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Abstract

The traction exerted by a cell on the extra-cellular matrix (ECM) is critical to understanding
and manipulating important biological processes such as stem cell differentiation, cancer
cell metastasis, and embryonic morphogenesis. This traction is typically quantified through
traction force microscopy (TFM). In TFM, the displacement of select markers inside the
ECM is tracked, and is used in conjunction with an elasticity problem to reconstruct the
traction field. Most applications of this technique thus far have assumed that the matrix
behaves as a linear elastic solid that undergoes small deformation and infinitesimal strains.
In this manuscript, we develop and implement a robust and efficient TFM methodology
that overcomes these limitations by accounting for geometric and material nonlinearities in
the ECM. We pose the TFM problem as an inverse problem and develop efficient adjoint-
based minimization techniques to solve it. We test the effect of measurement noise on the
proposed method, and examine the error incurred by not including nonlinear effects when
solving the TFM problem. We present these results for in-silico traction fields that are
applied to realistic geometric models of microglial and neuronal cells.

Keywords: Cell traction force microscopy, Material nonlinearity, Geometric nonlinearity,
Stabilized finite element formulation, Inverse problem, Adjoint equations

1. Introduction

The traction exerted by a cell on its surroundings (and by the surroundings on a cell)
plays a critical role in cell development and migration, and is therefore important in un-
derstanding and manipulating important biological processes such as stem cell differentia-
tion, cancer cell metastasis, and embryonic morphogenesis [1–3]. In order to quantitatively
measure the traction field, several techniques have been developed. These include the use
of wrinkling membranes [4], cantilever-based sensing devices [5, 6] and traction force mi-
croscopy (TFM)[7–9].
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In TFM, the extracellular matrix (ECM) surrounding the cell is embedded with beads,
and the motion of these beads in response to cellular tractions is tracked. Given this motion,
and the mechanical behavior of the extracellular matrix, the traction at the cell-matrix
interface is recovered [10]. When TFM is applied to a thick, two-dimensional, linear-elastic
substrate, the problem of determining the tractions is further simplified by utilizing the
Boussinesq solution [11] in the Fourier space. This technique is often referred to as Fourier
Transform Traction Cytometry (FTTC)[8], and yields a rapid solution for the traction field.
However, its application is limited to thick two-dimensional substrates undergoing small
strains.

The extension of TFM to three dimensions is considered in [10]. This reference describes
an approach to TFM for cells that are geometrically complex and are embedded in a three-
dimensional matrix. This problem is solved by constructing a numerical Green’s function
using the finite element method that connects the traction applied at a point on the cell-
matrix interface to the displacement at a given bead location. Once this map is determined,
a minimization problem is solved in order to determine the traction field that produces
a bead displacement field that best matches the measured displacement field. A similar
approach can also be found in [12].

A natural extension to the ideas described above would involve accounting for the non-
linear effects during the elastic deformation of the ECM. There are several sources of this
nonlinear behavior:

1. When the strain in a solid exceeds a certain threshold (usually around 10%), the linear
measure of strain (the infinitesimal strain tensor) is no longer appropriate, and other
nonlinear measures that accurately measure the deformation of the material must
be adopted [13–15]. We note that in TFM studies, where 30-70% strains are quite
common [10, 16, 17], this level of strain is routinely exceeded.

2. When the displacement incurred by the solid is large, the change in the current con-
figuration due to this displacement must be accounted for, and this introduces the
so-called geometric nonlinearity to the problem.

3. Some materials display a nonlinear stress-strain response, and this leads to a nonlinear
constitutive model. This is especially true for materials such as gelatin-agar co-gels
[18], that are commonly used as tissue-mimicking phantom, or real biological gels [19].

For all these reasons, it is important to consider the nonlinear behavior of the ECM while
computing the traction field exerted by the cell on the matrix.

We note that there have been some attempts at solving the 3D nonlinear TFM prob-
lem. In [20], the authors consider a nonlinear constitutive model, but do not account for
nonlinearities in strain and in the geometrical description of the problem. Moreover, the ap-
plicability of their technique appears to be limited to a small range of traction magnitudes,
and to a relatively small number of traction beads.

We also note that there are instances adopting a “forward computation method” (de-
scribed as such by [21]) for determining the cell traction, in contrast to the inverse problem
approach described above [9, 22–25]. In the forward method, the strain is obtained by dif-
ferentiating the experimentally measured displacement field and the stress/traction fields
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are then determined by applying the constitutive equation. Clearly, the quality of the cel-
lular tractions recovered using this approach depends heavily on the ability to measure the
displacement field close to the cell-matrix interface [21]. This places a significant burden on
the experimental set up. The inverse problem approach, on the other hand, can make use
of all available bead displacement data, including those that are at some distance from the
interface.

