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Abstract 

Mixed Virtual Elements (MVE) is an innovative class of discretization 
schemes allowing solution of PDEs on virtually any mesh; such 
schemes stem from the idea of building discrete operators mimicking 
certain key properties of their continuous counterparts. In our previous 
work [27] we implemented our own 1st-order MVE scheme for 
convection-diffusion. In the present work, a) we extend such scheme to 
formally 2nd-order accuracy, b) we deal with the subsequent stability 
issues, c) we derive a full formally 2nd-order MVE scheme for 
incompressible steady-state Navier-Stokes, d) we provide a first 
suggestion for a MVE N-S solution algorithm. Numerical results are 
reported for benchmark test cases. 

 

1. Introduction 

In the past decade, a new family of PDE discretization schemes has 
emerged as a promising alternative to classical methods such as Finite 
Volumes (FV). The aim is to allow for more freedom in the numerical 
model, most notably in mesh geometry (e.g. the possibility to use 
strongly non-orthogonal and/or non-convex elements) and anisotropy or 
discontinuity of material properties. Depending on the author and 
context, the methodology is known as Mimetic Finite Differences (MFD) 
or Hybrid Mimetic Mixed method (HMM), and it was recently recast 
under the umbrella term of Mixed Virtual Elements (MVE) [7]. 

MVE are fully consistent discretization schemes in which all discrete 
values “stay true” to their definition, i.e. the approximation is placed on 
operators rather than on variables. This allows fully controlling the order 
of accuracy of the method and ensuring its consistency, provided that 



discrete operators are indeed constructed up to a given order of 
consistency. 

One may think of MVE as a FV scheme where certain numerical 
artifacts have been replaced with some desirable features typical of 
Mixed Finite Volumes (MFV) and Finite Elements (FE). An example is 
the computation of gradients at mesh faces, which in FV is split into an 
orthogonal part and a non-orthogonal corrector (NOC): the NOC is 
typically treated explicitly, thus mixing together discretization scheme 
and solution algorithm as well as jeopardizing the convergence of the 
latter – unless a limiting procedure is employed, in which case it will be 
the gradient consistency to be affected. MVE, on the other hand, treats 
face-gradients as separate degrees of freedom of the problem, and 
therefore implicitly and consistently. 

In its early developments MVE was aimed at discretizing the pure 
anisotropic diffusion equation [4,5,11,15,20,24]. Its potential in this case 
has been largely validated on a number of 2D polygonal and 3D 
polyhedral meshes, with stress on the fact that requirements on mesh 
regularity are minimal compared to traditional FV. Such freedom makes 
MVE appealing in a number of applications featuring complex 
geometries or physics, most notably the modeling of geological layers in 
reservoirs, magnetostatic fields or flow through porous media. 

Recent attempts have also been made to extend MVE to convection-
diffusion-type problems [8,13,28] and to the (1st-order accurate) Navier-
Stokes equations [12], thus making it a promising alternative CFD tool 
towards the solution of large industrial cases, where nowadays one has 
to respect the mesh regularity restrictions imposed by classical FV or 
else face inefficient (if not diverging) solution processes. 

But the industrial relevance of MVE goes beyond that. In the fast-
growing field of numerical optimization, the mesh-independent nature of 
MVE implies that, when running optimal control or shape optimization 
algorithms, one needs not worry about grid quality deterioration caused 
by mesh morphing algorithms (such aspect is highlighted by e.g. [1,2]). 
More importantly, the intrinsic stability and robustness of MVE may 
come into play when solving the adjoint flow equations, an increasingly 
popular technique to compute gradients in gradient-based optimization 
currently facing convergence/robustness issues in its continuous 
version, and reliability issues in its discrete version; this is in fact what 
motivated our research in the first place. 

In our previous work [27] we derived our own MVE scheme, accurate to 
2nd-order for diffusion-type problems and 1st-order for convection-
diffusion; we hereby rename our scheme Mixed Hybrid Finite Volumes 
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(MHFV), which we find more appropriate considering the way we 
typically approach the issue – by parallelism with classical FV. In the 
present work, after recalling the key aspects of our method (Section 2), 
we introduce in Section 3 an extension to 2nd-order accuracy for 
convective terms and discuss in Section 4 various strategies aimed at 
dealing with the arising stability issues. Next (Section 5 and 7) we 
introduce for the first time a 2nd-order accurate MHFV scheme for the 
incompressible steady-state Navier-Stokes equations. We also derive in 
Section 6 a MHFV version of the SIMPLEC segregated algorithm for 
cases where a direct solution is unfeasible – which is expected to 
always be the case at an industrial level. Validation, numerical results, 
conclusions and prompts for future work are reported in Section 8 
through 12. 

 

2. Principles of Mixed Virtual Elements 

We outline in this section, in a simplified fashion, the main theoretical 
findings leading to the construction of a generic MVE discretization 
scheme, with particular emphasis on those features that are distinctive 
of our own approach whilst leaving rigorous demonstrations to previous 
literature [5,11,20]. 

In this context, it is customary [11,15,20,22] to start by considering the 
pure anisotropic diffusion equation: 

∇ ⋅ (−𝕂∇𝜑) = 𝑓 (1) 

where 𝜑 is the (scalar) unknown, 𝕂 the diffusivity tensor (hence the 
anisotropy) and 𝑓 the source term; we omit boundary conditions for 
simplicity. We rewrite (1) as a system of two 1st-order equations (mixed 
formulation): 

{
𝑽 = −𝕂∇𝜑
∇ ⋅ 𝑽 = 𝑓    

 (2) 

where we introduced the vector variable 𝑽, the (negative) gradient of 𝜑 
scaled by the diffusivity tensor. 

Let us now consider a FV-like discretized domain Ωℎ containing 𝑛𝐶 cells 
and 𝑛𝐹 faces. We define the discrete space 𝑸𝒉 where we represent 
scalar variables as cell-averaged (3-cochains): 

𝜑𝐶 =
1

|𝐶|
∫ 𝜑 𝑑𝑉                ∀𝜑𝐶 ∈ 𝑸𝒉
𝐶

 (3) 



(with |𝐶| being the cell volume), and space 𝑿𝒉 where vector-valued 
variables are represented by their fluxes across faces (2-cochains): 

𝑽𝐹←𝐶 =∫ 𝑽 ⋅ 𝒏𝐹𝐶  𝑑S                ∀𝑽𝐹⟵𝐶 ∈ 𝑿𝒉
𝐹

 (4) 

where the “𝐹 ← 𝐶” subscript stands for “flux through face 𝐹 outward 

w.r.t. cell 𝐶” and 𝒏𝐹𝐶 is the unit normal vector to 𝐹 outward w.r.t. 𝐶. We 
also introduce the existence of face-averaged discrete scalars (hybrid 
variables): 

𝜑𝐹 =
1

|𝐹|
∫ 𝜑 𝑑S
𝐹

 (5) 

with |𝐹| being the face area. 

We now want to define a consistent approximation to the constitutional 
equation (first equation in system (2)), i.e. some discrete flux operator 

mapping from discrete scalar variables in 𝑸𝒉 to discrete fluxes in 𝑿𝒉. 

In classical FE, one would typically rewrite the constitutional equation in 
weak formulation: 

∫ 𝕂−1𝑽 ⋅ 𝑾𝑑𝑉
𝐶

= −∫ ∇𝜑 ⋅𝑾𝑑𝑉
𝐶

                ∀𝑾 ∈ 𝑿 (6) 

and subsequently use shape functions 𝐿𝐶 to reconstruct vector fields 𝑽 

and 𝑾 inside cell 𝐶 from their discrete face fluxes. The l.h.s. of (6) 
would then be discretized as: 

∫ 𝕂−1𝐿𝐶(𝑽𝐹)𝜕𝐶 ⋅ 𝐿𝐶(𝑾𝐹)𝜕𝐶𝑑𝑉
𝐶

                ∀𝑾𝐹 ∈ 𝑿𝒉 (7) 

where (𝑽𝐹)𝜕𝐶 is intended as the array holding all values 𝑽𝐹←𝐶, i.e. fluxes 
across each face belonging to cell 𝐶. 

The core idea of MVE is to construct, for each cell, a local (SPD) 

operator 𝕄𝐶 such that the following holds: 

𝕄𝐶(𝑽𝐹)𝜕𝐶 ⋅ (𝑾𝐹)𝜕𝐶 = ∫ 𝕂−1𝐿𝐶(𝑽𝐹)𝜕𝐶 ⋅ 𝐿𝐶(𝑾𝐹)𝜕𝐶𝑑𝑉
𝐶

 (8) 

In other words, as explained in [6], we want to bypass the step of 

explicitly defining shape functions 𝐿𝐶, which can be difficult for complex 
geometries, and equip space 𝑿𝒉 with a discrete scalar product, defined 
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on each cell by a matrix 𝕄C which implies the existence of said shape 
functions (hence the virtual nature of the method). More precisely, since 
𝕄𝐶 includes for convenience the inverse of the diffusivity tensor 𝕂, it is 
in fact a material-dependent scalar product. It is useful to introduce the 
following notation for such scalar product: 

[𝑽,𝑾]𝐶
𝑿𝒉,𝕂 =𝕄𝐶(𝑽𝐹)𝜕𝐶 ⋅ (𝑾𝐹)𝜕𝐶 (9) 

It has been shown [9] that any 𝕄𝐶 is indeed associated with a linearly 
consistent reconstruction provided that it satisfies the following two 
conditions: 

1.  Local consistency: 

[𝕂𝐶∇𝜑
𝐼 ,𝑾]𝐶

𝑿𝒉,𝕂 +∫ 𝜑𝐼𝐷𝐼𝑉𝐶(𝑾)𝑑𝑉
𝐶

= ∑ 𝑾𝐹⟵𝐶

1

|𝐹|
∫ 𝜑𝐼𝑑𝑆
𝐹𝐹∈𝜕𝐶

 (10) 

i.e. the Green-Gauss formula is satisfied at a discrete level and 

must be exact for a linear function 𝜑𝐼 (here 𝐷𝐼𝑉𝐶 is some discrete 
divergence operator which we shall define later, and 𝕂𝐶 is the cell-
averaged diffusivity tensor); 

2.  Stability: 

𝑠∗ ∑|𝐶|𝑾𝐹⟵𝐶
2

𝐹∈𝜕𝐶

≤ [𝑾,𝑾]𝐶
𝑿𝒉,𝕂 ≤ 𝑆∗ ∑|𝐶|𝑾𝐹⟵𝐶

2

𝐹∈𝜕𝐶

 (11) 

 i.e. the scalar product shall not vanish nor become unbound. 

