Star Edge Coloring of Corona Product of Path with Some Graphs

Kaliraj K.
Ramanujan Institute for Advanced Study in Mathematics, University of Madras
Chepauk, Chennai-600 005, Tamil Nadu, India
Sivakami R.

Part-Time Research Scholar (Category-B), Research \& Development Centre, Bharathiar University
Coimbatore 641046 and Department of Mathematics, RVS College of Engineering and Technology Kumaran Kottam Campus, Coimbatore-641 402, Tamil Nadu, India

Vernold Vivin J.
Department of Mathematics, University College of Engineering Nagercoil
(Anna University Constituent College), Konam, Nagercoil-629 004, Tamil Nadu, India

E-mail: sk.kaliraj@gmail.com, sivakawin@gmail.com, vernoldvivin@yahoo.in

Abstract

A star edge coloring of a graph G is a proper edge coloring of G, such that any path of length 4 in G is not bicolored, denoted by $\chi_{s t}^{\prime}(G)$, is the smallest integer k for which G admits a star edge coloring with k colors. In this paper, we obtain the star edge chromatic

 number of $P_{m} \circ P_{n}, P_{m} \circ S_{n}, P_{m} \circ K_{1, n, n}$ and $P_{m} \circ K_{m, n}$.Key Words: Star edge coloring, Smarandachely subgraph edge coloring, corona product, path, sunlet graph, double star and complete bipartite.
AMS(2010): 05C15.

§1. Introduction

All graphs considered in this paper are finite and simple, i.e., undirected, loopless and without multiple edges.

The corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \circ G_{2}$ formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} where the $i^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $i^{\text {th }}$ copy of G_{2}.

The n-sunlet graph on $2 n$ vertices is obtained by attaching n pendant edges to the cycle C_{n} and is denoted by S_{n}.

Double star $K_{1, n, n}$ is a tree obtained from the star $K_{1, n}$ by adding a new pendant edge of the existing n pendant vertices. It has $2 n+1$ vertices and $2 n$ edges.

A star edge coloring of a graph G is a proper edge coloring where at least three distinct colors are used on the edges of every path and cycle of length four, i.e., there is neither bichro-

[^0]matic path nor cycle of length four. The minimum number of colors for which G admits a star edge coloring is called the star edge chromatic index and it is denoted by $\chi_{s t}^{\prime}(G)$. Generally, a Smarandachely subgraphs edge coloring of G for $H_{1}, H_{2}, \cdots, H_{m} \prec G$ is such a proper edge coloring on G with at least three distinct colors on edges of each subgraph H_{i}, where $1 \leq i \leq m$.

The star edge coloring was initiated in 2008 by Liu and Deng [8], motivated by the vertex version (see $[1,3,4,6,7,10]$). Dvořák, Mohar and Šámal [5] determined upper and lower bounds for complete graphs. Additional graph theory terminology used in this paper can be found in [2].

§2. Preliminaries

Theorem 2.1([5]) The star chromatic index of the complete graph K_{n} satisfies

$$
2 n(1+\mathcal{O}(n)) \leq \chi_{s t}^{\prime}\left(K_{n}\right) \leq n \frac{2^{2 \sqrt{2}(1+\mathcal{O}(1)) \sqrt{\log n}}}{\left(\log n^{\frac{1}{4}}\right)}
$$

In particular, for every $\in>0$ there exists a constant c such that $\chi_{s t}^{\prime}\left(K_{n}\right) \leq c n^{1+c}$ for every $n \geq 1$.

They asked what is true order of magnitude of $\chi_{s t}^{\prime}\left(K_{n}\right)$, in particular, if $\chi_{s t}^{\prime}\left(K_{n}\right)=\mathcal{O}(n)$. From Theorem 2.1, they also derived the following near-linear upper bound in terms of the maximum degree Δ for general graphs.