In this manuscript we present a new approach to solving the nonlinear TFM problem.
We pose the problem as an inverse problem, where we are given the displacement of a finite
number of beads, and a model for the the mechanical response of the matrix, and we wish to
determine the traction field that is consistent with these observations. We solve the inverse
problem as a constrained minimization problem, where we seek to find the traction field
that yields a displacement field that best matches measured bead displacements. This is
done under the constraint that the predicted displacement field satisfies the equations of
equilibrium for a nonlinear hyperelastic material. We solve this problem using gradient-
based algorithms, and efficiently compute the gradient using an linearized adjoint equation.
We account for noise by regularizing the recovered traction field through a Tikhonov term.
Similar methods for solving inverse problems have been used to determine the spatial dis-
tribution of material properties in different fields of mechanics and physics [26–44]. We test
the performance of the proposed approach on synthetic data. We create geometric models
of cells embedded in a matrix with known material behavior. Thereafter, we apply tractions
at the cell-matrix interface and compute the displacement field in the matrix by solving a
forward problem. We utilize a portion of the displacement field as the “measured” displace-
ment field, and in some instances, add noise to it. Using this measured displacement in our
algorithm, we determine the traction field at the interface. We also utilize this set-up to de-
termine the effect of making the linear elastic assumption while solving the inverse problem,
when the actual response of the material is nonlinear. In the inverse problems literature,
this error is referred to as model error. We conclude that for some problems the model error
can be significant. Moreover, we note that the problem of recovering tractions is not limited
to applications in biomechanics, and has also been studied in strucutural dynamics [45–47].
In these studies also, the assumption of linear elasticity is invoked.

The organization of the remainder of this manuscript is as follows: In Section 2, we
present the nonlinear forward elasticity problem that describes the response of a three-
dimensional hydrogel to cellular traction. In Section 3, we formulate the nonlinear inverse
problem to determine the traction field at the cell-matrix interface, given the “experimentally
measured” displacements. We also present the essential ingredients of our solution strategy
which include a gradient-based minimization algorithm, an adjoint equation, and a special
regularization approach. In Section 4, we describe three numerical examples that include
tractions exerted on a hydrogel by a microglial cell and a neuronal cell. We use these
examples to quantify and understand errors in the reconstructed traction field due to noise
as well as incorrect model selection. We conclude with a summary in Section 5.
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2. The forward elasticity problem

A typical problem of interest consists of a cell embedded within a three-dimensional
scaffold made from a hydrogel. It is assumed that the mechanical properties of the cell are
not known, while that of the gel are known [7, 8, 10, 23]. In this study, the hydrogel around
the cell is modeled as an incompressible hyperelastic solid using a modified version of the
Blatz (or the Veronda-Westmann) model. Treating hydrogel as incompressible is common
[7, 8, 10, 23]. In addition, several commonly used hydrogels, such as agar-gelatin co-gels,
display significant nonlinear elastic behavior in range of strains encountered in cell-traction
studies. For these types of gels the modified Blatz model is a simple constitutive model
(with just 2 parameters) that captures the nonlinear stress-strain response.

2.1. Strong form

The problem is posed on the domain obtained by subtracting the cell from the hydrogel.
Typically, the extent of the hydrogel is too large to fully model in this problem, so the
domain is truncated at a certain distance away from the cell where the displacements (due
to cellular tractions) have decayed significantly. This truncation is common [10, 20, 48],
and the truncation distance usually depends on how fast the traction decays. Authors in
[9, 10, 48] have presented some nice illustrations of the decay of tractions.

The displacement field, u, and the pressure, p, within the hydrogel obey the equations
of equilibrium given by:

∇ · P = 0 in Ω0, (1)

u = g on Γg, (2)

P ·N = h on Γh, (3)

along with the incompressibility constraint:

J − 1 = 0, in Ω0. (4)

Here Eq.(1) is a statement of equilibrium in the reference configuration Ω0, where P is the
first Piola-Kirchhoff stress tensor, and Eqs.(2) and (3) define the Dirichlet (displacement)
and Neumann (traction) boundary conditions, respectively, where the displacement data, g,
is prescribed on Γg, and the traction data, h, is prescribed on Γh. Further, ∂Ω0 = Γg

⋃
Γh

defines the closed boundary of Ω0, Γg

⋂
Γh = ∅, and N is the outward normal vector on the

surface, Γg, in the reference configuration. Eq.(4) enforces the incompressibility constraint,
and J = det(F ) is the jacobian of the deformation gradient, which is defined as F = ∇u+1.

