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Abstract—Physically unclonable functions are used for IP
protection, hardware authentication and supply chain security.
While many PUF constructions have been put forward in the past
decade, only few of them are applicable to FPGA platforms.
Strict constraints on the placement and routing are the main
disadvantages of the existing PUFs on FPGAs, because they
place a high effort on the designer. In this paper we propose
a new delay-based PUF construction called Monte Carlo PUF,
that does not require low-level placement and routing control.
This construction relies on the on-chip Monte Carlo method that
is applied for measuring the delays of logic elements in order to
extract a unique device fingerprint. The proposed construction
allows a trade-off between the evaluation time and the error rate.
The Monte Carlo PUF is implemented and evaluated on Xilinx
Spartan-6 FPGAs.

I. INTRODUCTION

Modern communication systems face numerous security

challenges related to entity and data authentication, as well as

data confidentiality and integrity. These challenges can only

be addressed using cryptography, which requires methods for

secure key generation and storage. In addition, supply-chain

security issues are gaining more importance due to an increas-

ing number of counterfeiting incidents and recycled integrated

circuits (ICs) [1]. For FPGA applications, IP licensing and

management is handled using bitstream encryption. In this

case, device-specific keys are necessary in order to prevent

cloning the IP cores. These problems can be mitigated using

physically unclonable functions (PUFs) [2].

PUFs are security primitives that rely on the manufactur-

ing variations of transistor and wire parameters, to produce

unique IC identifiers. The security of these primitives relies

on their uniqueness – the ability of the design to produce

different identifiers on different devices based on identical

circuits with identical layouts. In addition to uniqueness, a very

important property of PUFs is their reliability – the ability to

produce the same identifier on the same device after multiple

measurements across a range of operating conditions. PUF

constructs can be classified into two categories: strong PUFs

where the number of identifier bits scales exponentially with

circuit area, and weak PUFs where the number of PUF bits

scales subexponentially (usually linearly) with area.
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Many PUF constructions have been presented in literature

in recent years but not all of them are suitable for FPGA

implementations. The concept of a PUF was first introduced

in [2] while the first silicon PUF was presented in [3].

Memory-based PUFs extract identifier bits from the power-

up states of metastable elements. Examples are the SRAM-

based PUF [4], latch-based PUF [5], flip-flop based PUF [6],

buskeeper PUF [7] and butterfly PUF [8]. Some memory-based

PUFs are not suitable for FPGA implementations because they

rely on specialized ASIC cells – this is the case with the

buskeeper PUF. SRAM blocks and flip-flops are available on

all FPGAs but their states are usually reset after power-up

which makes them unsuitable for generating device identifiers.

The butterfly PUF [8] is suitable for any FPGA but it requires

dedicated routing to achieve the balanced structure.

Delay-based PUFs exploit the timing variations of logic

circuits. Some well known examples are the arbiter PUF [9],

[10], ring-oscillator (RO) PUF [11], [12] and glitch PUF [13].

The main disadvantage of delay-based PUFs on FPGA is the

increased design effort. The RO PUF requires identical layouts

of the used ring-oscillators, and the arbiter PUF relies on

balancing dual signal paths.

