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Abstract: Our work is motivated by a recent paper of Rivest [6], concerning permuta-

tion polynomials over the rings Zn with n = 2w . Permutation polynomials over finite fields

and the rings Zn have lots of applications, including cryptography. For the special case

n = 2w, a characterization has been obtained in [6] where it is shown that such polynomials

can form a Latin square (0 ≤ x, y ≤ n − 1) if and only if the four univariate polynomials

P (x, 0), P (x, 1), P (0, y) and P (1, y) are permutation polynomials. Further, it is shown that

pairs of such polynomials will never form Latin squares. In this paper, we consider bivari-

ate polynomials P (x, y) over the rings Zn when n 6= 2w . Based on preliminary numerical

computations, we give complete results for linear and quadratic polynomials. Rivest’s result

holds in the linear case while there are plenty of counterexamples in the quadratic case.
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§1. Permutation Polynomials

A polynomial P (x) = a0 +a1x+ ......+adx
d is said to be a permutation polynomial over a finite

ring R if P permutes the elements of R. R. Lidl and H. Niderreiter [2] have described various

types of permutation polynomials over finite fields Fq . Lidl and Mullen [3], [4] gave a survey of

various possibilities of polynomials over finite fields as permutation polynomials and also gave

the applications of these permutation polynomials. Rivest [6] has considered the class of rings

Zn, where n = 2w to study the permutaion polynomials. He derived necessary and sufficient

conditions for a polynomial to be a permutation polynomial over Zn, where n = 2w, in terms

of the coefficients of the polynomials. The following is from [6]:

Theorem 1(Rivest) Let P (x) = a0+a1x+......+adx
d be a polynomial with integral coefficients.

Then P (x)is a permutation polynomial modulo n = 2w, w ≥ 2, if and only if a1 is odd and both

(a2 + a4 + .......) and (a3 + a5 + ......) are even.

Also, Rivest gave a result about bivariate polynomials P (x, y) giving latin squares modulo
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n = 2w,w ≥ 2. The following result is also from [6]:

Theorem 2(Rivest) A bivariate polynomial P (x, y) =
∑

i,j aijx
iyj represents a Latin square

modulo n = 2w, where w ≥ 2, if and only if the four univariate polynomials P (x, 0), P (x, 1), P (0, y)

and P (1, y) are all permutation polynomials modulo n.

§2. Latin squares

A Latin square of order n is an n×n array based on some set S of n symbols, with the property

that every row and every column contains every symbol exactly once. In other words, every

row and every column is a permutation of S. Since the arithmetical properties of symbols are

not used, the nature of the elements of S is immaterial. An example of a Latin square of order

4 is shown below.

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

Two Latin squares A and B of the same order are said to be equivalent if it is possible

to reorder the rows of A, reorder the columns of A, and/or relabel the symbols of A in such a

way as to produce the square B. A partial Latin square of order n is an n× n array in which

some cells are filled with the elements of some n-set while others are empty, such that no row

or column contains a repeated element. A Latin rectangle of size k × n is a k × n array with

entries from S = {0, 1, 2...., n− 1} such that every row is a permutation of S and the columns

contain no repetitions.

The following theorem is proved in [7]:

Theorem 3 If A is a k× n Latin rectangle, then one can append (n− k) further rows to A so

that the resulting array is a Latin square.

If L is Latin square of order s and n ≥ 2s, then there is a Latin square of order n with L

as a subsquare [7]. Starting from a partial Latin square of order n, it is possible to complete it

to a Latin square of order n, see [5].

Theorem 4 A partial Latin square of order n with at most n− 1 filled cells can be completed

to a Latin square of order n.

Two Latin squares of order n are called orthogonal if each of the n2 ordered pairs (0, 0), ., (n−
1, n− 1) appears exactly once in the two squares. A pair of orthogonal Latin squares of order

4 is shown below.
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0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

0 1 2 3

2 3 0 1

3 2 1 0

1 0 3 2

A Latin square is called self-orthogonal if it is orthogonal to its own transpose.Latin squares

and orthogonal Latin squares have been extensively studied since Euler considered it first in

1779. Euler knew that a pair of orthogonal Latin squares of order n existed for all odd values of

n and all n ≡ 0(mod4). Euler went on to assert that no such pairs exist for n ≡ 2(mod4), this

was known as Euler’s conjecture for 177 years until it was suddenly and completely disproved

by Bose, Parker and Shrikhande. Indeed, the only exceptions are n = 2, 6 and for all other

values, pairs of orthogonal Latin squares exist [5]. Recently, G. Appa, D. Magos, I. Mourtos

gave an LP-based proof that there is no pair of orthogonal Latin squares of order 6 (see [1]).