These equations are appended with a constitutive equation for the stress. In particular,
first Piola-Kirchhoff stress tensor is given by P = FS, where S, the second Piola-Kirchhoff
stress tensor, is defined as, S = −J × pF−1F−T + 2∂W

∂C
. In the expression above, W is

the strain energy density function that depends on the invariants of the right Cauchy-Green
strain tensor, C = F TF . For the constitutive model used in this paper, W is given by

W =
µ

2γ
(eγ(J− 2

3 I1−3) − 1), (5)
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where µ is the shear modulus at zero strain, and γ is the nonlinear parameter that determines
the nonlinear change of stress with strain. Further, I1 = trace(C), is the first principal
invariant of the Cauchy-Green strain tensor. More details about this material model can be
found in [34, 49–51].

2.2. Weak form

We solve the forward problem using the finite element method, which is based on the
weak, or the variational form, of the forward problem. The variational form may be derived
by either minimizing the total potential energy of the system under the constraint of incom-
pressibility, or it may be derived by multiplying the equilibrium equation and the incom-
pressibility equations with weighting functions, integrating over Ω0, performing integration-
by-parts on the former, and then imposing the traction boundary condition Eq.(3). In either
case, we arrive at the following statement: Find U ≡ [u, p] ∈ S × P such that

A(W ,U ) = (w,h)Γh
, ∀W ≡ [w, q] ∈ V × P , (6)

where

A(W ,U ) ≡
∫

Ω0

∇w : P dΩ +

∫
Ω0

q(J − 1) dΩ, (7)

(w,h)Γh
≡
∫

Γh

w · h dΓ. (8)

The function spaces V , S, and P that appear in the equations above are defined as,

V = {w|wi ∈ H1(Ω0); wi = 0 on Γg}, (9)

S = {u|ui ∈ H1(Ω0); ui = gi on Γg}, (10)

P ⊆ L2(Ω0), (11)

where L2 is the space of square-integrable functions, and H1 is the Sobolev space of square-
integrable functions with square-integrable derivatives.

The standard Galerkin finite element method is obtained by restricting the weak form
(Eq.6) to finite-dimensional function spaces. However, for incompressible materials, it is
well known that the Galerkin finite element method leads to unstable solutions unless very
specific choices are used for the displacement and pressure function spaces. This restriction
can be overcome by stabilizing this formulation with residual-based terms [52, 53]. With
that addition, the discrete stabilized formulation is given by: Find Uh ≡ [uh, ph] ∈ Sh×Ph
such that

As(W h,Uh) = (wh,h)Γh
, ∀W h ≡ [wh, qh] ∈ Vh × Ph, (12)

where

As(W h,Uh) ≡ A(W h,Uh)−
nel∑
e=1

(τ∇ · (F hSh),F h −T∇qh)Ωe
0
. (13)
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The second term in Eq.13 represents the stabilization term. The subscript Ωe
0 indicates

that the L2 inner product is evaluated in the interior of the e-th element, and the stabilization
factor, τ = αh2

2µ
, where α ≈ 0.5, and h is the characteristic element length. A detailed

discussion of this stabilization method can be found in [34]. In our implementation, all
variables, including displacement, pressure and traction, are represented by bilinear finite
element basis functions.

3. Inverse problem for the traction vector field

In this section, we consider the inverse problem of determining the traction field, h,
on the boundary, Γh, given measured displacements at discrete locations in the hydrogel.
The overall scheme to obtain the solution of this inverse problem is similar to that of the
material property identification inverse problem described in [34] and [29]. The key difference
is that we wish to recover the traction, h, and not the material properties. The inverse
problem is formulated as a minimization problem subject to the constraint of satisfying the
forward problem. A gradient-based optimization approach, L-BFGS [54], is used to solve the
minimization problem iteratively and the gradients are efficiently evaluated by solving the
appropriate adjoint equation [26]. Similar use of the adjoint method to efficiently compute
gradients can also be found in other applications [55–58].

3.1. Inverse problem statement
The inverse problem is stated as follows: Given the measured displacement field, ũ, find

the traction field, h, such that the objective function

π(u, h) =
1

2
‖Tu− T ũ‖2

0
+ αR(h) (14)

is minimized subject to the constraint that the predicted displacement field, u, satisfies
Eqs.(1)-(4).

