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Abstract: The object of the present paper is to study the nature of curvature tensor,

Ricci tensor, scalar curvature and Weyl conformal curvature tensors with respect to a semi-

symmetric metric connection on a 3-dimensional trans-Sasakian manifold.We have given an

example regarding it.
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§1. Introduction

The notion of locally ϕ-symmetric Sasakian manifold was introduced by T. Takahashi [14] in

1977. Also J.A. Oubina in 1985 introduced a new class of almost contact metric structures

which was a generalization of Sasakian [13], α-Sasakian [11], Kenmotsu [11], β-Kenmotsu [11]

and cosymplectic [11] manifolds, which was called trans-Sasakian manifold [12]. After him many

authors [4],[5],[10],[12] have studied various type of properties in trans-Sasakian manifold.

In this paper we have obtained the curvature tensor and also the first Bianchi identity with

respect to a semi-symmetric connection on a 3-dimensional trans-Sasakian manifold. We also

find out the condition of Ricci tensor to be symmetric under this connection. We have shown

that the Riemannian Weyl conformal curvature tensor is equal to the Weyl conformal curvature

tensor with respect to semi-symmetric connection and also equal to the curvature tensor with

respect to semi-symmetric connection when the Ricci tensor under this connection vanishes.
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§2. Preliminaries

Let Mn be an n-dimensional (n is odd) almost contact C∞ manifold with an almost contact

metric structure (φ, ξ, η, g) where φ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form and

g is a compatible Riemannian metric.

Then the manifold satisfies the following relations ([3]):

(2.1) φ2(X) = −X + η(X)ξ, η ◦ φ = 0;

(2.2) η(X) = g(X, ξ), η(ξ) = 1;

(2.3) g(φX, φY ) = g(X,Y )− η(X)η(Y ).

Now an almost contact manifold is called trans-Sasakian manifold if it satisfies ([13]):

(2.4) (∇Xφ)Y = α[g(X,Y )ξ − η(Y )X ] + β[g(φX, Y )ξ − η(Y )φX ].

From (2.4) it follows

(2.5) (∇Xη)(Y ) = −αg(φX, Y ) + β[g(X,Y )− η(X)η(Y )], ∀ X,Y ∈ χ(M)

where α, β ∈ F (M) and ∇ be the Levi-Civita connection on Mn.

A linear connection ∇̄ on Mn is said to be semi-symmetric [1] if the torsion tensor T̄ of

the connection ∇̄ satisfies

(2.6) T̄ (X,Y ) = π(Y )X − π(X)Y ,

where π is a 1-form on Mn with U as associated vector field, i.e,

(2.7) π(X) = g(X,U)

for any differentiable vector field X on Mn.

A semi-symmetric connection ∇̄ is called semi-symmetric metric connection [2] if it further

satisfies

(2.8) ∇̄g = 0.

In [2] Sharfuddin and Hussain defined a semi-symmetric metric connection in an almost

contact manifold by identifying the 1-form π of [1] with the contact 1-form η i.e., by setting

(2.9) T (X,Y ) = η(Y )X − η(X)Y .

The relation between the semi-symmetric metric connection ∇̄ and the Levi-Civita con-

nection ∇ of (Mn, g) has been obtained by K.Yano [9], which is given by

(2.10) ∇̄XY = ∇XY + π(Y )X − g(X,Y )U.

Further, a relation between the curvature tensor R and R̄ of type (1, 3) of the connections

∇ and ∇̄ respectively are given by [7],[8],[9]

(2.11) R̄(X,Y )Z = R(X,Y )Z + α̂(X,Z)Y − α̂(Y, Z)X − g(Y, Z)LX + g(X,Z)LY ,

where,

(2.12) α̂(Y, Z) = g(LY,Z) = (∇Y π)(Z)− π(Y )π(Z) + 1
2π(U)g(Y, Z).