Theorem 2.2([5]) Let G be an arbitrary graph of maximum degree Δ. Then

$$
\chi_{s t}^{\prime}(G) \leq \chi_{s t}^{\prime}\left(K_{n+1}\right) \cdot \mathcal{O}\left(\frac{\log \Delta}{\log \log \Delta}\right)^{2}
$$

and therefore $\chi_{s t}^{\prime}(G) \leq \Delta \cdot 2^{\mathcal{O}(1) \sqrt{\log \Delta}}$.

Theorem 2.3([5])
(a) If G is a subcubic graph, then $\chi_{s t}^{\prime}(G) \leq 7$.
(b) If G is a simple cubic graph, then $\chi_{s t}^{\prime}(G) \geq 4$, and the equality holds if and only if G covers the graph of the 3-cube.

A graph G covers a graph H if there is a locally bijective graph homomorphism from G to H. While there exist cubic graphs with the star chromatic index equal to 6 . e.g., $K_{3,3}$ or Heawood graph, no example of a subcubic graph that would require 7 colors is known. Thus, Dvořák et al. proposed the following conjecture.

Conjecture $2.4([5])$ If G is a subcubic graph, then $\chi_{s t}^{\prime}(G) \leq 6$.

Theorem 2.5([9]) Let T be a tree with maximum degree Δ. Then

$$
\chi_{s t}^{\prime}(T) \leq\left\lfloor\frac{3}{2} \Delta\right\rfloor
$$

Moreover, the bound is tight.
Theorem 2.6([9]) Let G be an outerplaner graph with maximum degree Δ. Then

$$
\chi_{s t}^{\prime}(G) \leq\left\lfloor\frac{3}{2} \Delta\right\rfloor+12
$$

Lemma 2.7([9]) Every outerplanar embedding of a light cactus graph admits a proper 4-edge coloring such that no bichromatic 4-path exists on the boundary of the outer face.

Theorem 2.8([9]) Let G be an subcubic outerplaner graph. Then,

$$
\chi_{s t}^{\prime}(G) \leq 5
$$

Conjecture $2.9([9])$ Let G be an outerplaner graph with maximum degree $\Delta \geq 3$. Then

$$
\chi_{s t}^{\prime}(G) \leq\left\lfloor\frac{3}{2} \Delta\right\rfloor+1
$$

For graphs with maximum degree $\Delta=2$, i.e. for paths and cycles, there exist star edge coloring with at most 3 colors except for C_{5} which requires 4 colors. In case of subcubic outerplanar graphs the conjecture is confirmed by Theorem 2.8.

§3. Main Results

Theorem 3.1 For any positive integer m and n, then

$$
\chi_{s t}^{\prime}\left(P_{m} \circ P_{n}\right)= \begin{cases}n & \text { if } m=1 \\ n+1 & \text { if } m=2 \\ n+2 & \text { if } m \geq 3\end{cases}
$$

Proof Let $V\left(P_{m}\right)=\left\{u_{i}: i=1,2, \cdots, m\right\}$ and $V\left(P_{n}\right)=\left\{v_{j}: j=1,2, \cdots, n\right\}$. Let $E\left(P_{m}\right)=$ $\left\{u_{i} u_{i+1}: i=1,2, \cdots, m-1\right\}$ and $E\left(P_{n}\right)=\left\{v_{j} v_{j+1}: j=1,2, \cdots, n-1\right\}$. By the definition of corona product,

$$
\begin{aligned}
& V\left(P_{m} \circ P_{n}\right)=V\left(P_{m}\right) \bigcup_{i=1}^{m} V\left(P_{n}^{i}\right) \\
& E\left(P_{m} \circ P_{n}\right)=E\left(P_{m}\right) \bigcup_{i=1}^{m} E\left(P_{n}^{i}\right) \bigcup_{i=1}^{m}\left\{u_{i} v_{i, j}: 1 \leq j \leq n\right\}
\end{aligned}
$$