In Eq.(14), the first term is the displacement matching term. The mismatch between
the predicted and measured displacement field is measured in the L2 norm denoted by
‖·‖0. It is weighted by the tensor T , which can be used to augment the contributions from
the more accurate components of measured displacements. The second term of Eq.(14) is
the regularization term, where α is the regularization parameter. The regularization term
embeds prior information about the unknown field, in our case the traction field, h, into the
inverse problem. In most cases, it is assumed that the recovered field is smooth in a sense
defined by the choice of this term. This has the effect of regularizing the inverse problem,
which is typically ill-posed, as it lacks uniqueness or stability. In this manuscript, Tikhonov
(H1) regularization [59] is implemented:

R(h) =
1

2

∫
Γh

|∇Γh|2 dΓ. (15)

In the equations above, ∇Γ represents the gradient operator restricted to the surface Γh. At
any location x ∈ Γh, it is given by ∇Γ ≡ (1 −N ⊗ N )∇, where 1 is the identity tensor,
N is the outward normal to the surface and ∇ is the gradient operator. We note that ∇Γ

only retains the tangential components of ∇.
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3.2. Formulation of the gradient

In order to solve the inverse problem using a quasi-Newton method, we need to evaluate
the derivative of π with respect to h. This is relatively easily evaluated for the regular-
ization term. However, its evaluation for the displacement mismatch term is cumbersome.
This is because the predicted displacement field, u, depends upon h implicitly through the
constraint of Eq.(12). This difficulty is circumvented through the use of an appropriately
chosen adjoint field, which is derived by constructing the Lagrangian corresponding to π.
That is,

L(Uh,W h,h) = π(uh,h) +As(W h,Uh)− (wh,h)Γh
, (16)

where W h ∈ Vh ×Ph and Uh ∈ Sh ×Ph. Here W h plays the role of a Lagrange multiplier
field.

We denote the variation of a function f(x) in the direction δx by δf ,

δf = Dxf · δx =
d

dε
f(x+ εδx)

∣∣∣∣
ε→0

. (17)

The variation of L is given by

δL = DUhL · δUh +DW hL · δW h +DhL · δh. (18)

Setting DW hL · δW h = 0, ∀ δW h ∈ Vh × Ph in the above equation immediately yields an
equation for uh, that is

As(δW h,Uh) = (δwh,h)Γh
, ∀ δW h ∈ Vh × Ph. (19)

This implies that Uh satisfies the forward problem Eq.(12). Under this condition, from
Eq.(16), we conclude π = L, and hence δπ = δL.

We now examine the condition for which the expression for δL can be further simplified.
In particular, we set DUhL · δUh = 0, ∀ δUh ∈ Vh × Ph to arrive at

Bs(W h, δUh;Uh) = −(T δu,Tu− T ũ), ∀ δUh ∈ Vh × Ph. (20)

where Bs(W h, δUh;Uh) ≡ d
dε
As(W h,Uh + εδUh)

∣∣
ε→0

is the linearization of As(·, ·) about

Uh. Eq.(20) yields a well-posed linear problem for W h. The left hand side of this problem
is the adjoint of the linearized version of the original forward problem Eq.(12). For this
reason, this problem is referred to as the adjoint problem, and W h the adjoint field.

With Uh given by the primal problem Eq.(19) and W h given by the adjoint problem
Eq.(20), we have from Eq.(18)

δL = δπ = DhL · δh = αDhR · δh− (wh, δh)Γh
, (21)

whereR is the regularization term defined by Eq.(15). As a result, the algorithm to calculate
the change in the objective function corresponding to a change in the traction vector proceeds
as follows:
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1. Solve Eq.(19) to determine the primal field Uh = [uh, ph].

2. Solve Eq.(20) to determine the adjoint field W h = [wh, qh].

3. Use wh in Eq.(21) to determine the variation in the objective function.

In this study, the optimization variables are the traction components at each node on the
cell-matrix interface. The value of the objective function, Eq.(14), and its gradient, Eq.(21),
are the input for the L-BFGS optimization algorithm, which returns an updated estimate
of tractions for each node and the whole process is repeated until convergence or until the
maximum number of iterations is achieved.

Remark

We note that the primal problem, Eq.(19), is a system of nonlinear equations which
is solved using the Newton method. This represents the major computational cost of our
algorithm. This cost is kept in check by utilizing a continuation scheme described in [34] and
[29]. Within this approach, when solving the forward traction problem for a new guess of the
traction field, the solution from the previous step is used as an initial state. Consequently,
the forward problem is solved within 10 Newton iterations, as opposed to on the order of
100 iterations otherwise.