Several ways have been suggested to compute a suitable 𝕄𝐶 [5,11,20]; 
we present here our own approach, leading to our MHFV scheme. We 
start by defining an average operator applicable to discrete fluxes: 

< 𝑽 >𝐶=
1

|𝐶|
∑ 𝑽𝐹⟵𝐶(𝒙𝐹 − 𝒙𝐶)

𝐹∈𝜕𝐶

 (12) 

where 𝒙𝐹 and 𝒙𝐶 are the face and cell centroids, respectively. Then we 
build a first expression for the scalar product based on (12): 

[𝑽,𝑾]𝐶
𝑿𝒉,𝕂,𝑎𝑣𝑔 = |𝐶|𝕂𝐶

−1 < 𝑽 >𝐶⋅< 𝑾 >𝐶 (13) 

Now, while (13) is evidently linearly consistent, in general it does not 
satisfy the stability condition; most notably it can give rise to zero-
energy modes, as we showed in [27]. Thus we introduce the following 
stabilization term: 



𝑅𝐶(𝑽,𝑾) =                                                                                                      

∑ 𝜆𝐹𝐶(𝑽𝐹⟵𝐶 − |𝐹| < 𝑽 >𝐶⋅ 𝒏𝐹𝐶)

𝐹∈𝜕𝐶

(𝑾𝐹⟵𝐶 − |𝐹| < 𝑾 >𝐶⋅ 𝒏𝐹𝐶)
 (14) 

where 𝜆𝐹𝐶 is some face weight which we shall discuss later. Hence the 
complete scalar product is expressed as: 

[𝑽,𝑾]𝐶
𝑿𝒉,𝕂 = [𝑽,𝑾]𝐶

𝑿𝒉,𝕂,𝑎𝑣𝑔 + 𝑅𝐶(𝑽,𝑾) (15) 

It is easy to verify that (15) is stable whilst still satisfying the consistency 
condition, since 𝑅𝐶(𝑽,𝑾) vanishes when either 𝑽 or 𝑾 is the gradient of 
a linear function. 

Having defined a suitable 𝕄𝐶, and introducing now a discrete 
divergence operator: 

𝐷𝐼𝑉𝐶(𝑽) =
1

|𝐶|
∑ 𝑽𝐹⟵𝐶

𝐹∈𝜕𝐶

 (16) 

we can derive the discrete flux operator by injecting (16) and (15) in the 
discrete Green-Gauss (10) thus yielding, after some manipulation: 

(𝑽𝐹)𝜕𝐶 = 𝕄𝐶
−1(𝜑𝐶 − 𝜑𝐹)𝜕𝐶                 ∀𝐶 ∈ Ωℎ (17) 

This is a local discrete form of the constitutional equation in system (2). 
We observe that, since (17) constitutes a mapping from 1-cochains 

(gradients along lines (𝒙𝐹 − 𝒙𝐶)) to 2-cochains (face fluxes), it falls 
within the definition of Hodge star operator. 

The Poisson equation (second equation in (2)) is easily discretized via 
the divergence operator (16): 

∑ 𝑽𝐹⟵𝐶 = |𝐶|𝑓𝐶
𝐹∈𝜕𝐶

                ∀𝐶 ∈ Ωℎ (18) 

The system is then closed by imposing flux conservation across each 
face: 

𝑽𝐹⟵𝐶+ + 𝑽𝐹⟵𝐶− = 0                ∀𝐹 ∈ Ωℎ (19) 

where 𝐶+ and 𝐶− denote the two cells connected by face 𝐹. 

In order to assemble and solve the resulting discrete system; we 
typically favour the following approach: 
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1. replace flux operator (17) in the discrete Poisson equation (18) 

to obtain an expression of 𝜑𝐶 in function of (𝜑𝐹)𝜕𝐶; 

2. re-inject in (17) to eliminate 𝜑𝐶; 

3. impose flux conservation (19) for each face in Ωℎ. 

This way we eliminate all but the hybrid variables 𝜑𝐹 and we are left to 
solve a SPD system which scales with 𝑛𝐹: 

𝓐𝕂(𝜑𝐹)𝐹∈Ωℎ = (𝑟ℎ𝑠𝐹
𝑓,𝕂
)
𝐹∈Ωℎ

 (20) 

𝓐𝕂 thus represents the MHFV Laplacian operator, whereas the r.h.s. 
stems from the hybridization procedure described above (we omit here 

its exact expression). Notice that 𝓐𝕂 is a 𝑛𝐹 × 𝑛𝐹 SPD sparse matrix 
whose sparsity pattern is given by the linking of each face 𝐹 with all 
faces belonging to its neighbouring cells 𝐶+ and 𝐶−, as in the stencil 
shown in Figure 1. 

 

Figure 1:  Example of stencil for a MHFV operator on a generic 2D mesh. 

Before moving forward it is worth mentioning that, when the scalar 

product matrix 𝕄𝐶 is derived following the procedure described above, 
the action of its inverse can be expressed as a combination of two 

linearly consistent approximate gradients of 𝜑, ∇𝐶
𝒢
𝜑 and ∇𝐶

ℒ𝜑, based on 

the Green-Gauss formula and the least-squares approach respectively: 

𝑽𝐹⟵𝐶 = −|𝐹|𝕂𝐶∇𝐶
𝒢
𝜑 ⋅ 𝒏𝐹𝐶 −

1

𝜆𝐹𝐶
{𝜑𝐹 − 𝜑𝐶 − ∇𝐶

ℒ𝜑 ⋅ (𝒙𝐹 − 𝒙𝐶)} (21) 

We provided a demonstration of such result in [27], also noticing that 
(21) is similar to the stabilized flux expression found in [28]. The weight 
(𝜆𝐹𝐶)

−1 comes from the stabilization term (14) and coincides with the 



one used for the least-squares gradient reconstruction: ∇𝐶
ℒ𝜑. Expression 

(21) also suggests 2nd-order accuracy of the scheme for variables 𝜑𝐹 
and 𝜑𝐶, a result theoretically proven by [4] which we also investigated 
via numerical experiments in [27]. 

One has a certain freedom of choice regarding the exact expression of 
𝜆𝐹𝐶; considering (15) it is reasonable to demand for it to scale with 
(ℎ 𝕂𝐶)

−1, with ℎ being some local characteristic length; on the other 
hand, as we showed in [27], a certain parallelism can be identified 
between (21) and the classical FV gradient approximation with Non-
Orthogonal Correctors (NOCs, see e.g. [19]), thus suggesting a 

collection of choices for 𝜆𝐹𝐶 based on various NOC expressions. We 
tested and compared a number of these in [27] and concluded that 
there was no distinct superiority of one choice over another. In the 
present work we shall employ a weight of type “over-relaxed” in the 
form: 

𝜆𝐹𝐶 =
|(𝒙𝐹 − 𝒙𝐶) ⋅ 𝒏𝐹𝐶|

|𝐹| |𝕂𝐶𝒏𝐹𝐶 ⋅ 𝒏𝐹𝐶|
 (22) 

 

3. MHFV for Convection-Diffusion 

It was shown in the previous section how our MHFV scheme is derived 
for the pure anisotropic diffusion equation. Much more relevant to CFD 
is the convection-diffusion equation: 

∇ ⋅ (−𝕂∇𝜑 + 𝑼𝜑) = 𝑓 (23) 

with 𝑼 being the convective velocity field. Again, we first rewrite it in 
mixed formulation: 

{
𝑽 = −𝕂∇𝜑 + 𝑼𝜑
∇ ⋅ 𝑽 = 𝑓                

 (24) 

Notice that vector variable 𝑽 is now a combination of both the (still 
anisotropic) diffusive flow and the convective flow. Since (17) already 
provides an approximate relationship between diffusive fluxes and (cell-
averaged and hybrid) scalar values for a given cell, we simply need to 
add a convective term to said fluxes. 

Given the definition of convective flux: 

𝑽𝐹
𝑐𝑛𝑣 =∫ 𝜑𝑼 ⋅ 𝒏𝐹𝐶𝑑𝛴

𝐹

 (25) 
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it would seem natural to define its discrete counterpart as: 

𝑽𝐹⟵𝐶
𝑐𝑛𝑣 = 𝜑𝐹𝜱𝐹𝐶 (26) 

with: 

𝜱𝐹𝐶 = ∫ 𝑼 ⋅ 𝒏𝐹𝐶𝑑𝛴
𝐹

 (27) 

i.e. 𝜱𝐹𝐶 is the projection of the convective velocity onto space 𝑿𝒉 and 
𝜑𝐹 is the previously introduced hybrid variable, representing the face-
averaged scalar; we shall refer to scheme (26) as hybrid centered. 

This approach however, as noted by [10], is affected by the very same 
issues encountered in classical FV centered convective schemes: 
numerical instabilities manifest themselves when we operate at high 
Peclet numbers, unless the mesh is sufficiently refined – which is not 
always feasible, especially for large, industrial cases. 

Therefore, much like in FV, in order to stabilize the scheme we can 
resort to upwinding techniques. The difference is that, as pointed out by 
[13], we can take the advantage of the existence of the hybrid variable 

𝜑𝐹 as a natural unknown of the problem. This is expected to improve 
accuracy compared to classical FV, which typically deals with cell-
averaged scalars only. 

Following [10], in our previous work [27] we described a number of 
centered and 1st-order upwind schemes and implemented a unified 
framework to handle them. For the purpose of this work we shall only 
recall what we named the hybrid 1st-order upwind strategy, defining the 

discrete convective flux across face 𝐹 as: 

𝑽𝐹⟵𝐶
𝑐𝑛𝑣 = 𝜦𝐹𝐶𝜑𝐹 + (𝜱𝐹𝐶 − 𝜦𝐹𝐶)𝜑𝐶

 
𝑤ℎ𝑒𝑟𝑒     𝜦𝐹𝐶 = min(0,𝜱𝐹𝐶)

 (28) 

That is: the scalar quantity convected across 𝐹 is taken as the cell-
averaged value of 𝜑 if 𝐶 is upwind w.r.t. 𝐹, and its face-averaged value 
(i.e. the hybrid variable) otherwise. 