In this paper we present a novel PUF construction called the

Monte Carlo PUF. This structure is a delay-based PUF. Unlike

the existing delay-PUF constructions which rely on racing the

signals along the different paths, the proposed construction

relies on measuring the delays of the logic elements and then

comparing them to generate a PUF response. The Monte Carlo

PUF consists of an on-chip measurement setup that applies

the Monte Carlo methodology to determine and compare

delays of individual logic elements. This PUF falls into the

category of weak PUFs because the number of extracted bits

is proportional to the number of logic elements used for the

delay measurement. The Monte Carlo PUF is suitable for

both ASIC and FPGA implementations, but in this paper

we focus on a Xilinx FPGA implementation using CARRY4

primitives [14]. These primitives are typically used for the

synthesis of high-speed adders and multipliers. The advantage

of using CARRY4 primitives in the Monte Carlo PUF is

that these hardware modules can be cascaded using dedicated

routing paths, which doesn’t require additional effort of the

designer. Half of the slices available on the Xilinx Spartan-

6 FPGA contains CARRY4 primitives, and similar primitives

exist on FPGAs from other families and vendors [15]. Several

PUFs that utilize CARRY4 elements have been presented in

the previous years [16], [17].
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Fig. 1: Setup configuration for measuring buffer delays using the Monte Carlo methodology.

This paper is organized as follows: Section II provides a

brief overview of the PUF quality metrics. In Section III we

present the concept of the Monte Carlo PUF and discuss the

operating principle and the generic architecture. Section IV

explores the implementation of the Monte Carlo PUF on a

Xilinx Spartan-6 FPGA. In that section we present the results

of the initial experimental analysis of the CARRY4 elements.

In Section V we analyze the uniqueness and reliability of the

implemented PUF and explore the trade-off between the error

rate and evaluation time. We conclude the paper and discuss

future work in Section VI.

II. BACKGROUND

The quality of PUFs is usually measured using three main

quality metrics:

• Uniqueness

• Reliability

• Randomness

Uniqueness is usually evaluated in terms of between-class

Hamming distance. This distance is computed by collecting

responses of many PUF instances and computing their average

Hamming distance. Ideally, this distance should be approxi-

mately half of the width of the response.

Reliability is assessed in terms of the bit-error rate. The

bit-error rate is obtained by evaluating the same PUF instance

many times and computing the relative average Hamming

distance. An ideal PUF has an error rate of 0 %. In practice,

the error rates of up to 5 % are tolerable because they can be

corrected using the error-correcting codes.

Randomness of a PUF is evaluated in terms of entropy. Min-

entropy is the most conservative measure of unpredictability

and it is defined as the minimal amount of information that

is obtained from any observation of a random variable. It is

computed as:

H∞(X) = −log2(Pr(xmax)) , (1)

where xmax is the most likely outcome of variable X .

III. THE MONTE CARLO PUF

A. HW setup for Monte-Carlo measurements

The Monte Carlo method is an algorithm that can be used

for numerical integration, simulations of physical systems and

measurements of physical quantities. It uses samples from a

uniform distribution to obtain the numerical approximations

of the measured quantities.

An example of a Monte-Carlo-based experiment for mea-

suring delays of logic elements is illustrated in Figure 1. The

measurement setup consists of a free-running, possibly noisy,

ring oscillator, three cascaded delay buffers (denoted by A, B

and C), and a 4-bit register sampled by the system clock with

period Tclk. T0 is the period of the ring oscillator. For CMOS

circuits, a 0 → 1 delay is different from a 1 → 0 delay because

different transistors are used in the pull-up and the pull-down

networks. Therefore, for each buffer there are two delay values

denoted by dA,0→1,dA,1→0,dB,0→1,dB,1→0,dC,0→1,dC,1→0.

We assume that the sum of all six delays is lower than T0.

This condition is easy to achieve by using a sufficiently slow

ring oscillator. We further assume that the ring oscillator is not

interlocked with the system clock. This requires some care in

choice of the sampling frequency. We recommend to choose

the ratio Tclk/T0 that cannot be represented as a ratio of small

integers. The uniformity of RO phase at sampling moments is

ensured by this carefully chosen ratio and by the noise in the

circuit.