4. Numerical examples

In this section, two geometrically accurate cell models are used to demonstrate the ap-
plicability of our nonlinear algorithm in recovering cell traction. In each case, a known
traction field, ĥ, is applied at the cell-matrix interface and the forward problem is solved.
This results in the displacement of the matrix which is sampled at some select nodes. We
denote this displacement vector by û(j), j = 1, · · · , nnode. In some cases, in order to simulate
the effect of instrument noise and errors in the displacement estimation algorithm in actual
experiments, noise is added to this displacement. The noisy “measured” displacement field
is given by

ũ(i) = û(i) + η ×
∑nnode

j=1 |û
(j)|∑nnode

j=1 |n(j)|
× n(i), i = 1, · · · , nnode (22)

where |·| denotes the magnitude of a vector, n
(j)
k ∈ N(0, 1), k = 1, 2, 3 andN(0, 1) is standard

normal distribution. In this case, η, represents the fraction of noise in the “measured”
displacement field. The effect of this parameter on the quality of the reconstruction is
examined.

In order to quantify the performance of our algorithm, the difference between the recov-
ered traction field, h, and the applied traction field, ĥ, is measured,

e(h) =
‖h− ĥ‖0

‖ĥ‖0

. (23)

For simplicity, a weight of unity is selected for the entire displacement vector, which
means that the tensor, T , in Eq.(14) is set to the identity tensor. In order to be unbiased,
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the initial guess for the traction field is set to 0. Also, the regularization parameter for the
following results in this paper was obtained by solving the inverse problem with different
values of the regularization parameter, and plotting the variation of displacement mismatch
term as a function of the regularization parameter (the so-called L-curve [60]). See Figure
4, for the L-curve for a typical case considered in this study. The quasi-Newton iterations
were considered “converged” when the relative change in the displacement matching term
over the last five iterations was smaller than 1× 10−8.

4.1. Microglial cell model

The 3D model of the microglial cell (see Figure 1a) is reconstructed through a set of
pictures of z-stack microscopy (image courtesy of Sebastian Rhode at Carl Zeiss Microscopy
and Sabine Scheibe) with ImageJ [61] and meshed with Simmodeler (Simmertrix.Inc, New
York, US). The cell is about 20 µm × 20 µm × 15 µm and is contained within a cubical
matrix with an edge length of 100µm. The finite element mesh is comprised of 9,641 vertices
and 51,544 tetrahedal elements. Out of these, the vertices that are on the surface of the cell,
and beyond a sphere of 50 µm diameter, are treated as location without beads. That is the
displacement field from these locations is not used in solving the inverse problem. This gives
us a total of 7,023 bead locations to work with. The exclusion of other locations helps us in
avoiding the “inverse crime” of using all the forward data in the inverse problem. It is also
consistent with the experimental protocol where most of the beads that are close to the cell
are tracked [62]. We note that the number of beads considered in this study is comparable
to experiments [10] and is much more than some of the state-of-the-art cell traction recovery
algorithms can handle [12, 20].

In the numerical experiments reported here, the shear modulus, µ, of the matrix is set
to either 400 Pa or 600 Pa. The values lie within the range of commonly used experimental
hydrogels, extracellular matrices and real tissues [10, 63, 64]. The dimensionless nonlinear
parameter, γ, in the modified blatz model is set to either 1 or 5. With γ = 1 the material
behaves linearly up to about 100% strain, and with γ = 5 it starts to deviate from linear
behavior at about 15% strain [34]. All six surfaces of the box are assumed fixed in the x, y
and z directions (ux = uy = uz = 0).

As shown in Figure 1b, the traction field is applied such that it is maximum along the two
protrusions of the cell, and is smoothly interpolated between these regions. The direction
of the traction field is roughly pointed to the center of the cell. This loading condition
simulates the contraction of the matrix close to the cell after the cell is lysed with detergent
[10].

In the following sections, we consider the effect of material and geometric nonlinearity
in recovering the traction vector field. In the first section, we set γ = 1 so that within the
range of strains considered, the matrix behaves like a linear elastic solid. Thereafter, we
consider γ = 5, where the material displays a nonlinear elastic response. We note that while
gelatin substrates tend to be linear elastic for large values of strain, gelatin-agar substrates
display nonlinear elastic behavior at relatively small (≈ 15%) strains [18].
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Linear material (γ = 1)

The shear modulus for the matrix is set to 400 Pa. In Figure 1b, we observe that the
largest tractions are applied at the tips of the cell, and the magnitude drops as we approach
the center of the cell. The traction pulls each arm of the cell toward the center of the
cell. The resulting displacement fields are maximum at the tip of the arms, and at the
connections between arms and the rest of the cell. Significant strains are generated on
the cell-matrix interface, and are illustrated in Figures 1c, where we have plotted the first
principal component of the Green-Lagrange strain tensor. We note that this strain ranges
from about 50% to 90% on the arms - Figure 1d. The large strain indicates that the use of
a linear measure of strain is inappropriate for this problem.