We may now add together convective and diffusive fluxes and rewrite 
expression (17) for the total fluxes in the form: 

(𝑽𝐹)𝜕𝐶 = ℕ𝐶(𝜑𝐶 − 𝜑𝐹)𝜕𝐶 + (𝜱𝐹𝐶)𝜕𝐶𝜑𝐶                 ∀𝐶 ∈ Ωℎ
 

𝑤ℎ𝑒𝑟𝑒     ℕ𝐶 = 𝕄𝐶
−1 − diag(𝜦𝐹𝐶)𝜕𝐶

 (29) 



It is possible at this point to proceed as we did for the pure diffusion 
case, i.e. by eliminating cell-averaged scalars and flux variables via the 
discrete Poisson equation (18) and flux conservation (19) to assemble a 

linear system covering the whole mesh Ωℎ: 

𝓕𝕂,𝛷(𝜑𝐹)𝐹∈Ωℎ = (𝑟ℎ𝑠𝐹
𝑓,𝕂,𝛷

)
𝐹∈Ωℎ

 (30) 

Here 𝓕𝕂,𝛷 is the MHFV convection-diffusion operator; unlike the 

Laplacian operator 𝓐𝕂, 𝓕𝕂,𝛷 is not symmetric, but it is still non-singular 

and fairly easy to deal with for a standard linear solver. 

Now, as mentioned above, the pure diffusion scheme is 2nd-order 

accurate for scalar 𝜑; whilst this still holds true for a hybrid centered 
convection strategy, unfortunately the introduction of 1st-order upwind 
significantly affects ℎ-convergence properties of the scheme. Moreover, 
numerical results (see Section 9 and 10) show how solution precision is 
also degraded due to the phenomenon of numerical diffusion, a well-
known issue in classical FV. 

Hence we introduce here an extension of the MHFV convection-
diffusion operator to formally 2nd-order accuracy, partially inspired by 
[15,28]. In classical FV, a 2nd-order convective scheme typically 
operates as follows: for a given face 𝐹 interfacing cells C+ and C–, the 

quantity transported across 𝐹 is taken as a reconstruction of the face 
value of φ based on an approximate gradient (e.g. least-squares) 
evaluated in whichever of the two nodes 𝐶+ and 𝐶− lies upwind w.r.t. 𝐹. 

We can consider a similar approach in MHFV whilst still taking 
advantage of the extra degrees of freedom we have available, that is: if 

𝐶 is downwind w.r.t. 𝐹, then we identify the transported quantity with the 
hybrid variable 𝜑𝐹 as in the 1st-order scheme, whereas if we are upwind 
then we approximate it based on some gradient reconstruction in 𝐶. 
This leads to the following formulation for the total fluxes: 

(𝑽𝐹)𝜕𝐶 = ℕ𝐶(𝜑𝐶 − 𝜑𝐹)𝜕𝐶 + (𝜱𝐹𝐶)𝜕𝐶𝜑𝐶 +                                      

        {𝜣𝐹𝐶  ∇𝐶
ℒ𝜑 ⋅ (𝒙𝐹 − 𝒙𝐶)}𝜕𝐶                          ∀𝐶 ∈ Ωℎ

 (31) 

where we introduced for convenience the notation: 

𝜣𝐹𝐶 =𝜱𝐹𝐶 − 𝜦𝐹𝐶
𝑖. 𝑒.

𝜣𝐹𝐶 =max(0,𝜱𝐹𝐶)
 (32) 

The choice of a least-squares gradient in (31) is not arbitrary: the local 

operator ℕC already contains a term stemming from a least-squares 
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approximation as part of the MHFV diffusive flux (see (21)); in practice, 

calculating the contribution of such term to the coefficients of ℕC 
requires inverting (in 3D) a 3 × 3 matrix for each cell; hence it is 
computationally convenient to simply reuse the same approximate 

gradient, i.e. ∇𝐶
ℒ𝜑 weighted via (𝜆𝐹𝐶)

−1, and lump together diffusive and 
convective contributions. To clarify, we rewrite the one-sided flux 
expression (21) with the addition of a 2nd-order upwind convective term: 

𝑽𝐹⟵𝐶 = −|𝐹|𝕂𝐶∇𝐶
𝒢
𝜑 ⋅ 𝒏𝐹𝐶 + 𝜦𝐹𝐶𝜑𝐹 + 𝜣𝐹𝐶𝜑𝐶 −

𝜑𝐹 −𝜑𝐶
𝜆𝐹𝐶

+ (𝜣𝐹𝐶 +
1

𝜆𝐹𝐶
) ∇𝐶

ℒ𝜑 ⋅ (𝒙𝐹 − 𝒙𝐶) 
(33) 

Compared to classical FV, the convection strategy outlined above 
brings about some considerable advantages: besides still maintaining 
the aforementioned freedom on grid geometry, it is also worth noticing 
that, in MHFV, going from 1st to 2nd-order upwind does not require any 
modification to local stencils (see Figure 1) as these already suffice to 
construct a 2nd-order accurate scheme. In classical FV such operation 
entails a modification to the mesh connectivity; it is common practice to 
maintain a 1st-order stencil in the system matrix and treat the 
approximate gradients explicitly, i.e. via deferred correction as done for 
NOCs [19], which in turns not only requires an iterative procedure 
(unnecessary in MHFV, since we maintain a fully implicit scheme) but 
may also contribute to an overall convergence slowdown when solving 
for nonlinear flow equations such as Navier-Stokes. 

 

4. Flux Limiters and Stabilizing Techniques 

The usage of approximate gradients in 2nd-order upwind schemes is 
known to cause certain issues when solving on coarser grids, namely 
the appearance of nonphysical oscillations in the numerical solution. 
They manifest themselves especially in proximity of steep gradients or 
near-discontinuities, due to the fact that reconstructed gradients involve 
values on both sides of said discontinuities; unfortunately the issue 
affects MHFV as much as any other method. 

A number of strategies have been devised in the past to circumvent the 
problem. Arguably the most widely employed in FV is flux limiting, which 

operates by expressing the convective flux across face 𝐹 as: 

𝑽𝐹⟵𝐶
𝑐𝑛𝑣,𝑙𝑖𝑚 = 𝜦𝐹𝐶𝜑𝐹 + 𝜣𝐹𝐶{𝜑𝐶 + 𝜃𝐶∇𝐶

ℒ𝜑 ⋅ (𝒙𝐹 − 𝒙𝐶)} (34) 



i.e. the reconstructed gradient value is limited by factor 𝜃𝐶 (0 ≤ 𝜃𝐶 ≤ 1) 
computed such that it prevents the formation of new local extrema in 

the solution field. There is a vast choice regarding the expression of 𝜃𝐶; 
we choose here to investigate the effects of the Venkatakrishnan limiter 

[31], which operates over cell 𝐶 as follows: 

1. find 𝛿𝜑𝐶
𝑚𝑖𝑛 and 𝛿𝜑𝐶

𝑚𝑎𝑥, the largest negative and positive values 

of (𝜑𝐶′ − 𝜑𝐶), with 𝐶′ being neighbour cells of 𝐶; 

2. use the least-squares gradient to reconstruct face values: 

𝜑𝐹′ = 𝜑𝐶 + ∇𝐶
ℒ𝜑 ⋅ (𝒙𝐹′ − 𝒙𝐶)     ∀𝐹

′ ∈ 𝜕𝐶; 

3. compute for each 𝐹′: 

        

𝜃𝐹′ = {

𝛾𝐹′
2 + 2𝛾𝐹′

𝛾𝐹′
2 + 𝛾𝐹′ + 2

          𝑖𝑓 𝜑𝐹′ − 𝜑𝐶 ≠ 0

1                                𝑖𝑓 𝜑𝐹′ − 𝜑𝐶 = 0

𝑤ℎ𝑒𝑟𝑒:

𝛾𝐹′ =

{
 
 

 
 𝛿𝜑𝐶

𝑚𝑎𝑥

𝜑𝐹′ − 𝜑𝐶
          𝑖𝑓 𝜑𝐹′ − 𝜑𝐶 > 0

𝛿𝜑𝐶
𝑚𝑖𝑛

𝜑𝐹′ − 𝜑𝐶
          𝑖𝑓 𝜑𝐹′ − 𝜑𝐶 < 0

  

4. select 𝜃𝐶 = min(𝜃𝐹′)F∈∂C 

The procedure is a differentiable version of the Barth-Jespersen limiter 

[3], which ensures that reconstructed face values of 𝜑 are bounded by 

cell values found in the neighbours of 𝐶; in other words, it ensures 
solution monotonicity, as explained in [26]. The method is easily 
translated to MHFV, with the addition that, thanks to the extra degrees 
of freedom available, we can also think of a second version of the 
limiter where we limit by face-averaged rather than cell-averaged 

values, i.e. by redefining 𝛿𝜑𝐶
𝑚𝑖𝑛 and 𝛿𝜑𝐶

𝑚𝑎𝑥 respectively as the min and 

max of (𝜑𝐹 − 𝜑𝐶)𝐹∈𝜕𝐶. To distinguish the two versions, in the sequel we 
shall refer to them as cell-bounded and face-bounded. 

Limiters effectively eliminate all oscillations in the solution field, 
enforcing monotonicity, but they are known to affect the order of 
accuracy. An interesting alternative to flux limiting is the family of so-
called Essentially Non-Oscillatory and Weighted Essentially Non-
Oscillatory schemes (ENO and WENO) [18,25]; the core idea of ENO is 
to compute the approximate gradient based on a local stencil selected 
such that it does not cross discontinuities; similarly, WENO schemes 
reconstruct gradients over several stencils and perform a weighted 
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combination of these, with weights favouring those stencils lying on 
smoother areas. It has been shown how ENO and WENO schemes 
manage to restrict the amplitude of nonphysical oscillations in the 
solution. 

A similar concept, although easier to implement on unstructured grids, 
gives rise to the Weighted Least-Squares (WLSQR) approach [16]: 
rather than tampering with local stencils, WLSQR operates by making 
use, for least-squares gradient reconstruction, of weights designed to 
strongly favour those nodes that would constitute the corresponding 
ENO stencil. Such weights, defined in previous literature for classical 
FV, are adapted to MHFV as follows: 

𝜔𝐹𝐶 = √
ℎ𝑎

|
𝜑𝐹−𝜑𝐶

ℎ
|
𝑏
+ℎ𝑐

        𝑤ℎ𝑒𝑟𝑒          ℎ = |𝒙𝐹 − 𝒙𝐶|  (35) 

with exponents 𝑎 = −1, 𝑏 = 4 and 𝑐 = −2 determined empirically based 
on numerical results (see Section 9). Subsequently the weights 𝜆𝐹𝐶 
used in (33) are replaced by: 

𝜆𝐹𝐶
𝑊𝐿𝑆𝑄𝑅 =

𝜆𝐹𝐶 (1+𝜆𝐹𝐶𝜔𝐹𝐶)max

1+𝜆𝐹𝐶𝜔𝐹𝐶
  (36) 

Notice that multiplying by (1 + 𝜆𝐹𝐶𝜔𝐹𝐶)max = 1 +max(𝜆𝐹𝐶𝜔𝐹𝐶)𝜕𝐶 entails 
a normalization procedure. While this is not necessary in classical FV, it 

is paramount in our case because  𝜆𝐹𝐶
𝑊𝐿𝑆𝑄𝑅

 is not only the (inverse of 

the) weight used for least-squares gradient reconstruction, but also the 
scaling factor for the stabilization term (14) defined as having a certain 
dimensionality that must be maintained. Our choice of normalizing by 

the maximum value of 𝜔𝐹𝐶 implies that the value of (𝜆𝐹𝐶)
−1 will be left 

unmodified where the solution field is smooth, and reduced for faces 
placed across steep gradients/discontinuities. 