The goal of the experiment is to determine buffer delays

relative to the value T0. The hardware setup for the experiment

is shown in Figure 1a. The setup operates as follows: The ring



Fig. 2: The generic architecture of the Monte Carlo PUF.

oscillator is started and N consecutive samples of the 4-bit reg-

ister are taken at times Tclk, 2Tclk, ...NTclk. These values are

collected and counted. The right part of the Figure 1a shows

the 8 possible values of the signal x3x2x1x0 that could be

sampled. Signal x3x2x1x0 goes through these 8 values during

each period T0 as shown in Figure 1b. The measurement setup

operates by sampling this signal many times and counting

the appearances of each pattern. If the sampling moments are

uniformly distributed across the phase of the ring oscillator,

the counts of each pattern are proportional to delays of the

elements. The delay corresponding to each pattern is indicated

in Figure 1a.

Let N0011 denote the number of times the value 0011 is

sampled. For each sample, the probability p0011 of sampling

value 0011 is proportional to a delay of the buffer B.

p0011 =
dB,1→0

T0

. (2)

The counter value N0011 after N trials is a random variable

with binomial distribution.

Pr(N0011 = k) =

(

N

k

)

pk
0011

(1− p0011)
N−k . (3)

The mean of this distribution is:

E(N0011) = N · p0011 = N ·

dB,1→0

T0

. (4)

Therefore, the delay of the buffer B can be approximated

by:

dB,1→0 = T0 ·

N0011

N
. (5)

Other delays can be computed in the same manner using

the corresponding counter values.

The standard deviation of the distribution of N0011 is

σ(N0011) =
√

N · p0011(1− p0011) =

=

√

N ·

dB,1→0

T0

·

(

1−
dB,1→0

T0

)

.
(6)

The relative error of the approximation is proportional to

the ratio σ(N0011)/E(N0011).

σ(N0011)

E(N0011)
=

√

T0 − dB,1→0

N · dB,1→0

. (7)

A higher number N of trials results in higher precision

of the measurement procedure. We note that using a very

slow RO results in many all-zero and all-ones values captured

in the 4-bit register. These captured values are not used for

computing the buffer delays. Therefore, increasing the period

T0 leads to a higher ratio of unused samples which reduces

the measurement precision.

B. PUF architecture

The Monte Carlo PUF is based on comparing the delays

of two logic elements with identical layouts and generating

a single response bit as a result of the comparison. These

delays are determined using the Monte Carlo methodology.

The methodology can be used for comparing both 0 → 1 and

1 → 0 delays, potentially extracting two response bits from a

singe pair. However, these response bits may be correlated.

The generic architecture of the Monte Carlo PUF is shown

in Figure 2. The ring oscillator is used to produce a signal

that is propagated through two delay lines. Two registers are

used to capture the position of the signal edge and to update

the counter values. As shown in Figure 1a, a specific pattern

corresponds to each delay. A setup for comparing the 0 → 1
delays of the two highlighted buffers in Figure 2 is shown

in the right part of the Figure. Every time a corresponding

pattern is detected in Reg1, the counter value is incremented,

if it is detected in Reg2 the counter value is decremented. If

both registers contain this pattern, or if neither of them do, the

counter value is not changed. The response bit value denotes

the slower element, 1 if it is the left one, and 0 if it is the right

one. This bit is the sign bit of the counter at the end of the

measurement because the response depends only on whether

the final counter value is positive or negative.

We note that, in order to ensure that the result depends on

the process variations rather than the systematic variations,

it is required that the two delay lines have identical layouts.

However, there is no such requirement for individual buffers

within the same delay line because the two buffers on the same

delay line are never compared to produce a bit.

The design parameters of the Monte Carlo PUF are:

• Tclk–Sampling clock period. The value of this parameter

doesn’t affect the properties of PUF. A high-speed clock

can be used in order to improve the evaluation time.

• T0–Ring oscillator-period. The value of this parameter

has to be chosen carefully. T0/2 should be higher than

the cumulative delay of the delay line in order to ensure

the proper operation of the Monte Carlo PUF. However,

high value of T0 leads to reduced precision of the Monte

Carlo measurements and the increased bit error rate.

• k– The number of buffers on the delay line.

• N – The number of Monte Carlo trials per evaluation.