For each set of “measured” displacements (with 1% and without noise), the traction field
was reconstructed using either a finite strain or an infinitesimal strain model. The resulting
traction vector fields are shown in Figure 2. We observe that while the spatial variation of
these fields is very similar, their magnitudes are significantly different. This is made clear
by computing the error, e(h), in the reconstructed traction field (see Figure 3). For the no-
noise case with the finite strain model, this error is 4.23%, and with the infinitesimal strain
model it is 12.7% (regularization parameters = 0.0001 and 1, respectively). When 1% noise
is added to the displacements, the error is 12.75% for the finite strain model, and 20.7%
for the infinitesimal strain model (regularization parameters = 5 and 10, respectively). The
difference between these two errors, which is around 8%, is therefore the error incurred in
incorrectly making the infinitesimal strain assumption. Here we note that the infinitesimal
strain assumption is often made [7–10, 12, 20]. Figure 4 displays the L-curve for the case
with finite deformation and 1% noise as a typical curve for the cases considered in this
paper. According to [60], the value of the regularization parameters at the point of largest
curvature is the “optimal” regularization parameter. For the example considered in this
curve, this corresponds to α = 5 (circled in blue in Figure 4). We use this approach to find
the regularization parameters for all cases in this paper. For the sake of brevity, we do not
show all the L-curve plots.

Nonlinear material (γ = 5)

In this case when solving the forward problem, in order to generate the “measured” data,
the shear modulus for the matrix is set to 600 Pa, and the nonlinear parameter is set to
γ = 5. The traction field is identical to the γ = 1 case described above. The traction field
and the displacement magnitude are shown in Figure 5a. We observe that when compared
with the linear elastic case, the displacement for this case is smaller. In examining the image
for the principal component of the Green-Lagrange strain, we observe that the maximum
strain is also much smaller (approximately 40% as opposed to 90%). This is attributed to
the higher shear modulus and the larger values of the nonlinear parameter in this case. This
leads to a large value of the tangent modulus for the matrix, particularly at large values of
strain. Given that the traction vector field for the two cases is the same, a larger elastic
tangent modulus implies a small overall strain.

Once again two cases were considered: one with no noise and one with 1% noise. For
each case, two inverse problems were solved. In one problem, the matrix deformation was
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treated with a finite strain theory and the appropriate nonlinear elastic model was utilized.
In the second problem, the deformation was incorrectly treated as linear elastic, and an
infinitesimal strain model was used. The resulting traction vectors are shown in Figure 6.
The spatial distribution of these fields is very close to the “exact” traction field, however
their magnitudes are different. Their departures from the applied traction field are quantified
in Figure 3. In the no-noise case, the errors, when using the finite strain and infinitesimal
strain models, are 4.5% and 14.76%, respectively (regularization parameter = 0.0001 and
1, respectively). The difference between the two is significant. For the 1% noise case,
the corresponding errors are 18.66% and 27.23% (regularization parameter = 5 and 10,
respectively), and the difference is around 9%. Once again we observe that the model error,
that is the error associated with assuming an incorrect model in the inverse problem, is
significant.

4.2. Neuronal cell model

As the second example, the geometry of a multi-polar neuronal cell is considered (see
Figure 7a). Recently, there has been significant interest in understanding the traction exerted
by these cells [65, 66]. The size of the neuronal cell is about 10 µm × 10 µm × 10 µm, and
it is contained within a cube of length 80 µm. The unstructured mesh for this configuration
consists of 54,587 elements with 10,673 vertices. Out of these, 6,971 are treated as tracked
beads (that is the displacement at these locations are “measured”). These locations are
selected so that they are close to the cell-matrix interface (but not on it). The shear modulus
of the surrounding matrix is 400 Pa, and the nonlinear parameter is set to either 1 or 5. Five
of the outer surfaces of the box are fixed in the x, y and z directions (ux = uy = uz = 0),
and the sixth surface is traction free, which is to mimic the free top surface of the matrix in
experiments.

As shown in Figure 7b, the traction field is selected such that its magnitude is largest
along the arms of the cell and smoothly reduces towards the center. In addition, the traction
vector is pointed inward toward the center of the cell. Similar to the first example, this
loading condition also simulates the contraction of the matrix close to the cell after the cell
is lysed with detergent [10].

