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§1. Introduction

All graphs considered in this paper are finite and simple, i.e., undirected, loopless and without
multiple edges.

The corona of two graphs G; and G is the graph G = G o G5 formed from one copy of
G1 and |V(G1)]| copies of Go where the i th Vertex of Gy is adjacent to every vertex in the
) th copy of Gs.

The n—sunlet graph on 2n vertices is obtained by attaching n pendant edges to the cycle
C,, and is denoted by S,,.

Double star K 5, is a tree obtained from the star K , by adding a new pendant edge of
the existing n pendant vertices. It has 2n + 1 vertices and 2n edges.

A star edge coloring of a graph G is a proper edge coloring where at least three distinct

colors are used on the edges of every path and cycle of length four, i.e., there is neither bichro-
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matic path nor cycle of length four. The minimum number of colors for which G admits a star
edge coloring is called the star edge chromatic index and it is denoted by X%, (G). Generally,
a Smarandachely subgraphs edge coloring of G for Hy, Hs,--- , H,, < G is such a proper edge

coloring on G with at least three distinct colors on edges of each subgraph H;, where 1 < i < m.

The star edge coloring was initiated in 2008 by Liu and Deng [8], motivated by the vertex
version (see [1, 3, 4, 6, 7, 10]). Dvordk, Mohar and Sdmal [5] determined upper and lower
bounds for complete graphs. Additional graph theory terminology used in this paper can be
found in [2].

§2. Preliminaries

Theorem 2.1([5]) The star chromatic index of the complete graph K, satisfies
92v2(1+0(1))vIogn
(log n%)

In particular, for every €> 0 there ewists a constant ¢ such that X%, (K,) < ent¢ for every
n>1.

(14 0(n) <Xy (Kn) <n

They asked what is true order of magnitude of x%, (K,,), in particular, if x., (K,) = O (n).
From Theorem 2.1, they also derived the following near-linear upper bound in terms of the

maximum degree A for general graphs.

Theorem 2.2([5]) Let G be an arbitrary graph of mazimum degree A. Then

log A )2

/ <+ . =i
() i (Koin) -0 (222

and therefore X', (G) < A - 20V &,

Theorem 2.3([5])

(a) If G is a subcubic graph, then x%; (G) < 7.

(b) If G is a simple cubic graph, then x4, (G) > 4, and the equality holds if and only if G
covers the graph of the 3-cube.

A graph G covers a graph H if there is a locally bijective graph homomorphism from G
to H. While there exist cubic graphs with the star chromatic index equal to 6. e.g., K33 or
Heawood graph, no example of a subcubic graph that would require 7 colors is known. Thus,

Dvordk et al. proposed the following conjecture.

Conjecture 2.4([5]) If G is a subcubic graph, then x%, (G) < 6.
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Theorem 2.5([9]) Let T be a tree with mazimum degree A. Then
, 3
Moreover, the bound is tight.

Theorem 2.6([9]) Let G be an outerplaner graph with mazimum degree A. Then
, 3

Lemma 2.7([9]) Ewvery outerplanar embedding of a light cactus graph admits a proper 4-edge
coloring such that no bichromatic 4-path exists on the boundary of the outer face.

Theorem 2.8([9]) Let G be an subcubic outerplaner graph. Then,

X./st (G) <5.

Conjecture 2.9([9]) Let G be an outerplaner graph with maximum degree A > 3. Then
, 3
Xst (G) < §A + 1.

For graphs with maximum degree A = 2, i.e. for paths and cycles, there exist star edge
coloring with at most 3 colors except for C5 which requires 4 colors. In case of subcubic
outerplanar graphs the conjecture is confirmed by Theorem 2.8.

83. Main Results

Theorem 3.1 For any positive integer m and n, then

n if m=1
Xst (PnoPn)=qn+1 if m=2
n+2 if m>3
Proof Let V (Py,) ={u;:i=1,2,--- ,m}and V (P,) ={v; : j =1,2,--- ,n}. Let E(P,,) =

{witjy1 :1=1,2,--- ;m—1} and E(P,) = {vjvj41 :j=1,2,--- ,n — 1}. By the definition of
corona product,

V(PnoP,) = V(Pp) CJ V(P).

E(P,oP,) = E(Pm)UE(P,i)U{Ui'Ui,j:1§j§n}-
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Let o be a mapping from FE (P, o P,) as follows:

Case 1. For m =1,

o(u;j)=1i4+j—2(mod n),1 <j<m;

0 (Vi jVij41) =i+ j(mod n),1 <j<n-—1;
Case 2. For m = 2,

Fori=1,2,
o(uv; ;) =i+j—2(mod n+1),1<j<mn
0 (Vi jVij41) =i+j(mod n+1),1<j<n-1,

o (urug) = n;
Case 3 For m > 3, o (ujuit1) =n+2(mod n+3),1 <i<m—1;

For 1 <i <m,
o(uv; ;) =i+j7—2(mod n+3),1<j<mn
o(vi7jvi7j+1)=i+j(mod n+1),1§j§n—1;

It is easy to see that o is satisfied length of path-4 are not bicolored. To prove

n if m=1
Xet (PmoPy)<<Sn+1 if m=2
n+2 if m>3.

we have
n if m=1
Xat (ProPo) =X (PnoPp) > A(PpoPy)><{n+1 if m=2
n+2 if m>3.
Thus the conclusion is true. O

Theorem 3.2 For any positive integer m and n, then

2n if m=1
Xst (PmoSn)=1{2n+1 if m=2
2n+2 if m > 3.