The value of this parameter is used to make trade-offs

between the bit error rate and the evaluation time.



Fig. 3: The basic implementation of the Monte Carlo PUF.

IV. IMPLEMENTATION ON SPARTAN-6

A. Basic Implementation

For our implementation platform we used a Xilinx Spartan-

6 FPGA. This type of FPGA contains three types of slices

called SliceX, SliceL and SliceM. The slices of type X don’t

contain the CARRY4 primitive. These slices comprise 50 %
of all available slices. Slices of type L and M each comprise

25 % of the FPGA slices. Newer Xilinx FPGAs and SoCs

such as Virtex6 [18] and ZYNQ-7000 [19] contain CARRY4

primitives on every slice. These slices contain the CARRY4

primitives and can be used for implementing the delay lines.

We assume that slices of the same type have identical layouts.

For this reason, in all of our implementations, the delay lines

are implemented using slices of the same type (either both L

or both M).

Figure 3 shows the basic implementation of the Monte

Carlo PUF consisting of a ring oscillator implemented using a

single look-up table (LUT) and two CARRY4 elements. Each

CARRY4 primitive is configured to operate as a tapped delay

line, with the output of each stage connected to a flip-flop

inside the same slice. Using this implementation, six identifier

bits can be extracted – three by comparing the delays of the

0 → 1 transitions and three by comparing the delays of the

1 → 0 transitions.

B. Initial Experiment Results

An initial study was performed on 1337 instances of basic

Monte Carlo PUFs implemented on a single FPGA. Six identi-

fier bits are extracted from each instance and the probabilities

of all 64 combinations are computed. In order to examine the

correlation between the bits extracted using the rising edge

and those extracted using the falling edge, the results are

represented in the form of the heat map as shown in Figure 4.

It can be seen that the delays of the 0 → 1 transitions are

highly correlated with the delays of the 1 → 0 transitions. If

all six bits are used, the resulting identifier would have only

4.5 bits of min-entropy (0.75 per response bit). The same trend

Fig. 4: Heat map showing the probabilities (%) of the six

identifier bits extracted from carry chains – three bits using

the rising edge and three using the falling edge.

is observed when the experiment was repeated on a different

FPGA.

Based on the results of this experiment, we decided to use

only three bits per basic PUF instance to construct an identifier.

Figure 5 shows the distribution of the 3-bit responses obtained

using the 0 → 1 delay measurements. The distribution is not

uniform as it fails the χ2-test. This non-uniformity is most

likely caused by the global variations within a single slice

which cause correlations between the response bits. Based

on the estimated probabilities, the response contains 2.5 bits

of min-entropy (0.83 bits of min-entropy per response bit).

Similar result was obtained when the experiment was repeated

on another FPGA chip.

Further improvements in entropy per bit, could be made by
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Fig. 5: The distribution of the 3-bit responses obtained from

1337 PUF instances on a single FPGA.

using only two least-correlated bits per CARRY4. Our exper-

iments show that this results in only a minor improvement

in entropy per bit, as all three combinations produce between

0.85 and 0.9 min-entropy per response bit. In the remainder of

this paper, we are using the 3-bit version of the Monte Carlo

PUF.

C. Discussion

Typical application of weak PUFs is for secure key gen-

eration and storage. For the purpose of evaluating uniqueness

and reliability, we’ve implemented a 128 bit key generator. We

note that in practice, more than 128 PUF bits are necessary

to produce a 128 bit key. This is, in part, because the

PUF response, doesn’t have the full entropy – based on the

empirical estimation a 128 bit PUF response contains less than

107 bits of min-entropy. In addition, some entropy may be lost

due to the error-correcting procedure.

A 100 MHz clock signal generated by an on-board quartz

oscillator was used for sampling. We note that the correct

operation of the Monte Carlo PUF doesn’t depend on the

clock frequency, but only on the ratio Tclk/T0. This leaves

the opportunity for improving the evaluation time by using an

asynchronous high-speed ring oscillator for sampling.