WLSQR fits well within a classical FV framework; similar ideas have 
also been developed for FE schemes. An example is the Streamline-
Upwind Petrov-Galerkin (SUPG) strategy [8]. For the purpose of this 
paper we provide the following simplified interpretation of SUPG: 

1. 1st-order upwind schemes can be thought of as centered 
schemes with added artificial diffusivity, which yields stability; 

2. artificial diffusivity in FV is however isotropic, i.e. it acts equally 
in all directions thus producing excessively diffusive results in 
the crosswind direction, thus degrading accuracy in 
convection-dominated problems; 



3. rather than upwinding, we can therefore consider a centered 
scheme with an artificially increased diffusivity acting 
exclusively in the convective streamline direction. 

Our MHFV framework swiftly lends itself to SUPG implementation, as it 
already encompasses anisotropic diffusivity. More specifically, it 
requires modifying the cell-averaged diffusivity tensor as follows: 

𝕂𝐶
𝑆𝑈𝑃𝐺 = 𝕂𝐶 + 𝜏𝐶(𝑼𝐶⊗𝑼𝐶) (37) 

with 𝑼𝐶 being the cell-averaged convective velocity and 𝜏𝐶 some SUPG 
stabilization parameter. The exact expression of 𝜏𝐶, at least for generic 
meshes, is rather vague and heuristic in nature. We provide here a 
definition of our own: 

𝜏𝐶 =
∑ (𝜣𝐹𝐶|𝒙𝐹 − 𝒙𝐶|

2)𝐹∈𝜕𝐶

|𝐶| |𝑼𝐶|2
 (38) 

Our formulation is derived via the following argument: we want to 
introduce an amount of streamline dissipation roughly equivalent to that 
caused by 1st-order upwinding. We first consider the energy associated 
to the convective term: 

𝐸 = ∑ ∑ 𝑽𝐹⟵𝐶
𝑐𝑛𝑣

𝐹∈𝜕𝐶

𝜑𝐶
𝐶∈𝛺ℎ

 (39) 

which we can rewrite as: 

𝐸 ≈ ∑ ∑ 𝑽𝐹⟵𝐶
𝑐𝑛𝑣

𝐹∈𝜕𝐶

(𝜑𝐶 − 𝜑𝐹)

𝐶∈𝛺ℎ

 (40) 

(the jump from (39) to (40) is fairly legitimate since all 𝜑𝐹 will cancel 
each other out, apart from boundary values which we neglect since we 
are only interested in a dimensional analysis). Assuming a 1st-order 
upwind scheme (28), we have: 

𝐸 ≈ ∑ ∑ [(𝜣𝐹𝐶𝜑𝐶 + 𝜦𝐹𝐶𝜑𝐹)(𝜑𝐶 − 𝜑𝐹)]

𝐹∈𝜕𝐶𝐶∈𝛺ℎ

 

    ≈ ∑ ∑ [(𝜣𝐹𝐶(𝜑𝐹 + 𝜑𝐶 − 𝜑𝐹) + 𝜦𝐹𝐶𝜑𝐹)(𝜑𝐶 − 𝜑𝐹)]

𝐹∈𝜕𝐶𝐶∈𝛺ℎ

 

    ≈ ∑ ∑ [𝜱𝐹𝐶𝜑𝐹(𝜑𝐶 − 𝜑𝐹)+𝜣𝐹𝐶(𝜑𝐶 − 𝜑𝐹)
2]

𝐹∈𝜕𝐶𝐶∈𝛺ℎ

 

(41) 
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Getting rid of ∑ [𝜱𝐹𝐶𝜑𝐹(𝜑𝐶 − 𝜑𝐹)]𝐹∈𝜕𝐶 , which corresponds to a centered 

(i.e. non-dissipative) approximation to ∫ 𝜑∇ ⋅ (𝑼𝜑)
𝜕𝐶

, we can express the 

added dissipation as: 

𝐸𝑑𝑖𝑠𝑠 = ∑ ∑ [𝜣𝐹𝐶(𝜑𝐶 − 𝜑𝐹)
2]

𝐹∈𝜕𝐶𝐶∈𝛺ℎ

 (42) 

Noticing that (𝜑𝐶 − 𝜑𝐹) is 1st-order equivalent to ∇𝐶𝜑 ⋅ (𝒙𝐹 − 𝒙𝐶), we 
may manipulate (42) it into the form: 

𝐸𝑑𝑖𝑠𝑠 = ∑ ℚ𝐶∇𝐶𝜑 ⋅ ∇𝐶𝜑

𝐶∈𝛺ℎ

 (43) 

with ℚ𝐶 being (in 3D) a 3 × 3 matrix. Since (43) is the diffusion-like 
expression we want our 𝜏𝐶 to scale with, we take as an indicator of its 
magnitude the trace of ℚ𝐶 divided by the number of spatial dimensions, 
which can be shown to be: 

trace(ℚ𝐶)

3
= ∑ (𝜣𝐹𝐶|𝒙𝐹 − 𝒙𝐶|

2)

𝐹∈𝜕𝐶

 (44) 

and lastly we divide by (|𝐶| |𝑼𝐶|
2) in order to be consistent dimension-

wise with (37), thus yielding (38). 

Inspired by the key concepts of both WLSQR and SUPG, we now 
introduce a novel stabilization technique that we shall name Upwind 
Least-Squares (ULSQR). This new method is based on the same basic 
idea as SUPG, in the sense that it stabilizes in the streamline direction; 
however, rather than using a centered scheme with modified diffusivity, 
we maintain a 2nd-order upwind approximation and we act on the least-
squares weights, as WLSQR does, in an attempt to recreate an 
equivalent of the stabilizing effects of SUPG. More specifically, in the 

one-sided flux expression (33) we replace weights 𝜆𝐹𝐶 with: 

𝜆𝐹𝐶
𝑈𝐿𝑆𝑄𝑅 =

𝜆𝐹𝐶
1 + 𝜆𝐹𝐶|𝜦𝐹𝐶|

 (45) 

Notice that, since 𝜦𝐹𝐶 = 0 if 𝐹 is downwind w.r.t. 𝐶, the modification only 
affects the upwind faces, hence the method’s name. In other words, 
besides using an upwind scheme, we also compute an upwind-biased 
gradient reconstruction. On an upwind face, such bias is proportional to 
the dimensionless quantity: 

𝑃𝑒𝐹𝐶 ∶= 𝜆𝐹𝐶|𝜦𝐹𝐶| (46) 



which is evidently a local Peclet number. Therefore, since the weight 

employed in least-squares reconstruction is in fact (𝜆𝐹𝐶
𝑈𝐿𝑆𝑄𝑅)

−1
, it follows 

that the more the problem is convection-dominated, the stronger the 
upwind bias will be. We argue that, compared to WLSQR, ULSQR may 
be just as heuristic but it fits more elegantly within the MHFV scheme, 
namely because: 

1. since 𝑃𝑒𝐹𝐶 is dimensionless, expression (45) does not affect 
the weights’ dimension, meaning that no further weight 
normalization is required; 

2. ULSQR is perhaps less empirical, as it is based on quantities 
directly related to the problem’s physics; conversely, our 
version of WLSQR relies on empirical determination of 
exponents in (35) based on numerical results that may be 
case-dependent; 

3. like SUPG, ULSQR is also solution-independent, hence it does 
not affect the fully implicit nature of the MHFV scheme. 

 

5. MHFV for Navier-Stokes 

The schemes implemented in the previous sections provide all tools 
necessary to discretize the steady-state, incompressible Navier-Stokes 

equations (where we denote by 𝒈 the vector of body forces): 

{
𝑼 ⋅ ∇𝑼 − 𝜈∇ ⋅ ∇𝑼 + ∇𝑝 = 𝒈
∇ ⋅ 𝑼 = 0                                  

  (47) 

Let us start with the momentum equations. In each direction 𝑥, 𝑦, 𝑧, 
they can be seen as a convection-diffusion equation for their respective 

velocity components 𝑢, 𝑣, 𝑤, with respective components of ∇𝑝 acting 
as source term. In the following we shall take for instance the 𝑥-
momentum equation, which reads: 

∇ ⋅ (−𝜈∇𝑢 + 𝑼𝑢) = −∇𝑥𝑝 + 𝑔𝑥 (48) 

This is effectively equivalent to (23), except for a) the anisotropic 

diffusivity tensor 𝕂 is replaced by the scalar kinematic viscosity of the 

fluid, 𝜈, and b) the convective flow field is no longer problem data, but 
rather the unknown 𝑼 itself. 

The l.h.s. of (48) is thus discretized via the previously discussed MHFV 
convection-diffusion operator 𝓕𝜈,𝛷 – with the difference that, here, the 
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convective flow is 𝑼 itself, implying that 𝓕𝜈,𝛷 is a nonlinear operator. 