Rivest [6] considered such polynomials modulo n = 2w, where w ≥ 2 and showed that

orthogonal pairs of Latin squares do not exist [6]. Here we have considered them modulo n, n 6=
2w and to our surprise, found that there are many examples of orthogonal pairs of Latin squares.

Based on preliminary computations, if n 6= 2w, we have found that a bivariate polynomial

can fail to form a Latin square even when these 4 univariate polynomials are permutation

polynomials. In a Latin square determined by P (x, y), values of P (x, 0), P (x, 1) , P (0, y) and

P (1, y) are given by the entries of first two columns and first two rows.

Theorem 5 A bivariate linear polynomial a+ bx+ cy represents a latin square over Zn if and

only if one of the following equivalent conditions is satisfied:

(i) both b and c are coprime with n;

(ii) a+ bx, a+ cy, (a+ c)+ bx and (a+ b)+ cy are all permutation polynomials modulo n.

Proof For linear polynomials over any Zn,we can observe that a + bx+ cy forms a Latin

square if and only if a + bx, a + cy, (a + c) + bx, (a + b) + cy are permutation polynomials.

This is because, whenever b and c are both co-prime with n, all those 4 polynomials will be

permutation polynomials and in those cases we can fill all the entries of the Latin squares by

just looking at first row and first column. As these are all distinct elements in the first row

and column, and polynomial bx+ cy having only two terms, the entries are got by just adding

a(mod n) to all entries of bx+ cy. So Rivest’s result holds in the linear case. �

Quadratic case: We also tried to characterize quadratic bivariate polynomials in this way. If

a polynomial P (x, y) represents a Latin square, then our 4 polynomials P (x, 0), P (x, 1) , P (0, y)

and P (1, y) will be obviously permutation polynomials, as they form the first two rows and first

two columns of the Latin squares. However, to our surprise, many quadratic polynomials failed

to form Latin squares, even though the 4 polynomials P (x, 0), P (x, 1), P (0, y) and P (1, y) are

permutation polynomials. The number of such polynomials over different rings Zn are shown

below.
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Ring No. of polynomials Examples

Z6 48 1 + 5x+ 2y + 2xy + 3y2

Z7 1,050 x+ y + xy

Z9 4,374 x+ y + xy + 3y2

Z10 1,440 9x+ 9y + 8xy

Z11 8,910 10x+ 10y + 10xy

Z12 768 7x+ 7y + 10xy + 6x2 + 6y2

Z13 1,8876 12x+ 12y + 12xy

Z14 8,400 13x+ 11y + 6xy

Z15 3,720 8x+ 14y + 14xy

However, there are plenty of quadratic bivariate polynomials which do form Latin squares.

But we are not able to characterize them using the permutation behavior of the corresponding

univariate polynomials. From the data collected, we observed that in all cases where P (x, y)

formed a Latin square, the cross term xy was always absent. Hence we could formulate and

prove two interesting results.

However, we need an interesting fact regarding orthomorphisms in proving the theorem.

The definition as well as proof of the theorem quoted are given in the well-known text of J.H.Van

Lint and R.M.Wilson, A Course in Combinatorics, chapter 22, page 297.

Definition 2.1 An orthomorphism of an abelian group G is a permutation σ of the elements

of G such that x 7→ σ(x) − x is also a permutation of G.

Theorem 6 If an abelian group G admits an orthomorphism, then its order is odd or its Sylow

2-subgroup is not cyclic.

We are now ready to state and prove the main results of this paper:

Theorem 7 If P (x, y) is a bivariate polynomial having no cross term, then P (x, y) gives a

Latin square if and only if P (x, 0) and P (0, y) are permutation polynomials.