The Weyl conformal curvature tensor of type (1, 3) of the manifold is defined by

(2.13) C(X,Y )Z = R(X,Y )Z + λ(Y, Z)X − λ(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ,
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where,

(2.14) λ(Y, Z) = g(QY,Z) = − 1
n−2S(Y, Z) + r

2(n−1)(n−2)g(Y, Z),

where S and r denote respectively the (0, 2) Ricci tensor and scalar curvature of the manifold.

We shall use these results in the next sections for a 3-dimensional trans-Sasakian manifold

with semi-symmetric metric connection.

§3. Curvature tensors with Respect to the Semi-Symmetric Metric Connection

On a 3-Dimensional Trans-Sasakian Manifold

From (2.5), (2.9) and (2.12) we have

(3.1) α̂(Y, Z) = −αg(φY, Z)− (β + 1)η(Y )η(Z) + (β + 1
2 )g(Y, Z).

Using (2.12), we get from (3.1)

(3.2) LY = −αφY − (β + 1)η(Y )ξ + (β + 1
2 )Y.

Now using (3.1) and (3.2), we get from (2.11) after some calculations

(3.3) R̄(X,Y )Z = R(X,Y )Z − α[g(φX,Z)Y − g(φY, Z)X ]

−α[g(X,Z)φY − g(Y, Z)φX ] + (2β + 1)[g(X,Z)Y − g(Y, Z)X ]

−(β + 1)[η(X)η(Z)Y − η(Y )η(Z)X ]

−(β + 1)[g(X,Z)η(Y )− g(Y, Z)η(X)]ξ.

Thus we can state

Theorem 3.1 The curvature tensor with respect to ∇̄ on a 3-dimensional trans-Sasakian

manifold is of the form (3.3).

From (3.3) it is seen that

(3.4) R̄(Y,X)Z = −R̄(X,Y )Z.

We now define a tensor R̄′ of type (0, 4) by

(3.5) R̄′(X,Y, Z, V ) = g(R̄(X,Y )Z, V ).

From (3.4) and (3.5) it follows that

(3.6) R̄′(Y,X,Z, V ) = −R̄′(X,Y, Z, V ).

Combining (3.6) and (3.4) we can see that

(3.7) R̄′(X,Y, Z, V ) = R̄′(Y,X, V, Z).

Again from (3.3) exchanging X,Y, Z cyclically and adding them, we get

(3.8) R̄(X,Y )Z + R̄(Y, Z)X + R̄(Z,X)Y = 2α[g(φX, Y )Z + g(φY, Z)X + g(φZ,X)Y ].

This is the first Bianchi identity with respect to ∇̄. Thus we state



Semi-Symmetric Metric Connection on a 3-Dimensional Trans-Sasakian Manifold 19

Theorem 3.2 The first Bianchi identity with respect to ∇̄ on a 3-dimensional trans-Sasakian

manifold is of the form (3.8).

Let S̄ and S denote respectively the Ricci tensor of the manifold with respect to ∇̄ and ∇.

From (3.3) we get by contracting X ,

(3.11) S̄(Y, Z) = S(Y, Z) + αg(φY, Z)− (3β + 1)g(Y, Z) + (β + 1)η(Y )η(Z).

In (3.11) we put Y = Z = ei, 1 ≤ i ≤ 3, where {ei} is an orthonormal basis of the tangent

space at each point of the manifold. Then summing over i, we get

(3.12) r̄ = r − 2(4β + 1).

From (3.11), we get

(3.13) S̄(Y, Z)− S̄(Z, Y ) = α(g(φY, Z) − g(φZ, Y )) = 2αg(φY, Z).

But g(φY, Z) is not identically zero. So S̄(Y, Z) is not symmetric. Thus we state

Theorem 3.3 The Ricci tensor of a 3-dimensional trans-Sasakian manifold with respect to the

semi-symmetric metric connection is not symmetric.

The Weyl conformal curvature tensor of type (1, 3) of the 3-dimensional trans-sasakian

manifold with respect to the semi-symmtric metric connection ∇̄ is defined by

(3.14) C̄(X,Y )Z = R̄(X,Y )Z + λ̄(Y, Z)X − λ̄(X,Z)Y + g(Y, Z)Q̄X − g(X,Z)Q̄Y ,

where,

(3.15) λ̄(Y, Z) = g(Q̄Y, Z) = − 1
2 S̄(Y, Z) + r̄

4g(Y, Z).