Away from boundary faces the operator is the same in all three spatial 

directions, hence the complete momentum operator acting on 𝑼 can be 
formally expressed as: 

𝓕𝑼,𝜈,𝛷 = (

𝓕𝜈,𝛷 0 0

0 𝓕𝜈,𝛷 0

0 0 𝓕𝜈,𝛷

) (49) 

As for the pressure gradient, one could think of approximating it over a 
cell via classical FV methods (e.g. Green-Gauss) and then treat it as a 
cell-averaged source term. In this work however we favour an approach 
more consistent with the methodology outlined in the previous sections, 
as also suggested by [12]. We assume the discrete pressure to live in 

space 𝑸𝒉 (cell-averaged scalars), and we write the momentum equation 
in each direction in mixed formulation as follows: 

{
𝚿𝑥 = −𝜈∇𝑢 + 𝑼𝑢 + 𝑝𝒆

𝑥

∇ ⋅ 𝚿𝑥 = 𝑔𝑥                        
 (50) 

where 𝒆𝑥 is the Cartesian basis vector for the 𝑥-direction. Notice that, in 
integral form, (50) is equivalent to (48) since we have: 

∫ ∇ ⋅ (𝑝𝒆𝑥)𝑑𝑉
𝐶

= ∫ 𝑝𝒆𝑥 ⋅ 𝒏
𝜕𝐶

𝑑𝑆 = ∫ ∇𝑥𝑝
𝐶

𝑑𝑉 (51) 

We can therefore define for the discrete momentum equation a 
“complete flux” (in analogy with (31)) which includes the pressure term: 

(𝚿𝑥,𝐹)𝜕𝐶 = ℕ𝐶
(𝑢𝐶 − 𝑢𝐹)𝜕𝐶 + (𝜱𝐹𝐶)𝜕𝐶𝑢𝐶 +                                       

                  {𝜣𝐹𝐶  ∇𝐶
ℒ𝑢 ⋅ (𝒙𝐹 − 𝒙𝐶)}𝜕𝐶 + 𝑝𝐶

(|𝐹|𝑛𝐹𝐶
𝑥 )𝜕𝐶     ∀𝐶 ∈ Ωℎ

 (52) 

where 𝑛𝐹𝐶
𝑥 = 𝒆𝑥 ⋅ 𝒏𝐹𝐶 is the 𝑥 component of 𝒏𝐹𝐶. Then we apply the 

divergence operator to discretize the Poisson equation as earlier: 

∑ 𝚿𝑥,𝐹⟵𝐶 = |𝐶|𝑔𝐶
𝑥                ∀𝐶 ∈ Ωℎ

𝐹∈𝜕𝐶

 (53) 

and finally we impose flux conservation across faces: 

𝚿𝑥,𝐹⟵𝐶+ +𝚿𝑥,𝐹⟵𝐶− = 0                ∀𝐹 ∈ Ωℎ (54) 

(and similarly for the 𝑦 and 𝑧-momentum equations). Now, since the 
discrete continuity equation reads: 



∑ 𝜱𝐹𝐶 = 0

𝐹∈𝜕𝐶

                ∀𝐶 ∈ Ωℎ (55) 

where: 

𝜱𝐹𝐶 = |𝐹|(𝑢𝐹𝑛𝐹𝐶
𝑥 + 𝑣𝐹𝑛𝐹𝐶

𝑦
+ 𝑤𝐹𝑛𝐹𝐶

𝑧 ) (56) 

it is easily verified how the procedure above gives rise to a system in 
the form: 

(
𝓕𝑼,𝜈,𝛷 𝓖

𝓖T 0
) (
𝑼𝐹
𝑝𝑐
) = (𝒓𝒉𝒔𝐹

𝒈,𝜈,𝛷

0
) (57) 

so that the gradient operator acting on the pressure space is the adjoint 
(transpose) of the divergence operator acting on the velocity space. 

Linearization of (57) by freezing convective fluxes 𝜱𝐹𝐶 in the 
momentum equations yields the MHFV version of the so-called discrete 
Oseen problem. One may choose an iterative procedure, entailing 
solution of the whole block-coupled Oseen system (57) followed by an 

update of 𝜱𝐹𝐶 via (56). For most industrial cases, however, the saddle-
point nature of the block-coupled system – together with its prohibitive 
size – makes it difficult for a standard linear solver to deal with. 

Besides, for average industrial applications, the size of the system 
matrix in (57) grows to a point where in practice it becomes difficult to 
stock/handle it efficiently. We discuss in the following section a possible 
solution strategy. 

 

6. SIMPLEC for MHFV 

We begin by reformulating certain concepts typical of classical FV in a 
way that is useful to our purposes. We consider a generic discrete 

Oseen problem (here we use the generic subscript ℎ to indicate that we 
are dealing with discrete variables existing in some finite space): 

(
𝔽𝛷 𝔾
𝔻 0

) (
𝑼ℎ
𝑝ℎ
) = (

0
0
) (58) 

Here, and in the sequel, we simplified things a little by assuming that 
there are no body forces involved, i.e. no source term for the 
momentum equations; extension to a more generic scenario is however 
quite straight-forward. 
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As mentioned above, in general, solving the discrete Navier-Stokes 
equations requires an iterative procedure where, at each iteration, we 
first solve system (58) and then update the convection-diffusion 
operator 𝔽𝛷 with new convective flow values (Picard iteration). We 
mentioned how direct solution to the block-coupled system (58) is 
typically unfeasible, therefore calling for an inner iterative procedure to 
solve the Oseen problem itself. However, since there is no interest in 
obtaining the exact Oseen solution at each Picard iteration, the two are 
typically performed at the same time in a “one-shot” fashion. 

To achieve that, classical FV often make use of the ever-popular 
SIMPLE-like solution algorithms (see e.g. [30]). Despite traditionally 
being presented as “segregated algorithms”, highlighting the fact that 
they solve separately for velocity and pressure, SIMPLE-like strategies 
can in fact be seen as a way of preconditioning the discrete Oseen 
problem. 

Notice that the system matrix in (58) can be factorized as: 

(
𝔽𝛷 𝔾
𝔻 0

) = (
𝔽𝛷 0
𝔻 −𝕊

) (𝐼𝑑 𝔽𝛷
−1𝔾

0 𝐼𝑑
) (59) 

where we introduced the so-called Schur complement: 

𝕊 = 𝔻𝔽𝛷
−1𝔾 (60) 

This suggests an efficient way of preconditioning the Oseen system; in 
fact, an exact Schur complement would provide an exact 
preconditioner, i.e. it would allow us to solve (58) in one iteration only. 

However this would require inverting operator 𝔽𝛷, which given its size 
would be computationally extremely expensive in real-life engineering 
applications. Hence it is common practice to compute an approximate 
Schur complement instead: 

�̂� = 𝔻𝔽𝛷
−1̂𝔾 (61) 

and solve iteratively (relaxing if necessary) as follows: 

1. solve   𝔽𝛷𝑛𝑼ℎ
∗ = −𝔾𝑝ℎ

𝑛   (predictor step for velocity) 

2. solve   �̂�𝛿𝑝ℎ = 𝔻𝑼ℎ
∗    (pseudo-Laplacian for pressure 

increment) 

3. update pressure:   𝑝ℎ
𝑛+1 = 𝑝ℎ

𝑛 + 𝛿𝑝ℎ 

4. update velocity:   𝑼ℎ
𝑛+1 = 𝑼ℎ

∗ − 𝔽𝛷𝑛
−1̂𝔾𝛿𝑝ℎ   (corrector step) 



5. update convective fluxes and assemble new operator 𝔽𝛷𝑛+1   
(Picard step) 

In its most basic implementation, SIMPLE operates by approximating 

the inverse of 𝔽𝛷 with the inverse of its diagonal: 

𝔽𝛷
−1 ≈ 𝔽𝛷

−1̂ = (DIAG(𝔽𝛷))
−1

 (62) 

Let us rephrase that in terms that the reader may be more familiar with. 

Assuming a collocated FV scheme is employed, the discrete 𝑥-
momentum equation for node 𝑃 can be written in the form: 

𝐴𝑃𝑃𝑢𝑃
∗ + ∇𝑃

𝑥𝑝 =∑𝐴𝑃𝑃′𝑢𝑃′
∗

𝜕𝑃

 (63) 

(and similar for 𝑦 and 𝑧), where the subscript 𝑃′ represents any node 
neighbouring with 𝑃. In (63), SIMPLE introduces the approximation: 

𝐴𝑃𝑃𝑢𝑃
∗ −∑𝐴𝑃𝑃′𝑢𝑃′

∗

𝜕𝑃

≈ 𝐴𝑃𝑃𝑢𝑃
∗  (64) 

meaning that, as anticipated, when it comes to inverting the convection-

diffusion operator we consider central coefficients 𝐴𝑃𝑃 only, i.e. the 
diagonal. Lastly, SIMPLE assumes that expression (64) can be “shifted” 
from cells to faces, typically via averaging procedures on coefficients; 

this is necessary as face values of 𝑢 are required in the discrete 
continuity equation. In matrix form, such action is included in the 

divergence operator 𝔻 in (58). 

The popularity of SIMPLE is largely due to the fact that it is easy to 
implement and, for FV, it works reasonably well in most cases; on the 
downside, SIMPLE often requires heavily relaxing both momentum 
equation and pressure correction, making it a rather inefficient 
algorithm. 

A significant improvement upon SIMPLE is SIMPLEC. Adding to (63) 

some form of implicit relaxation by factor 𝛼 yields: 

𝛼𝐴𝑃𝑃(𝑢𝑃
∗ − 𝑢𝑃

𝑛) + 𝐴𝑃𝑃𝑢𝑃
∗ + ∇𝑃

𝑥𝑝𝑛 =∑𝐴𝑃𝑃′𝑢𝑃′
∗

𝜕𝑃

 (65) 

Now, if we introduce the approximation: 𝑢𝑃
∗ ≈ 𝑢𝑃′

∗   ∀𝑃′ (which is 

reasonable for a smooth enough solution field), and taking into account 
that any consistent discretization for steady-state convection-diffusion 
gives 𝐴𝑃𝑃 = ∑ 𝐴𝑃𝑃′𝜕𝑃 , we obtain: 
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𝛼𝐴𝑃𝑃(𝑢𝑃
∗ − 𝑢𝑃

𝑛) + 𝐴𝑃𝑃𝑢𝑃
∗ −∑𝐴𝑃𝑃′𝑢𝑃′

∗

𝜕𝑃

≈  𝛼𝐴𝑃𝑃(𝑢𝑃
∗ − 𝑢𝑃

𝑛) (66) 

which suggests the approximation: 

𝔽𝛷,𝛼
−1 ≈ 𝔽𝛷,𝛼

−1̂ =
1

𝛼
(DIAG(𝔽𝛷))

−1
 (67) 

In other words, rather than dropping extra-diagonal information, 
SIMPLEC lumps it all in the central coefficient and, in the steady-state 
case, yields a pressure equation aimed at correcting the velocity 

increment (𝑢𝑃
∗ − 𝑢𝑃

𝑛) rather than the velocity itself. Barring the addition 
of implicit relaxation to the predictor step, a SIMPLEC iteration is 
identical to the one outlined above for SIMPLE; to be correct, one ought 
to replace 𝔻𝑼ℎ

∗  on the r.h.s. of the pressure equation with 𝔻(𝑼ℎ
∗ − 𝑼ℎ

𝑛), 
but the two are equivalent since 𝔻(𝑼ℎ

𝑛) = 0 by definition. 

Since SIMPLEC acts on relaxed velocity increments, it does not require 
relaxing the pressure correction step, and it is found to be 20-30% 
faster than SIMPLE in many applications. 