Let σ be a mapping from $E\left(P_{m} \circ P_{n}\right)$ as follows:
Case 1. For $m=1$,

$$
\left\{\begin{array}{l}
\sigma\left(u_{i} v_{i, j}\right)=i+j-2(\bmod n), 1 \leq j \leq n \\
\sigma\left(v_{i, j} v_{i, j+1}\right)=i+j(\bmod n), 1 \leq j \leq n-1
\end{array}\right.
$$

Case 2. For $m=2$,

$$
\left\{\begin{array}{l}
\text { For } i=1,2 \\
\sigma\left(u_{i} v_{i, j}\right)=i+j-2(\bmod n+1), 1 \leq j \leq n \\
\sigma\left(v_{i, j} v_{i, j+1}\right)=i+j(\bmod n+1), 1 \leq j \leq n-1 \\
\sigma\left(u_{1} u_{2}\right)=n
\end{array}\right.
$$

Case 3 For $m \geq 3, \sigma\left(u_{i} u_{i+1}\right)=n+2(\bmod n+3), 1 \leq i \leq m-1$;

$$
\left\{\begin{array}{l}
\text { For } 1 \leq i \leq m \\
\sigma\left(u_{i} v_{i, j}\right)=i+j-2(\bmod n+3), 1 \leq j \leq n \\
\sigma\left(v_{i, j} v_{i, j+1}\right)=i+j(\bmod n+1), 1 \leq j \leq n-1
\end{array}\right.
$$

It is easy to see that σ is satisfied length of path- 4 are not bicolored. To prove

$$
\chi_{s t}^{\prime}\left(P_{m} \circ P_{n}\right) \leq \begin{cases}n & \text { if } m=1 \\ n+1 & \text { if } m=2 \\ n+2 & \text { if } m \geq 3\end{cases}
$$

we have

$$
\chi_{s t}^{\prime}\left(P_{m} \circ P_{n}\right) \geq \chi^{\prime}\left(P_{m} \circ P_{n}\right) \geq \Delta\left(P_{m} \circ P_{n}\right) \geq \begin{cases}n & \text { if } m=1 \\ n+1 & \text { if } m=2 \\ n+2 & \text { if } m \geq 3\end{cases}
$$

Thus the conclusion is true.

Theorem 3.2 For any positive integer m and n, then

$$
\chi_{s t}^{\prime}\left(P_{m} \circ S_{n}\right)= \begin{cases}2 n & \text { if } m=1 \\ 2 n+1 & \text { if } m=2 \\ 2 n+2 & \text { if } m \geq 3\end{cases}
$$

Proof Let $V\left(P_{m}\right)=\left\{u_{i}: i=1,2, \cdots, m\right\}$ and $V\left(S_{n}\right)=\left\{v_{j}: j=1,2, \cdots, n\right\} \cup\left\{v_{n+j}\right.$: $j=1,2, \cdots, n\}$. Let $E\left(P_{m}\right)=\left\{u_{i} u_{i+1}: i=1,2, \cdots, m-1\right\}$ and $E\left(S_{n}\right)=\left\{v_{j} v_{j+1}: j=1,2\right.$,
$\cdots, n-1\} \cup\left\{v_{n-1} v_{n}\right\} \cup\left\{v_{j} v_{n+j}: j=1,2, \cdots, n\right\}$, where v_{n+j} 's are pendent edges of v_{j}. By the definition of corona product,

$$
\begin{aligned}
& V\left(P_{m} \circ S_{n}\right)=V\left(P_{m}\right) \bigcup_{i=1}^{m} V\left(S_{n}^{i}\right) \\
& E\left(P_{m} \circ S_{n}\right)=E\left(P_{m}\right) \bigcup_{i=1}^{m} E\left(S_{n}^{i}\right) \bigcup_{i=1}^{m}\left\{u_{i} v_{i, j}: 1 \leq j \leq 2 n\right\}
\end{aligned}
$$

Let σ be a mapping from $E\left(P_{m} \circ S_{n}\right)$ as follows:

Case 1. For $m=1$,

$$
\left\{\begin{array}{l}
\sigma\left(u_{i} v_{i, j}\right)=j-1(\bmod 2 n), 1 \leq j \leq 2 n \tag{1}\\
\sigma\left(v_{i, j} v_{i, j+1}\right)=i+j(\bmod 2 n), 1 \leq j \leq n-1 \\
\sigma\left(v_{i, j} v_{i, n+j}\right)=n+i+j(\bmod 2 n), 1 \leq j \leq n \\
\sigma\left(v_{i, n-1} v_{i, n}\right)=n+1
\end{array}\right.
$$

Case 2. For $m=2$,

$$
f\left(u_{1} u_{2}\right)=2 n \text { and using Equation (1). }
$$

Case 3. For $m \geq 3, \sigma\left(u_{i} u_{i+1}\right)=2 n+i(\bmod 2 n+2), 1 \leq i \leq m-1 ;$

$$
\left\{\begin{array}{l}
\text { For } 1 \leq i \leq m \\
\sigma\left(u_{i} v_{i, j}\right)=i+j-2(\bmod 2 n+2), 1 \leq j \leq 2 n \\
\sigma\left(v_{i, j} v_{i, j+1}\right)=i+j(\bmod 2 n+2), 1 \leq j \leq n-1 \\
\sigma\left(v_{i, j} v_{i, n+j}\right)=n+i+j(\bmod 2 n+2), 1 \leq j \leq n \\
\sigma\left(v_{i, n-1} v_{i, n}\right)=n+i(\bmod 2 n+2)
\end{array}\right.
$$

It is easy to see that σ is satisfied length of path- 4 are not bicolored. To prove

$$
\chi_{s t}^{\prime}\left(P_{m} \circ S_{n}\right) \leq \begin{cases}2 n & \text { if } m=1 \\ 2 n+1 & \text { if } m=2 \\ 2 n+2 & \text { if } m \geq 3\end{cases}
$$

we have

$$
\chi_{s t}^{\prime}\left(P_{m} \circ S_{n}\right) \geq \chi^{\prime}\left(P_{m} \circ S_{n}\right) \geq \Delta\left(P_{m} \circ S_{n}\right) \geq \begin{cases}2 n & \text { if } m=1 \\ 2 n+1 & \text { if } m=2 \\ 2 n+2 & \text { if } m \geq 3\end{cases}
$$

Thus the conclusion is true.

Theorem 3.3 For any positive integer m and n, then

$$
\chi_{s t}^{\prime}\left(P_{m} \circ K_{1, n, n}\right)= \begin{cases}2 n+1 & \text { if } m=1 \\ 2 n+2 & \text { if } m=2 \\ 2 n+3 & \text { if } m \geq 3\end{cases}
$$

Proof Let $V\left(P_{m}\right)=\left\{u_{i}: i=1,2, \cdots, m\right\}$ and $V\left(K_{1, n, n}\right)=\left\{v_{0}\right\} \cup\left\{v_{2 j-1}: j=1,2, \cdots, n\right\}$ $\cup\left\{v_{2 j}: j=1,2, \cdots, n\right\}$. Let $E\left(P_{m}\right)=\left\{u_{i} u_{i+1}: i=1,2, \cdots, m-1\right\}, E\left(K_{1, n, n}\right)=\left\{v_{0} v_{2 j-1}:\right.$ $j=1,2, \cdots, n\} \cup\left\{v_{2 j-1} v_{2 j}: j=1,2, \cdots, n\right\}$, where v_{0} is adjacent to $v_{2 j-1}$ and $v_{2 j}$ are pendent vertices of $v_{2 j-1}$. By the definition of corona product,

$$
\begin{aligned}
V\left(P_{m} \circ K_{1, n, n}\right) & =V\left(P_{m}\right) \bigcup_{i=1}^{m} V\left(K_{1, n, n}^{i}\right) \\
E\left(P_{m} \circ K_{1, n, n}\right) & =E\left(P_{m}\right) \bigcup_{i=1}^{m} E\left(K_{1, n, n}^{i}\right) \bigcup_{i=1}^{m}\left\{u_{i} v_{i, j}: 0 \leq j \leq 2 n\right\}
\end{aligned}
$$