Putting the values of S̄ and r̄ from (3.11) and (3.12) respectively in (3.15) we get

(3.16) λ̄(Y, Z) = g(Q̄Y, Z) = λ(Y, Z)− αg(Ȳ , Z) + 2β+1
2 g(Y, Z)− (β + 1)η(Y )η(Z).

and,

(3.17) Q̄Y = QY − αȲ + 2β+1
2 Y − (β + 1)η(Y )ξ.

Using (3.3),(3.16) and (3.17), we get from (3.14) after a brief calculations

(3.18) C̄(X,Y )Z = C(X,Y )Z.

Thus we can state

Theorem 3.4 The Weyl conformal curvature tensors of the 3-dimensional trans-sasakian man-

ifold with respect to the Levi-Civita connection and the semi-symmetric metric connection are

equal.

If in particular S̄ = 0, then r̄ = 0, so from (3.15) we get

(3.19) λ̄(Y, Z) = 0.

From (3.19) and (3.14) we get

(3.20) C̄(X,Y )Z = R̄(X,Y )Z.

From (3.18) and (3.20) we have
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(3.21) C(X,Y )Z = R̄(X,Y )Z.

Corollary 3.5 If the Ricci tensor of a 3-dimensional trans-Sasakian manifold with respect to

the semi-symmetric metric connection vanishes, the Weyl conformal curvature tensor of the

manifold is equal to the curvature tensor of the manifold with respect to the semi-symmetric

metric connection.

§4. Example of a 3-Dimensional Trans-Sasakian Manifold Admitting

A Semi-Symmetric Metric Connection

Let the 3-dim. C∞ real manifold M = {(x, y, z) : (x, y, z) ∈ R3, z 6= 0} with the basis

{e1, e2, e3}, where e1 = z ∂
∂x , e2 = z ∂

∂y , e3 = z ∂
∂z .

We consider the Riemannian metric g defined by

g(ei, ej) =







1, if i = j

0, if i 6= j.

Now we define a (1, 1) tensor field φ by φ(e1) = −e2, φ(e2) = e1 and φ(e3) = 0, and

choose the vector field ξ = e3 and define a 1-form η by η(X) = g(X, e3), ∀ X ∈ χ(M). Then

η(e1) = η(e2) = 0 and η(e3) = 1.

From the above construction we can easily show that

φ2(X) = −X + η(X)ξ, η ◦ φ = 0

, η(X) = g(X, ξ), η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ).

Thus M is a 3-dim. almost contact C∞ manifold with the almost contact structure (φ, ξ, η, g).

We also obtain [e1, e2] = 0, [e2, e3] = −e2 and [e1, e3] = −e1. By Koszul’s formula we get

∇e1
e1 = e3, ∇e2

e1 = 0, ∇e3
e1 = 0,

∇e1
e2 = 0, ∇e2

e2 = e3, ∇e3
e2 = 0,

∇e1
e3 = −e1, ∇e2

e3 = −e2, ∇e3
e3 = 0.

Then it can be shown that M is a trans-Sasakian manifold of type (0,−1).

Now we define a linear connection ∇̄ such that

∇̄ei
ej = ∇ei

ej + η(ej)ei − g(ei, ej)e3, ∀ i, j = 1, 2, 3.

Then we get

∇̄e1
e1 = 0, ∇̄e2

e1 = 0, ∇̄e3
e1 = 0,

∇̄e1
e2 = 0, ∇̄e2

e2 = 0, ∇̄e3
e2 = 0,

∇̄e1
e3 = 0, ∇̄e2

e3 = 0, ∇̄e3
e3 = 0.
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If T̄ is the torsion tensor of the connection ∇̄, then we have

T̄ (X,Y ) = η(Y )X − η(X)Y and (∇̄Xg)(Y, Z) = 0,

which implies that ∇̄ is a semi-symmetric metric connection on M .
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