Now, in order to translate SIMPLE-like algorithms in the context of 
MHFV, some further considerations are in order. In particular, thanks to 

the existence of hybrid variables 𝑢𝐹, 𝑣𝐹 and 𝑤𝐹, our MHFV divergence 

operator 𝓖T can act directly on them and there is no need to “shift” the 
momentum equation from cell-centered to face-centered. All we have to 
do is to rewrite our operator 𝓕𝑼,𝜈,𝛷 in a form comparable with (63) when 

written for a face, i.e. with the hybrid variable 𝑢𝐹 taking the role of 𝑢𝑃, 
and 𝑢𝐶+ and 𝑢𝐶−, as well as all hybrid values 𝑢𝐹′ belonging to the stencil 

of 𝐹 (Figure 1), taking the role of neighbours 𝑢𝑃′. 

Let us start by taking the one-sided flux expression (33) for a given 

velocity component (once again we use 𝑢 to exemplify and we take a 
2nd-order upwind scheme for convection): 

𝚿𝑥,𝐹⟵𝐶 = −|𝐹|𝜈𝐶∇𝐶
𝒢
𝑢 ⋅ 𝒏𝐹𝐶 + 𝜦𝐹𝐶𝑢𝐹 + 𝜣𝐹𝐶𝑢𝐶 −

𝑢𝐹 − 𝑢𝐶
𝜆𝐹𝐶

 

                +(𝜣𝐹𝐶 +
1

𝜆𝐹𝐶
)∇𝐶

ℒ𝑢 ⋅ (𝒙𝐹 − 𝒙𝐶) + |𝐹|𝑝𝑐𝑛𝐹𝐶
𝑥  

(68) 

We can subsequently write a detailed expression for flux conservation 

across 𝐹: 



{−|𝐹|𝜈𝐶+∇𝐶+
𝒢
𝑢 ⋅ 𝒏𝐹𝐶+ + 𝜦𝐹𝐶+𝑢𝐹 + 𝜣𝐹𝐶+𝑢𝐶+ −

𝑢𝐹 − 𝑢𝐶+

𝜆𝐹𝐶+

+ (𝜣𝐹𝐶+ +
1

𝜆𝐹𝐶+
)∇𝐶+

ℒ 𝑢 ⋅ (𝒙𝐹 − 𝒙𝐶+) + |𝐹|𝑝𝑐+𝑛𝐹𝐶+
𝑥 } 

+{ −|𝐹|𝜈𝐶−∇𝐶−
𝒢
𝑢 ⋅ 𝒏𝐹𝐶− + 𝜦𝐹𝐶−𝑢𝐹 + 𝜣𝐹𝐶−𝑢𝐶− −

𝑢𝐹 − 𝑢𝐶−

𝜆𝐹𝐶−

+ (𝜣𝐹𝐶− +
1

𝜆𝐹𝐶−
) ∇𝐶−

ℒ 𝑢 ⋅ (𝒙𝐹 − 𝒙𝐶−) + |𝐹|𝑝𝑐−𝑛𝐹𝐶−
𝑥 } 

                                              = 0 

(69) 

Now, introducing the following face weight definition: 

𝜇𝐹 ∶=
2𝜆𝐹𝐶+𝜆𝐹𝐶−

𝜆𝐹𝐶+ + 𝜆𝐹𝐶−
 (70) 

and a local Reynolds number: 

𝑅𝑒𝐹 ∶=
𝜇𝐹|𝜱𝐹|

2
𝑤ℎ𝑒𝑟𝑒

|𝜱𝐹| = |𝜱𝐹𝐶+| = |𝜱𝐹𝐶−|

 (71) 

we obtain from (69), after some manipulation: 

2(1 + 𝑅𝑒𝐹)

𝜇𝐹
𝑢𝐹 − |𝐹|𝑛𝐹𝐶+

𝑥 (𝑝𝐶+ − 𝑝𝐶−) =

(𝜣𝐹𝐶+ +
1

𝜆𝐹𝐶+
) [𝑢𝐶+ +    ∇𝐶+

ℒ 𝑢 ⋅ (𝒙𝐹 − 𝒙𝐶+)] +

(𝜣𝐹𝐶− +
1

𝜆𝐹𝐶−
) [𝑢𝐶− +    ∇𝐶−

ℒ 𝑢 ⋅ (𝒙𝐹 − 𝒙𝐶−)] −

|𝐹|(𝜈𝐶+∇𝐶+
𝒢
𝑢 − 𝜈𝐶−∇𝐶−

𝒢
𝑢) ⋅ 𝒏𝐹𝐶+

 (72) 

The parallelism between (72) and (63) is now evident; in particular we 
can easily check that, as expected for steady-state, the relationship 
𝐴𝑃𝑃 = ∑ 𝐴𝑃𝑃′𝜕𝑃  holds (the reader may verify that). 

Therefore (72) suggests a possible implementation of a MHFV-adapted 
SIMPLE iteration. However, since SIMPLEC is expected to perform 
better, we choose to proceed towards a SIMPLEC-like formulation. 
Bearing in mind the reasoning we just went through, it makes sense to 
apply the following scaling to the MHFV convection-diffusion operator: 

�̃�𝜈,𝛷,𝛼 = 𝓕𝜈,𝛷 + 𝛼 diag (
2(1 + 𝑅𝑒𝐹)

𝜇𝐹
)
𝐹∈Ωℎ

 (73) 
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with 𝛼 being the previously introduced momentum relaxation factor, 
typically ranging between 0.1 and 0.3. Notice that (73) is effectively a 
form of inertial relaxation, its strength being proportional to the local 

𝑅𝑒𝐹. 

We now have all we need to outline the steps of an iteration of a MHFV 
SIMPLEC solution strategy: 

1. solve (relaxed) momentum:   

 �̃�𝑼,𝜈,𝛷𝑛,𝛼𝑼𝐹
∗ = −𝓖𝑝𝐶

𝑛 + 𝛼 diag (
2(1+𝑅𝑒𝐹

𝑛)

𝜇𝐹
)
𝐹∈Ωℎ

𝑼𝐹
𝑛 

2. approx. inverse:   𝓕𝜈,𝛷𝑛,𝛼
−1̂ = diag (

𝜇𝐹

2𝛼(1+𝑅𝑒𝐹
𝑛)
)
𝐹∈Ωℎ

 

3. solve pseudo-Laplacian:   𝓖T𝓕𝑼,𝜈,𝛷𝑛,𝛼
−1̂ 𝓖 𝛿𝑝𝐶 = 𝓖T𝑼𝐹

∗  

4. correct pressure:   𝑝𝐶
𝑛+1 = 𝑝𝐶

𝑛 + 𝛿𝑝𝐶 

5. correct velocity:   𝑼𝐹
𝑛+1 = 𝑼𝐹

∗ −𝓕𝑼,𝜈,𝛷𝑛,𝛼
−1̂ 𝓖 𝛿𝑝𝐶 

6. update conv. fluxes and assemble new operator �̃�𝜈,𝛷𝑛+1,𝛼 

It should also be mentioned that, depending on the type of boundary 
conditions imposed, the iteration may also include a pressure 
normalization step. 

 

7. 2nd-Order Scheme for Pressure 

We previously made the remark that, when freezing convective fluxes, 
the discrete momentum equations can be interpreted as convection-
diffusion equations, one for each spatial dimension, where the unknown 
scalar is the corresponding velocity component and the pressure 
gradient acts as source term. More specifically, by looking for instance 

at the complete flux expression for 𝑢 (68) one can notice how the cell-
averaged pressure can be thought of as a piecewise-constant vector 

source term: 𝑝𝐶𝒆
𝑥 which, when projected onto space 𝑿𝒉, becomes a 

source term for the one-sided flux: |𝐹|𝑝𝐶𝑛𝐹𝐶
𝑥 . 

Such term stems from approximating ∫ ∇ ⋅ (𝑝𝒆𝑥)
𝐶

≈ 𝑝𝐶 ∑ |𝐹|𝑛𝐹𝐶
𝑥

𝐹∈𝜕𝐶 ; it 

involves only cell-averaged values 𝑝𝐶, and it is only 1st-order accurate. 
We are now interested in increasing the order of accuracy on the 



pressure space, namely by replacing the source term on the flux with a 
better approximated value. This is simply done by approximating the 
pressure as piecewise-linear rather than piecewise-constant, i.e. by 
reconstructing its values at faces via some approximate gradient (here 
we choose a least-squares approach). Thus the discrete pressure term 
becomes: 

∫ ∇ ⋅ (𝑝𝒆𝑥)
𝐶

≈ ∑ [𝑝𝐶 + ∇𝐶
ℒ𝑝 ⋅ (𝒙𝐹 − 𝒙𝐶)]|𝐹|𝑛𝐹𝐶

𝑥

𝐹∈𝜕𝐶

 (74) 

Injecting (74) in the one-sided complete flux expression for the 𝑥-
momentum equation gives: 

𝚿𝑥,𝐹⟵𝐶 = −|𝐹|𝜈𝐶∇𝐶
𝒢
𝑢 ⋅ 𝒏𝐹𝐶 + 𝜦𝐹𝐶𝑢𝐹 + 𝜣𝐹𝐶𝑢𝐶   −

             
𝑢𝐹 − 𝑢𝐶
𝜆𝐹𝐶

+ (𝜣𝐹𝐶 +
1

𝜆𝐹𝐶
) ∇𝐶

ℒ𝑢 ⋅ (𝒙𝐹 − 𝒙𝐶) +

|𝐹|[𝑝𝐶 + ∇𝐶
ℒ𝑝 ⋅ (𝒙𝐹 − 𝒙𝐶)]𝑛𝐹𝐶

𝑥             

 (75) 

The idea is fairly straight-forward, but some remarks are in order: firstly, 

the addition of ∇𝐶
ℒ𝑝 to the flux requires a modification to the stencil 

locally used for pressure. Whilst in the 1st-order case the gradient 

operator on the pressure space (𝓖 in (57)) for a given face 𝐹 only 

involved values 𝑝𝐶+ and 𝑝𝐶−, it now requires an extended connectivity 

which also includes all neighbouring cells of 𝐶+ and 𝐶−, much like a 
typical FV 2nd-order stencil; the resulting operator is no longer adjoint to 
the divergence operator acting on velocity. 

Extending connectivity, however, is in practice not an issue when using 
SIMPLE-like algorithms, since pressure is treated explicitly in the 
momentum equations anyway. The pressure correction equation, which 
only serves as an update in the algorithm, can be left unmodified 
without any significant loss in performance. 