Linear material (γ = 1)

In Figure 7c, we observe that the largest strain occurs at the dendritic ends of the cell,
and pulls the dendrites toward the center of the cell body. Significant strains (50% to 90%
along the dendrites) are generated at the cell-matrix surface, and are illustrated in Figure
7d, where we have plotted the first principal component of the Green-Lagrange strain tensor.

When solving the inverse problem, we use displacements with no noise and 1% noise, and
then either use a finite strain or an infinitesimal strain model. The recovered traction vector
fields appear similar, and are shown in Figure 8. However, their magnitudes are different. In
Figure 9, we quantify this by evaluating the error (e(h)) in the traction field for each case.
For “measured” displacement with no noise, this error is 0.5% for the finite strain model,
and 16.93% for the infinitesimal strain model (regularization parameters = 1×10−7 and 0.1,
respectively). For “measured” displacement with 1% noise, the error for the finite strain
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model grows to 26.41%, and that for the infinitesimal strain model is 34.78% (regularization
parameters = 0.5 and 1, respectively). The difference between these errors is the penalty
associated with invoking the infinitesimal strain assumption.

Nonlinear material (γ = 5)

The problem described above is repeated with the nonlinear parameter now set to 5. This
means that the matrix now stiffens with increasing strain, and given that the traction field
is unchanged, it strains less in response to the traction exerted by the cell. This can be seen
by examining Figures 10a and 10b where we have plotted the displacement magnitude and
the principal component of the Green-Lagrange strain tensor on the cell-matrix interface.

Once again displacement fields with no noise and with 1% noise are considered, and
when solving the inverse problem, a finite strain model (with the appropriate nonlinear
elastic response) and an infinitesimal strain model (with a linear elastic response) is used.
This is done to quantify the effect of noise and modeling assumptions in solving the inverse
problem. In all cases, we observe that the spatial distributions of the traction vector is
recovered with remarkable accuracy (see Figure 11, regularization parameter = 1 × 10−7,
0.5, 0.1 and 1, respectively). However, the magnitude of the traction, and consequently the
error in the reconstruction (see Figure 9), is sensitive to both displacement noise, and model
selection. When there is no noise, the contribution of the model error is greater than 20%,
and with 1% noise it drops to around 8%.

4.3. Discussion

We have selected the microglial and neuorn cells as examples because of their biomedical
relevance, and also because of their distinct shapes. While the microglial cell has a relatively
smooth shape with very few protrusions, the shape of the neuron is much more complicated
with several dendritic structures. We note that in both cases our algorithm could be applied
successfully. However, for the no-noise cases the tractions for the neuron cell were recovered
with almost no error, whereas for the microglial cell they were recovered to around 4% error.
There are several possible explanations for this difference. First, the magnitude of tractions
applied to the microglial cell is about two times that of the tractions applied to the neuron,
and in both cases the inverse problem begins with a zero initial guess. Consequently, for the
microglial cell quasi-Newton algorithm has to cover a larger range in order to achieve the
exact value. Also the dendritic shape of the neuron implies that there are many more local
regions where the strains are large and these regions are sampled by the tracking beads.
This could imply that the measured displacement field for the neuron carries a “stronger”
imprint of the traction field making the inverse problem better posed.

In biomechanics applications, often the tractions measured are used to determine average
quantities such as the contractile moment of the cell, or the net strain energy in the gel.
We may conjecture how the proposed method would perform in evaluating these quantities.
We note that the contractile moment is a linear functional of the traction field. Thus we
would expect that error observed in this quantity would be similar to the error observed
in the traction field. On the other hand, the strain energy in the gel may be evaluated by
computing the work done by the cell on the gel. That is the integral

∫
Γ
h · udΓ. In this
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integral, h is the reconstructed traction field, and u is the estimated displacement on the
interface. It is reasonable to expect that if the recovered traction is underestimated by a
certain fraction, then the recovered displacement will also be underestimated by the same
factor. Then roughly speaking, the integral, which involves the product of these quantities,
will be underestimated by two times this factor. In this case the importance of including
nonlinear elastic effects will be even more significant.

5. Summary

Traction force microscopy is an important technique that is used to quantify tractions
at the cell-matrix interface. It works by measuring the motion of embedded micro-beads in
response to cellular tractions and using this information to infer the traction field. In this
manuscript we have posed TFM as an inverse problem, and solved it using a constrained
minimization algorithm. In doing so we have accounted for the three-dimensional nature of
the problem, the complex geometry of the cell, and the finite-strain and nonlinear elastic
behavior of the matrix. Through the use of a quasi-Newton algorithm, a carefully derived
adjoint problem, and a novel continuation strategy, we have developed and implemented
algorithms that efficiently utilize data from a large number of tracking beads (≈ 104) and
reconstruct traction vectors on a well-resolved surface mesh (≈ 103 − 104 grid points).