Proof Let V(Py) = {u;:i=1,2,--- ,m} and V(S,) ={v;:5=1,2,--- ,n} U {vp4;:
j=1,2,---,n}. Let E(Py,) = {ujuig1:1=1,2,--- ;m—1} and E(S,) = {vjvj+1:5=1,2,
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-on =1} U{vpo1vp U{vjvng; 1 5 =1,2,--- ,n}, where v,4,’s are pendent edges of v;. By
the definition of corona product,
V(PnoSy) = V(Pu)|JV(SL),
i=1
E (P, 08Sy) E(Pm)UE(S,iL)U{Ui’UiJ:1§j§2n}
i=1 i=1
Let o be a mapping from E (P, 0 .S,) as follows:
Case 1. Form =1,
o (uv; ;) =7 —1(mod 2n),1 < j < 2n;
0 (v Vi j41) =147 (mod 2n),1<j<n-—1; )
0 (Vi jVintj) =n+i+j(mod 2n),1 <j<mn;
0 (Vijn—1vin) =n+1;

Case 2. For m = 2,

f (uruz) = 2n and using Equation (1).

Case 3. For m > 3, 0 (u;uj+1) =2n+i(mod 2n+2),1 <i<m — 1;

For 1 <i<m,

o (uivi ;) =i+ j—2(mod 2n+2),1<j < 2n;
0 (Vi jvij41) =i+ (mod 2n+2),1<j<n-—1,

(
U(Ui,jvi,nJrj) =n+i+j(mod 2n+2),1 <j<n;
0 (Vin—1Vin) = n+i(mod 2n + 2);

It is easy to see that o is satisfied length of path-4 are not bicolored. To prove

2n if m=1
Xot (PnoSy) << 2n+1 if m=2
2n+2 if m > 3.

we have

2n if m=1
Xt (Pm0Sn) > X (PrnoSy)>A(ProS,)>{2n+1 if m=2

2n+2 if m > 3.

Thus the conclusion is true.



120 Kaliraj K., Sivakami R. and Vernold Vivin J.

Theorem 3.3 For any positive integer m and n, then

2n+1 of m=1
Xt (PnoKinn)=42n+2 if m=2
2n+3 if m>3

Proof Let V (Py,) ={u;:i=1,2,--- ,m}and V (K1) = {vo}U{vj—1 : 5 =1,2,--- ,n}
U{UQJ' ] = 1,2, tee ,n}. Let E(Pm) = {uiqu 1= 1,2, s, MM — 1}, E(Kl,n,n) = {’U()’UQJ‘,1 .
j=1,2,--- ,n}U{vgj_1v2; : j =1,2,---,n}, where vy is adjacent to ve;_1 and vy; are pendent

vertices of vg;_1. By the definition of corona product,
V(PnoKing) = V(Pu)|JV(Ki,.),

E(PnoKing) = E@n)|JE(Ki,,) ] {uvi,:0<5<2n}

=1 i=1

Let o be a mapping from E (P, o K1 ,,,) as follows:

Case 1. Form =1,
o (u;v;,5) = jmod 2n,0 < j < 2n;
0 (Vi oVi2j—1) =2j+2(mod 2n+1),1 < j <m; (2)
0 (Vi 2j—10i,2) = 27+ 3 (mod 2n+1),1 < j <n;

Case 2. For m = 2,

o (uruz) = 2n + 1; and using Equation (2).

Case 3. For m > 3,

o (wiuir1) =2n+i(mod 2n+3),1 <i<m—1;

For 1 <i<m,

o (uv; ;) =i+j—1(mod 2n+3),0 < j < 2n;

0 (VioVigj—1) =1+2j —1(mod 2n+3),1 <j <m;
0 (Vi2j—1v4,25) =1+ 2j (mod 2n+3),1 <j <mn;

It is easy to see that o is satisfied length of path-4 are not bicolored. To prove

2n+1 if m=1
Xot (P o K1) << 2n+2 if m=2
2n+3 if m> 3.
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we have

2n+1 if m=1
X;‘t (PmoKl,n,n)ZXI(PmOKl,n,n)ZA(PmoKl,n,n)Z 2n+2 if m=2
2n+3 if m > 3.

So the conclusion is true. a
Theorem 3.4 For any positive integer | > 3, m > 3 and n > 3, then

Xat (PoKpn) =m—+n+2.

Proof Let V(F) ={u;:1<i<l}and V(Kpn) ={v; : 1 <j<m}U{v):1<k<n}
Let E(P) = {ujuiy1 : 1 <i<l—1} and E(K,, ) = U {vjv}, : 1 <k <n}. By the definition
j=1
of corona product,

l l
V(PloKmn) = V(P J{vy:1<i<m}|J{vh 1<k <},
=1 =1
l . l l
EPoKmnyn) = E(PZ)UE(Kfn_’n)U{uivijzlgjgm}U{uivgk:lgkgn}.
i=1 i=1 i=1

Let o be a mapping from P, o K, ,, as follows:

l
o (ugi—1ug;) =n—1,1<4i< {—

l
QJ; o (ugiugiyr) =n,1 <i < {—-‘ and

2
For 1 <i<l|,

o(vivy) =j+k—-1,1<j<m,1<k<mn
o (uvij) =n+j,1<j<m;
(wiv)pys) =k, 1 <k <n—2;

Q

Q

uvh) =m+n+1;

g

(uiviy
(uvjy) =m+n+2.

Clearly above color partitions are satisfied length of path-4 are not bicolored. We assume
that x%; (P 0o Kimn) < m+n+2. We know that x%, (P, 0 Kimn) 2> X' (P o Kmon) > m+n+2,
since x4 (P © Kpon) > m +n + 2. Therefore x%; (P 0 Kimn) =m +n+ 2. O
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