Secondly, when using SIMPLE or SIMPLEC coupled with a 2nd-order 
pressure scheme, one needs to take special care with the assembly of 
the MHFV convection-diffusion operator: since we use the discrete 

Poisson equation (53) to obtain 𝑢𝐶 in function of 𝑢𝐹, and since pressure 
is treated explicitly (i.e. moved to the r.h.s. of (69)), we end up with an 

extra term on the r.h.s.: ∑ |𝐹|∇𝐶
ℒ𝑝 ⋅ (𝒙𝐹 − 𝒙𝐶)𝑛𝐹𝐶

𝑥
𝐹∈𝜕𝐶  which must be 

accounted for when eliminating 𝑢𝐶; from a purely computational 
viewpoint, it can be treated as a quantity added to the cell-integrated 
source term in the momentum equation. This was not an issue in the 
1st-order pressure scheme because ∑ 𝑝𝐶|𝐹|𝑛𝐹𝐶

𝑥
𝐹∈𝜕𝐶  is null, hence in that 

case 𝑝𝐶 did not appear at all in the discrete Poisson equation. 
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It is also worth mentioning that, when rewriting  (72) with the addition of 
a 2nd-order pressure term, the resulting equation strongly resembles 
what is known in FV as Rhie-Chow interpolation. This is traditionally 
presented as the addition of pressure smoothing terms when shifting 
momentum equations from cells to faces, with the purpose of avoiding 
checkerboard modes. We interpret the fact that Rhie-Chow arises 
naturally in the MHFV framework as a further indicator of the method’s 
intrinsic robustness and soundness. 

 

8. Validation of 2nd-Order Convective Scheme 

MVE schemes for anisotropic diffusion and 1st-order upwind convection 
have been largely validated in previous literature [5,10,13,24], including 
our own MHFV implementation [27]. For the purpose of this paper we 
move on to validating the 2nd-order MHFV convective scheme, a more 
peculiar aspect of the present work. 

Validation is performed via a ℎ-convergence study: we solve, over the 

2D square domain Ω = [0,1]2, the convection-diffusion equation (23) 

with a source term 𝑓 calculated such that the exact solution is: 

𝜑𝑒𝑥(𝑥, 𝑦) = 2𝑥2 + cos(2𝜋𝑥𝑦2)  

 

Figure 2:  Type of mesh used for validating the 2
nd

-order accurate MHFV 
convection-diffusion scheme. 

We apply Dirichlet boundary conditions (BCs) everywhere. We assume 

isotropic diffusivity 𝜈 = 10−5 and a conservative convective velocity 
field: 



𝑼(𝑥, 𝑦) = (
10𝑥 + 2
3𝑥 − 10𝑦

)  

giving a domain-averaged Peclet number 𝑃𝑒 ≈ 8.5 × 105. As for the 
mesh, we use grids featuring a number of purposely distorted, non-
orthogonal cells (see Figure 2) and we take as a measure of mesh 

refinement ℎ the maximum face area found in the mesh. 

Errors are measured in 𝑳2-norm on cell-averaged variables: 

𝐸 = √
∑ |𝐶|(𝜑𝐶 − 𝜑𝑒𝑥(𝒙𝐶))

2

𝐶∈Ωℎ

∑ |𝐶|(𝜑𝑒𝑥(𝒙𝐶))𝐶∈Ωℎ

2   

We report in Figure 3 results for both the 1st and 2nd-order upwind 
schemes, compared with their respective expected slope. Results 
clearly confirm that the scheme is indeed 2nd-order accurate and that it 
brings about a significant improvement in terms of accuracy compared 
to 1st-order upwinding. We also show how the independence of MHFV 
from “mesh quality” parameters such as skewness and orthogonality, 
which has been vastly verified in MVE literature for purely diffusive and 
1st-order upwind convective schemes, is not affected and still holds 
when increasing the order of the scheme. 

 

Figure 3:  Convection-diffusion: ℎ-convergence for 1
st
 and 2

nd
-order upwind 

MHFV schemes. 

Interestingly enough, the 2nd-order scheme converges on all grids even 
though we did not apply any form of flux limiting or stabilization; we 
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attribute this fortunate result to the relative smoothness of the solution 
to this test case. 

 

9. Comparison of stabilization strategies 

We now want to analyse how the various stabilization techniques 
described in Section 4 compare against each other. To this purpose we 
selected a specifically designed convection-diffusion test case: the 
Smith-Hutton problem [29]. 

 

(a) 

 

(b) 

Figure 4:  Smith-Hutton problem: BCs setup and convective flow field (a) and 
mesh type (b). 

The problem is solved over a 2D rectangular domain of height 𝐿 = 1 
and length 2𝐿, with BCs and convective flow 𝑼 set as shown in Figure 
4(a) (see [29] for the analytical expression of 𝑼). At the inlet, the 

distribution of the unknown 𝜑 is: 

𝜑𝑖𝑛(𝑥) = 1 + tanh[𝛼(1 + 2𝑥)]  

which, for high values of 𝛼 (here we take 𝛼 = 100), defines a profile 
containing a rather steep jump from 0 to 2, as shown in Figure 5: 



 

Figure 5:  Distribution of 𝜑𝑖𝑛 imposed at the inlet (𝛼 = 100). 

For a purely convective problem an exact mirror image of such profile 
would be produced at the outlet; we can expect a similar result by 

setting low diffusivity, 𝜈 = 10−6, meaning we have a high Peclet 

number: 𝑃𝑒 ≈ 106. The problem is specifically designed to cause severe 
instabilities with high-order schemes via the presence of a near-
discontinuity in the solution field. 

 

Figure 6:  Distribution of 𝜑 at the outlet, comparison among stabilization 

schemes; 𝑃𝑒 ≈ 106, ℎ ≈ 3.7 × 10−2. 

We solve over a distorted polygonal mesh (rather coarse, ℎ ≈ 3.7 ×
10−2), similar to the one in Figure 4(b). After verifying that neither a 
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centered scheme nor an unlimited 2nd-order upwind scheme can deal 
with the problem (either the linear solver fails or it produces 
meaningless results), we test a selection of the previously mentioned 
stabilization strategies, including our own ULSQR. We plot in Figure 6 

the distribution of 𝜑𝐹 at the outlet as computed by each scheme, which 
helps us perform a qualitative analysis of results; we use as a reference 
solution a mirror image of the inlet distribution. 

As expected, 1st-order upwinding is non-oscillatory but definitely too 
diffusive (notice how heavily it smoothens the near-discontinuity). 
Compared to that, the traditional 2nd-order scheme with (face-bounded) 
Venkatakrishnan flux limiter is closer to the reference solution whilst still 
being monotone, although a considerable amount of numerical diffusion 
is still visible. 

Both the WLSQR and ULSQR schemes perform comparably: 
overshoots are present on either side of the discontinuity, but we can 

expect them to be bounded regardless of 𝑃𝑒 or mesh parameters (for 
WLSQR, stability is theoretically proven in [16] for special discontinuous 
data; we have not yet conducted a rigorous mathematical analysis of 
ULSQR, which remains for now empirical in nature). Judging by the 
amplitude of oscillations, in particular on the lower side, WLSQR would 
appear to be slightly more favourable; such result however may be 
case-dependent, especially considering that we tuned the exponents in 
weight formulation (35) based on the present results. On the other 
hand, the reader is reminded that ULSQR possesses the attractive 
feature of not being data-dependent, meaning that it only requires one 
linear solve and no iterative processes. 

As for SUPG we notice that oscillations are completely dumped on the 
lower side of the step, but there is a significant overshoot at the top. 
Further test results (not published here) reveal that, on more regular 
meshes, such issue is not as pronounced; this might indicate that our 
choice of SUPG stabilization parameter (38), whilst guaranteeing 
convergence, does not adapt well enough to generic meshes, thus 
exhibiting excessive nonphysical oscillations. Further investigations on 
the matter are left to our future work. 



 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

 

Figure 7:  Solution field 𝜑 computed via schemes: flux limiting (a), WLSQR (b), 

SUPG (c), ULSQR (d); 𝑃𝑒 ≈ 106. 
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For further analysis, we also plot in Figure 7 the entire solution field for 
each strategy. Besides confirming the conclusions we drew from outlet 
profile analysis (most notably the excessive diffusiveness caused by 
flux limiting) we also observe that, at least for this specific case, 
WLSQR seems indeed to be slightly superior: the solution appears to 
be more uniform and well smoothed in areas away from the overshoot 
and undershoot near the step, while SUPG and ULSQR both present 
oscillations propagating from the discontinuity to a considerable extent. 

 

Figure 8:  Smith-Hutton: ℎ-convergence for different convection schemes 

(𝑃𝑒 ≈ 106). 

We conclude this section with a ℎ-convergence analysis, carried out via 
the same methodology as described in Section 8. We use the solution 
to the purely convective problem as reference; results are reported in 
Figure 8. It is noticeable how the flux limiting procedure severely 

degrades the order of ℎ-convergence of the method: for this test case, 
flux limiters actually push it back to 1st-order, although the error is 
consistently smaller than with 1st-order upwind. 

On the other hand, WLSQR, SUPG and ULSQR all perform 
comparably: one can see a pre-asymptotic behaviour in the sequence, 
which steepens as the mesh is refined until reaching an exact (or close 
to) 2nd-order slope in the last few entries. Absolute values of error 
norms do not display any significant differences amongst them either 
apart from, again, a slight superiority displayed by WLSQR. 
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10. Validation of the Navier-Stokes Scheme: Poiseuille Flow 

In order to perform a first ℎ-convergence analysis of our full Navier-
Stokes scheme we choose a basic 2D test case: the laminar plane 

Poiseuille flow. We solve over a channel of width 𝐷 = 1 and length 

𝐿 = 5 with BCs set as in Figure 9(a). Setting 𝜈 = 10−2, imposing a total 
pressure drop Δ𝑝 = (𝑝𝑖𝑛 − 𝑝𝑜𝑢𝑡) = 2 and assuming laminar flow, we 
have the following analytical solution for the 𝑥-component of 𝑼: 

𝑢(𝑦) =
Δ𝑝

2𝜈
(𝑦 − 𝑦2)  

which we impose at the inlet, whereas 𝑣 = 0 everywhere. Pressure is 
linearly distributed: 

𝑝(𝑥) = Δ𝑝(𝐿 − 𝑥)  

and defined up to a constant (here we chose to define it such that 
𝑝(𝐿) = 0, i.e. zero pressure at the outlet). The Reynolds number, based 

on the channel’s half-width and maximum velocity, is 𝑅𝑒 =
𝐷 𝑢𝑚𝑎𝑥

2𝜈
=

1250, which is high enough but still well below the critical value 
𝑅𝑒𝑐𝑟𝑡 = 5314 above which, according to literature [21], the laminar 
assumption no longer holds. 