Let σ be a mapping from $E\left(P_{m} \circ K_{1, n, n}\right)$ as follows:
Case 1. For $m=1$,

$$
\left\{\begin{array}{l}
\sigma\left(u_{i} v_{i, j}\right)=j \bmod 2 n, 0 \leq j \leq 2 n \tag{2}\\
\sigma\left(v_{i, 0} v_{i, 2 j-1}\right)=2 j+2(\bmod 2 n+1), 1 \leq j \leq n \\
\sigma\left(v_{i, 2 j-1} v_{i, 2 j}\right)=2 j+3(\bmod 2 n+1), 1 \leq j \leq n
\end{array}\right.
$$

Case 2. For $m=2$,

$$
\sigma\left(u_{1} u_{2}\right)=2 n+1 ; \text { and using Equation }(2)
$$

Case 3. For $m \geq 3$,

$$
\begin{aligned}
\sigma\left(u_{i} u_{i+1}\right)=2 n & +i(\bmod 2 n+3), 1 \leq i \leq m-1 \\
& \left\{\begin{array}{l}
\text { For } 1 \leq i \leq m \\
\sigma\left(u_{i} v_{i, j}\right)=i+j-1(\bmod 2 n+3), 0 \leq j \leq 2 n \\
\sigma\left(v_{i, 0} v_{i, 2 j-1}\right)=i+2 j-1(\bmod 2 n+3), 1 \leq j \leq n ; \\
\sigma\left(v_{i, 2 j-1} v_{i, 2 j}\right)=i+2 j(\bmod 2 n+3), 1 \leq j \leq n
\end{array}\right.
\end{aligned}
$$

It is easy to see that σ is satisfied length of path-4 are not bicolored. To prove

$$
\chi_{s t}^{\prime}\left(P_{m} \circ K_{1, n, n}\right) \leq \begin{cases}2 n+1 & \text { if } m=1 \\ 2 n+2 & \text { if } m=2 \\ 2 n+3 & \text { if } m \geq 3\end{cases}
$$

we have

$$
\chi_{s t}^{\prime}\left(P_{m} \circ K_{1, n, n}\right) \geq \chi^{\prime}\left(P_{m} \circ K_{1, n, n}\right) \geq \Delta\left(P_{m} \circ K_{1, n, n}\right) \geq \begin{cases}2 n+1 & \text { if } m=1 \\ 2 n+2 & \text { if } m=2 \\ 2 n+3 & \text { if } m \geq 3\end{cases}
$$

So the conclusion is true.

Theorem 3.4 For any positive integer $l \geq 3, m \geq 3$ and $n \geq 3$, then

$$
\chi_{s t}^{\prime}\left(P_{l} \circ K_{m, n}\right)=m+n+2 .
$$

Proof Let $V\left(P_{l}\right)=\left\{u_{i}: 1 \leq i \leq l\right\}$ and $V\left(K_{m, n}\right)=\left\{v_{j}: 1 \leq j \leq m\right\} \cup\left\{v_{k}^{\prime}: 1 \leq k \leq n\right\}$. Let $E\left(P_{l}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq l-1\right\}$ and $E\left(K_{m, n}\right)=\bigcup_{j=1}^{m}\left\{v_{j} v_{k}^{\prime}: 1 \leq k \leq n\right\}$. By the definition of corona product,

$$
\begin{aligned}
& V\left(P_{l} \circ K_{m, n}\right)=V\left(P_{l}\right) \bigcup_{i=1}^{l}\left\{v_{i j}: 1 \leq j \leq m\right\} \bigcup_{i=1}^{l}\left\{v_{i k}^{\prime}: 1 \leq k \leq n\right\}, \\
& E\left(P_{l} \circ K_{m, n}\right)=E\left(P_{l}\right) \bigcup_{i=1}^{l} E\left(K_{m, n}^{i}\right) \bigcup_{i=1}^{l}\left\{u_{i} v_{i j}: 1 \leq j \leq m\right\} \bigcup_{i=1}^{l}\left\{u_{i} v_{i k}^{\prime}: 1 \leq k \leq n\right\} .
\end{aligned}
$$

