that the valve opening of VC404 is not involved

as process variable, the pressure drop over this valve will be

the proper indicator of pipeline blockage. PCA-enhanced CVA

successfully identifies the differential pressure over VC404

(variable 7) as the most influential variable while ordinary

CVA is distracted by the riser top pressure (variable 3) and

claims that it is also relevant. Therefore, one can conclude that

for Fault 1, the PCA-enhanced CVA based contribution plots

will provide a more confined location of fault and improve the

insight produced for diagnosis and maintenance comparing to

the ordinary CVA even without any prior process knowledge.

It is also promising for locating other single variable fault such

as sensor failure.
2) Fault 2: slugging condition: Slugging is an undesirable

phenomenon existing in multiphase flow transportation which

is commonly a result of insufficient supply of water and air

flows, which will reduce production efficiency and impair the

equipment if severe [10]. From process data perspective, the

slugging fault will cause large fluctuations in process variables,

such as pressure, flow rate and density, at the riser top. Such

complexity aggravates the difficulty of detection and identifi-

cation of slugging fault. In this study, the slugging condition is

simulated by reducing input water and air flow rates to obtain

the faulty data set. As shown in Table IV-B2, PCA-enhanced

CVA algorithm improves the detection of slugging situation

with a reasonable level of false alarm rate, which is mainly

due to the transient periods before and after slugging happens.

The fault diagnosis results of regular and PCA-enhanced

CVA under slugging condition are shown in Figure 5 and

6. Referring to Table IV-A, both the T 2 and Q contribution

plots obtained by PCA-enhanced CVA algorithm suggest that



Fig. 2. Schematic of the multiphase flow facility

TABLE I. MEASURED VARIABLES IN MULTIPHASE FLOW FACILITY

No. Description Location No. Description Location
1 Air delivery pressure PT312 13 Top riser density FT407
2 Riser bottom pressure PT401 14 Top separator output density FT406
3 Riser top pressure PT408 15 Input water density FT104
4 Top separator pressure PT403 16 Top riser temperature FT407
5 3 phase separator pressure PT501 17 Top separator output temperature FT406
6 Differential pressure (PT401-PT408) PT408 18 Input water temperature FT104
7 Differential pressure over VC404 PT403 19 3 phase separator gas-liquid level LI504
8 Input air flow rate FT305 20 Valve position of VC501 VC501
9 Input water flow rate FT104 21 Valve position of VC302 VC302
10 Top riser flow rate PT403 22 Valve position of VC101 VC101
11 Top separator level LI405 23 Water pump current PO1
12 Top separator output flow rate FT406

TABLE II. FAULT DETECTION PERFORMANCES OF FAULT 2

PCA-CVA CVA DPCA DPLS
Detection rate 98.86 98.69 97.81 96.72

False alarm rate 6.99 2.13 10.83 1.81
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Fig. 3. Contribution plots obtained by PCA-enhanced CVA for Fault 1

TABLE III. FAULT DETECTION PERFORMANCES OF FAULT 2

PCA-CVA CVA DPCA DPLS
Detection rate 85.93 43.17 66.49 52.77

False alarm rate 19.39 0.48 2.68 3.10
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(b) Contributions in Q

Fig. 4. Contribution plots obtained by ordinary CVA for Fault 1
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Fig. 5. Contribution plots obtained by PCA-enhanced CVA for Fault 2
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Fig. 6. Contribution plots obtained by ordinary CVA for Fault 2

the most influential variables are flow rate (variable 10) and

density (variable 13) measured at the riser top by FT407; while

CVA determines the air delivery pressure (variable 1) and

bottom riser pressure (variable 2) also have contributed to the

T 2 statistics. Since the major influence of slugging is on the

riser top flow, it should be located at the riser top and variables

in the vicinity are anticipated as influential variables; hence

the PCA-enhanced CVA locates the fault more accurately.

Furthermore, riser top flow rate and density display a similar

trend with respect to the monitoring statistics according to

Figure 7.
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Fig. 7. Trend comparison of testing statistics and influential variables

C. Discussions

The case study of two faults demonstrates that PCA-

enhanced CVA algorithm maintains a satisfactory detection

performance of simple incipient fault and improves the per-

formance of the complex one. As for fault identification,

the contribution plots based on this method also can refine

the contributions of different variables, restrict the scope of

influential variables, and facilitate the successive maintenance

operations accordingly. On the other hand, there still exists

potential of improvement for detection and diagnosis of the

slugging fault.

V. CONCLUSION AND FUTURE WORK

The findings in this work are concluded as follows: 1)

extended the contribution plots for fault diagnosis to 2-stage

feature extraction based monitoring techniques and derived the

corresponding solution for the PCA-enhanced CVA method;

2) validated this monitoring method using a benchmark data

set obtained from an industrial scale multiphase flow facility

in presence of different types of faults and the superiority of

proposed algorithm over other methods in both fault detection

and diagnosis has been testified.

For monitoring of processes and faults with extra complex-

ity, advanced fault detection methods are emerging while the

gap of contribution plots based fault diagnosis still exists in

this 2-stage contribution propagation framework due to the

mathematical complexity of kernel transformation. Therefore,

it is worthwhile considering the propagation of contribution

plots in “kernelized” and other advanced feature extraction

methods so as to provide a general solution to the contribution

plots of variables for different monitoring techniques in the

future.
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