We have applied these algorithms to in-silico problems with realistic geometric models
of microglial and neuronal cells. We conclude that the proposed algorithms are able to
accurately recover the traction fields. We have also tested the effect of measurement noise
on the proposed methods, and examined the error incurred by not including nonlinear effects
when solving the TFM problem. We conclude that the error in the recovered traction field
is sensitive to noise in the measured displacements, and to neglecting nonlinear effects in
the TFM problem.
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(a) (b)

(c) (d)

Figure 1: Microgial cell: (a) Mesh on the exterior surface and the cell-matrix interface. Results of the
simulated forward problem on the deformed surface with γ = 1. (b) Arrows display the traction field (in
kPa), and the deformed surface is colored by the displacement magnitude in µm. (c) The first principal
component of the Green-Lagrange strain tensor. (d) Distribution of the strain at the bead locations as a
function of distance from the center.
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(a) (b)

(c) (d)

Figure 2: Results of the inverse analysis for the microglial cell on the deformed surface with γ = 1. Arrows
display the recovered traction field (in kPa), and the deformed surface is colored by the recovered displace-
ment magnitude in µm. (a) Solution with nonlinear effects and 0% noise. (b) Solution with nonlinear effects
and 1% noise. (c) Solution without nonlinear effects and 0% noise. (d) Solution without nonlinear effects
and 1% noise.
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Figure 3: Error summary for the microglial cell model.

Figure 4: L-curve for the microglial cell model with nonlinear effects and 1% noise.
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(a) (b)

(c)

Figure 5: Results of the simulated for-
ward problem for the microglial cell
model on the deformed surface with γ =
5. (a) Arrows display the traction field
(in kPa), and the deformed surface is col-
ored by the displacement magnitude in
µm. (b) The first principal component
of the Green-Lagrange strain tensor. (c)
Distribution of the strain at the bead lo-
cations as a function of distance from the
center.
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(a) (b)

(c) (d)

Figure 6: Results of the inverse analysis for the microglial cell on the deformed surface with γ = 5. Arrows
display the recovered traction field (in kPa), and the deformed surface is colored by the recovered displace-
ment magnitude in µm. (a) Solution with nonlinear effects and 0% noise. (b) Solution with nonlinear effects
and 1% noise. (c) Solution without nonlinear effects and 0% noise. (d) Solution without nonlinear effects
and 1% noise.
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(a) (b)

(c) (d)

Figure 7: Neuronal cell: (a) Mesh on the exterior surface and the cell-matrix interface. Results of the
simulated forward problem on the deformed surface with γ = 1. (b) Arrows display the traction field (in
kPa), and the deformed surface is colored by the displacement magnitude in µm. (c) The first principal
component of the Green-Lagrange strain tensor. (d) Distribution of the strain at the bead locations as a
function of distance from the center.
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(a) (b)

(c) (d)

Figure 8: Results of the inverse analysis for the neuronal cell on the deformed surface with γ = 1. Arrows
display the recovered traction field (in kPa), and the deformed surface is colored by the recovered displace-
ment magnitude in µm. (a) Solution with nonlinear effects and 0% noise. (b) Solution with nonlinear effects
and 1% noise. (c) Solution without nonlinear effects and 0% noise. (d) Solution without nonlinear effects
and 1% noise.
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Figure 9: Error summary for the neuron cell model.

(a) (b)

(c)

Figure 10: Results of the simulated for-
ward problem for the neuronal cell model
on the deformed surface with γ = 5.
(a) Arrows display the traction field (in
kPa), and the deformed surface is colored
by the displacement magnitude in µm.
(b) The first principal component of the
Green-Lagrange strain tensor. (c) Distri-
bution of the strain at the bead locations
as a function of distance from the center.
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(a) (b)

(c) (d)

Figure 11: Results of the inverse analysis for the neuronal cell on the deformed surface with γ = 5. Arrows
display the recovered traction field (in kPa), and the deformed surface is colored by the recovered displace-
ment magnitude in µm. (a) Solution with nonlinear effects and 0% noise. (b) Solution with nonlinear effects
and 1% noise. (c) Solution without nonlinear effects and 0% noise. (d) Solution without nonlinear effects
and 1% noise.

25


	Introduction
	The forward elasticity problem
	Strong form
	Weak form

	Inverse problem for the traction vector field
	Inverse problem statement
	Formulation of the gradient

	Numerical examples
	Microglial cell model
	Neuronal cell model
	Discussion

	Summary
	Acknowledgement
	References