Let σ be a mapping from $P_{l} \circ K_{m, n}$ as follows:

$$
\begin{aligned}
& \sigma\left(u_{2 i-1} u_{2 i}\right)=n-1,1 \leq i \leq\left\lfloor\frac{l}{2}\right\rfloor ; \sigma\left(u_{2 i} u_{2 i+1}\right)=n, 1 \leq i \leq\left\lceil\frac{l}{2}\right\rceil \text { and } \\
& \qquad\left\{\begin{array}{l}
\text { For } 1 \leq i \leq l, \\
\sigma\left(v_{i j} v_{i k}^{\prime}\right)=j+k-1,1 \leq j \leq m, 1 \leq k \leq n \\
\sigma\left(u_{i} v_{i j}\right)=n+j, 1 \leq j \leq m ; \\
\sigma\left(u_{i} v_{i k+2}^{\prime}\right)=k, 1 \leq k \leq n-2 \\
\sigma\left(u_{i} v_{i 1}^{\prime}\right)=m+n+1 ; \\
\sigma\left(u_{i} v_{i 2}^{\prime}\right)=m+n+2
\end{array}\right.
\end{aligned}
$$

Clearly above color partitions are satisfied length of path-4 are not bicolored. We assume that $\chi_{s t}^{\prime}\left(P_{m} \circ K_{m, n}\right) \leq m+n+2$. We know that $\chi_{s t}^{\prime}\left(P_{m} \circ K_{m, n}\right) \geq \chi^{\prime}\left(P_{m} \circ K_{m, n}\right) \geq m+n+2$, since $\chi_{s t}^{\prime}\left(P_{m} \circ K_{m, n}\right) \geq m+n+2$. Therefore $\chi_{s t}^{\prime}\left(P_{m} \circ K_{m, n}\right)=m+n+2$.

References

[1] Albertson M. O., Chappell G. G., Kiersted H. A., Künden A. and Ramamurthi R., Coloring with no 2-colored P_{4} s, Electron. J. Combin., 1 (2004), \#R26.
[2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, New York; The Macmillan Press Ltd, 1976.
[3] Bu Y., Cranston N. W., Montassier M., Raspaud A. and Wang W. Star-coloring of sparse graphs, J. Graph Theory, 62 (2009), 201-219.
[4] Chen M., Raspaud A., and Wang W., 6-star-coloring of subcubic graphs, J. Graph Theory, 72, 2(2013), 128-145.
[5] Dvor̆ák Z., Mohar B. and S̆ámal R., Star chromatic index, J. Graph Theory, 72 (2013), 313-326.
[6] Grünbaum B., Acyclic coloring of planar graphs, Israel J. Math., 14 (1973), 390-412.
[7] Kierstead H. A., Kündgen A., and Timmons C., Star coloring bipartite planar graphs, J. Graph Theory, 60 (2009), 1-10.
[8] Liu X.S. and Deng K., An upper bound on the star chromatic index of graphs with $\delta \geq 7$, J. Lanzhou Univ. (Nat. Sci.) 44 (2008), 94-95.
[9] L’udmila Bezegová, Borut Lužar, Martina Mockovčiaková, Roman Soták, ŠRiste krekovski, Star Edge Coloring of Some Classes of Graphs, Journal of Graph Theory, Article first published online: 18 Feb. 2015, DOI: 10.1002/jgt.21862.
[10] Nes̆et $\breve{r} \mathrm{il}$ J. and De Mendez P. O., Colorings and homomorphisms of minor closed classes, Algorithms Combin., 25 (2003), 651-664.

[^0]: ${ }^{1}$ Received November 03, 2015, Accepted August 20, 2016.