Interlock of the oscillators is a possible threat to the func-

tionality of the Monte Carlo PUF. The Monte Carlo measure-

ment methodology relies on the uniformity of sampling. If the

RO and the sampling oscillator are interlocked, the sampled

phases are no longer uniformly distributed. This problem can

be addressed by replacing a single-LUT RO with a structure

with a period that changes in a pseudo-random manner. In

addition, the counter values can be used to implement the on-

the-fly testing procedure to detect problems at run time. These

ideas will be explored in future work.

V. PUF CHARACTERIZATION

A 128-bit PUF instance is implemented using 43 basic 3-

bit PUF structures. Hamming distances between two 128-bit
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Fig. 6: Distribution of HD from 1000 evaluations of a single

128-bit PUF instance.

PUFs across ten chip instances are used to evaluate reliability

and uniqueness of the Monte Carlo PUF on Spartan-6.

A. Reliability

To evaluate the reliability of proposed PUF, output trails

from a single 128-bit Monte Carlo PUF instance are collected.

To test the influence of the number N of the measurements

on the error rate, this Monte Carlo PUF is operated with three

different parameter values: N = 10 000, N = 100 000 and

N = 200000. For each value of N , 1000 output trails are

recorded and analysed. One output trial is selected from these

three sets of 1000 output trails and regarded as the reference

trial. All Hamming distances between the reference output trail

and all other trails are calculated. The possible values of these

Hamming distances are within the range [0, 128].
The probability densities of having any possible Hamming

Distance are plotted in Figure 6. The bit error rates in average

are 15.1% for N = 10 000, 7.1% for N = 100 000 and 2.26%
for N = 200 000. As expected, an increase in the number N
of Monte Carlo iterations will lead to a reduction in the bit

error rate. In other words, the reliability can be improved by

choosing a larger N . Evaluation time for 200K measurement

using on-board 100 MHz clock is 2 ms. This evaluation

time can be improved by using high-speed asynchronous ring

oscillators for measurement.

B. Uniqueness

In order to evaluate the uniqueness, ten disjoint 128-bit

PUF instances are implemented on ten different FPGA chips.

There are, in total, 100 different output trails. Uniqueness

can be demonstrated by examining the Hamming distances

between any two output trails. All 4950 Hamming distances

are measured and plotted on Figure 7. The mean of these

Hamming distances is 63.98 (minimum 41, maximum 86).

It means that a 128-bit Monte Carlo PUF instance will, in

average, have half of its PUF bits different from another 128-

bit Monte Carlo PUF instance.
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TABLE I: Implementation Results.

Utilization for 3-bit response 38 slices (59 FFs + 90 LUTs)

Utilization for 128-bit response 1662 slices (2537 FFs + 3871 LUTs)

Evaluation time 2 ms (20000 cycles at 100MHz)

Bit error rate 2.26%

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel Monte-Carlo-based

PUF which is suitable for FPGA applications. It relies on a

measurement procedure that determines the delays of logic

elements. A response bit is generated by comparing the

measured delays of two logic elements. An implementation

on a Xilinx Spartan-6 FPGA is presented and analyzed. The

results show that the proposed PUF provides a high uniqueness

and a low error rate. Results of the reference implementation

are summarized in Table I.

In future work, we will investigate the PUF behavior under

changing operating conditions. In addition, several hardware

implementation aspects remain to be explored. In particular, a

reduction of the evaluation time using asynchronous oscillators

for sampling, and a reduction of the area by sharing resources

(oscillators and counters) between different PUF instances,

will be considered. PUF implementations on various FPGA

families from different vendors remain to be explored.

The final goal of this work is to build up a complete PUF-

based key generator including error correcting codes and pri-

vacy amplification (entropy compression), and to demonstrate

the use of the Monte Carlo PUF in a security system.
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