 

 

(a) 

       

 

(b) 

Figure 9:  Poiseuille flow: BCs setup (a) and mesh type (b). 

We solve over fairly regular, although non-orthogonal, polygonal 
meshes – a sort of skewed honeycomb structure, Figure 9(b). The 
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scheme is set to 2nd-order accuracy for both 𝑼 and 𝑝; we use our 
ULSQR strategy to stabilise convective terms. 

 

Figure 10:  Poiseuille flow, ℎ-convergence for variables 𝑢𝐶 and 𝑝𝐶 (2
nd

-order 
scheme). 

Figure 10 reports ℎ-convergence results for variables 𝑢𝐶 and 𝑝𝐶 (𝑣𝐶 
would be somewhat more difficult to analyse since the exact solution is 

0 everywhere in the channel, making it problematic to compute the error 

in 𝑳2-norm). Results for 𝑢 are clearly very positive, confirming a slope 
fairly close to the theoretical 2nd-order trend (despite the usage of 
decentered gradients in the ULSQR scheme) and only minor 
oscillations near the inlet and outlet for coarser meshes – small enough 
to not be visible in the solution field, see Figure 11(b). Comparison with 
a 1st-order accurate solution field (Figure 11(a)) also shows the definite 
superiority of the higher order scheme due to the significant numerical 
diffusion displayed by the former. 

Unfortunately, results for 𝑝 are in this case less satisfactory: despite the 
formally 2nd-order scheme, we still observe accuracy closer to 1st-order, 
although the slope in Figure 10 appears to steepen as we refine the 
mesh. One could explain the phenomenon by assuming a pre-
asymptotic behaviour, but this would seem excessively stretched since 

the finest meshes in the sequence are rather well refined (ℎ ≈ 5.2 ×
10−3). 
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(b) 

 

 

(c) 

  

Figure 11:  Velocity magnitude in 1
st
-order (a) and 2

nd
-order (b) accuracy, 

compared to the analytical solution (c); ℎ ≈ 0.11. 

An analysis of the solution field 𝑝𝐶 (Figure 12) suggests another 
possible explanation. Clearly, much of the error is concentrated in a 
small area at the inlet, where some local peaks are visible, while in the 
rest of the channel we observe a trend fairly close to the expected linear 
distribution; this might be due to the fact that the analytical distribution 

of 𝑢 imposed at the inlet is incompatible with the discrete solution 𝑢𝐹 
satisfying the discrete Navier-Stokes system, and the solver responds 
to that by creating a small transitional trait with altered pressure values 
resolving the inconsistency, which would in turns degrade accuracy on 

𝑝. 

 

 

Figure 12:  Pressure field in 2
nd

-order accuracy; ℎ ≈ 0.11. 
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In that case the issue would be problem-specific and not related to the 
scheme itself; thus, a change in BCs definition (e.g. periodic instead of 

Dirichlet for 𝑼) would solve the problem. If that were to fail, then it would 
be necessary to investigate the discrete pressure scheme in more detail 
and look for possible sources of instability. We shall leave such 
considerations to our future work, deeming the present results 
acceptable for the purpose of this paper. 

 

11. Lid-Driven Cavity Test Case 

We further validate our MHFV Navier-Stokes solver via the well-known 
2D lid-driven cavity test case, which is set up as in Figure 13(a) over a 

square domain of side 𝐿 = 1. We set 𝑢𝑙𝑖𝑑 = 1 and we let viscosity 𝜈 vary 

in order to match 𝑅𝑒 = 102, 103 and 104 which will allow us to compare 
with previous literature. 

More specifically, we compare against benchmark results reported by 
Ghia et al. [17], which are computed over a uniform Cartesian grid of 

size 129 × 129. Our simulations are run on a slightly coarser 
quadrilateral mesh (120 × 120) which we also distort to introduce 
strongly non-orthogonal elements, as in Figure 13(b); notice that our 
distortion pattern also causes further mesh coarsening in certain 
(arbitrarily located) areas w.r.t. the original uniform grid. 

 

(a) 

 

 

(b) 

Figure 13:  Lid-driven cavity: BCs setup (a) and mesh type (b). 

We extract from the MHFV solution field two sets of values: 𝑢 along a 
vertical line and 𝑣 along a horizontal line passing through the geometric 
center of the cavity, and we plot them together with those found in 
literature (Figure 14). We observe excellent agreement for all three 

values of 𝑅𝑒, despite the coarser and distorted mesh we used. 



𝒖 along vertical centreline 𝒗 along horizontal centreline 

𝑅𝑒 = 102: 

  

𝑅𝑒 = 103: 

  

𝑅𝑒 = 104: 

  

Figure 14:  Profiles of 𝑢 along vertical centerline and 𝑣 along vertical centerline; 
comparison with benchmark results. 

We also report in Figure 15 the velocity magnitude field produced by 
our MHFV solver compared to the product of a commercial CFD FV 

solver, the first computed on a 120 × 120 grid distorted as in Figure 
13(b), the second on a similarly-sized Cartesian grid; both solvers are 
set to 2nd-order accuracy, with ULSQR stabilization for the MHFV 
scheme and classical flux limiting for the FV one. 
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MHFV commercial FV solver 

𝑅𝑒 = 102: 

  

𝑅𝑒 = 103: 

  

𝑅𝑒 = 104: 

  

  

Figure 15:  Velocity magnitude computed via MHFV on a distorted mesh (left) 

and a commercial FV solver on a Cartesian mesh (right) at different 𝑅𝑒. 



Again, our results are very satisfactory for all 𝑅𝑒 values – except for 
perhaps some slight overestimations in certain areas, but then again we 
have no reason to assume that the reference FV results are more 
reliable.We want to emphasize here how our results appear to be 
completely unaffected by the underlying distorted grid pattern shown in 
Figure 13(b), and stay true to the problem’s physics. It is also worth 
mentioning that, when we attempted to solve over the same distorted 
grid with the commercial software, it failed to converge (most likely due 
to excessive non-orthogonality and/or skewness). 

We conclude this section with a preliminary analysis of our SIMPLEC 
strategy, outlined in Section 6. We run the lid-driven cavity test case on 
two mesh types: Type A - the same distorted quadrilateral grid, pictured 
in Figure 13(b), and Type B - a skewed honeycomb grid like the one we 

used in Section 10, Figure 9(b). We test for two 𝑅𝑒 values: 102 and 103 
for different degrees of mesh refinement (we avoid higher 𝑅𝑒 values 
due to steady-state convergence issues on coarse grids); we take the 
number of faces in each mesh as a measure of the problem size. 

Mesh Type A Mesh Type B 

𝑅𝑒 = 102: 

  

𝑅𝑒 = 103: 

  

Figure 16:  MHFV SIMPLEC: iteration count to steady-state for different mesh 

types/sizes, Reynolds numbers and relaxation factors 𝛼. 
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The goal is to investigate how the choice of inertial relaxation factor 𝛼 in 
(73) affects the performance of SIMPLEC, and whether or not the 
optimal choice depends on physical and/or numerical parameters. 

Hence we run each case with values 𝛼 = 0.1, 0.2 and 0.3. 

The graphs in Figure 16 show the number of iterations required to 

converge to steady-state, given a tolerance of 10−4, in function of all of 
the above mentioned parameters. It appears that: for both mesh types, 

both 𝑅𝑒 and all levels of grid size, setting 𝛼 = 0.1 gives the best 
performance in terms of both iteration count and algorithm scaling vs. 

problem size. The only exception is the coarsest mesh at 𝑅𝑒 = 103 for 
both mesh types, for which the optimal 𝛼 is likely to be in between 0.1 
and 0.2 (we did verify that decreasing 𝛼 below 0.1 increased the 
iteration count). 

Results are encouraging, as they suggest that the optimal relaxation 
factor does not depend on the mesh type, and it is only slightly 
influenced by grid coarseness and problem physics. However, further 

testing involving other mesh types, a wider range of 𝑅𝑒 and other 
problem definitions is in order before drawing any definite conclusions. 

On the other hand, these results also highlight a severe limitation of 
SIMPLEC itself: it heavily depends on numerical parameters, and in 
particular on mesh type. Notice how the iteration count is in general 
much higher, and grows more rapidly with the problem size, for mesh 
Type A (left column in Figure 16). This can be attributed to the 
irregularity of Type A, which features several strongly distorted cells as 
well as a wide range of cell volumes/face areas, whereas Type B is only 
slightly non-orthogonal, and very regular in terms of element size; this 
might be causing SIMPLEC to underperform on Type A compared to 
Type B, despite the considerably smaller problem size. We take such 
preliminary analysis as a motivation to look into more efficient ways of 
solving the discrete Navier-Stokes in the future. 

 

12. Conclusions 

We believe that our results, although based on relatively simple test 
cases, are a clear sign of the potential of MVE methods in the CFD 
industry. Particularly relevant is the fact that our Navier-Stokes scheme 
proved itself to be in some way superior to a commercial FV solver, the 
latter having failed to solve the lid-driven cavity problem over the same 
distorted mesh. In general we can argue that MHFV, once finalized, will 
be able to tackle industrial-sized problems with much more ease 
compared to the currently existing methods: not just because of the 



extra freedom on grid geometry, but also, and more importantly, thanks 
to its intrinsic stability and robustness. The only drawback we can think 
of at this stage is the increased size of linear systems to be solved – our 
hybrid operators scale with the number of mesh faces, rather than cells. 
Efforts should be made in this sense towards improving CPU efficiency 
of linear solvers, a matter we have not dealt with in this paper. 

In the immediate future we plan to tackle some open questions raised 
by the present work: further research into stabilization techniques for 
2nd-order convection schemes (SUPG in particular, being very heuristic 
in nature, can be expressed via several different formulations besides 
the one we derived in Section 4); thorough analysis of stability 
properties of our 2nd-order pressure discretization, see Section 7; 
investigation of alternative, more efficient preconditioners to the Navier-
Stokes system, other than SIMPLE-like strategies – a promising idea 
may be the Pressure Convection-Diffusion (PCD) preconditioner, see 
e.g. [14]. 

Efforts will also be made towards the implementation of features that 
will allow us to test on actual industrial cases, namely: a turbulence 
modeling module – not too challenging, since many existing models 
simply require solving additional transport equations, which we can 
discretize via the scheme in Section 3; extension to unsteady flow 
capabilities – either via well-established methods or by investigating 
new possibilities; implementation of a MHFV adjoint flow solver, in order 
to assess performance in the context of design optimization – which, as 
mentioned in Section 1, is what ultimately drives our work.  
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