Proof P (x, 0) is the first column of the square and P (0, y) is the first row. If P (x, y) =

f(x)+g(y), looking at first row and column, we can complete the square just as addition modulo

n (which is a group). So, P (x, y) will be a Latin square. �

Theorem 8 Let n be even and P (x, y) = f(x)+ g(y)+xy be a bivariate quadratic polynomial,

where f(x) and g(x) are permutation polynomials modulo n. Then P (x, y) does not give a Latin

square modulo n.

Proof We assume that n is even and greater than 2. If f(x) is a permutation polynomial

then f(x)+k is also a permutation polynomial. So, we can assume that k = 0.Now f(x)+ g(y)

always represents a Latin square whenever f(x) and g(y) are permutation polynomials, by the

last theorem. When x = c, the cth row entries will be P (c, 0), P (c, 1), ......P (c, n−1). i.e., f(c)+
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g(0)+0, f(c)+g(1)+c, f(c)+g(2)+2c, ......., f(c)+g(n−1)+(n−1)c Let f(c) = θ, a constant.

Then, θ+ 0, θ+ c, ......, θ+ (n− 1)c will be a permutation of {0, 1, ......, n− 1} if g.c.d.(n, c) = 1.

So, let c be such that g.c.d.(n, c) = 1 Without loss of generality, we may ignore the constant θ

in the sequence.Also g(0), g(1), ....., g(n− 1) is some permutation of {0, 1, . . . , n− 1}. The sum

of these two permutations fails to be a permutation of Zn, since there are no orthomorphisms

of Zn as n is even. Hence the cth row contains repetitions and P (x, y) does not represent a

Latin square. �

In case of some bivariate polynomials, the resulting squares will not be Latin squares. But

we can get a Latin square of lower order by deleting some rows and columns in which entries

have repetitions.Obviously, number of rows and columns deleted must be equal. For example,

the polynomial 5x+ 2y + 2xy + 3y2 over Z6 will not form a latin square as shown below.

0 5 4 3 2 1

5 0 1 2 3 4

4 1 4 1 4 1

3 2 1 0 5 4

2 3 4 5 0 1

1 4 1 4 1 4

The third and sixth rows as well as columns contain repetitions . In these rows and columns

we see only the entries 1 and 4. Deleting these two rows and columns, we get a square of order

4 × 4, which is a Latin square over the set {0, 2, 3, 5}.

0 5 3 2

5 0 2 3

3 2 0 5

2 1 5 0

Similarly, the bivariate P (x, y) = 9x+ 9y + 8xy over Z10 will give a 10 × 10 square which

can be reduced to a Latin square of order 8 × 8 after deleting 2 rows and 2 columns, having

only the entries 3 and 8.

P (2, y) =





3 for all odd y

8 for all even y

P (7, y) =





8 for all odd y

3 for all even y

Similar expressions hold for P (x, 2) and P (x, 7), because P (x, y) is a symmetric polynomial.

So we delete the rows and columns corresponding to both x and y equal to 2 and 7.
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Rivest [6] proved that no two bivariate polynomials modulo 2w, for w ≥ 1 can form a pair of

orthogonal Latin squares. This is because all the bivariate polynomials over Zn, where n = 2w,

will form Latin squares which can be equally divided into 4 parts as shown below, where the

n/2 × n/2 squares A and D are identical and n/2 × n/2 squares B and C are identical.

A B

C D

So, no two such Latin squares can be orthogonal.

But we do have examples of bivariate polynomials modulo n 6= 2w, such that resulting

Latin squares are orthogonal. The two bivariate quadratic polynomials 6x2 +3y2 +3xy+x+5y

and 3x2 + 6y2 +6xy+4x+ 7y give two orthogonal Latin squares over Z9. Also, x+ 4y+3xy is

a quadratic bivariate which gives a Latin square orthogonal to Latin square formed by 6x2 +

3y2 + 3xy + x+ 5y over Z9.

0 8 4 6 5 1 3 2 7

7 0 8 4 6 5 1 3 2

8 4 6 5 1 3 2 7 0

3 2 7 0 8 4 6 5 1

1 3 2 7 0 8 4 6 5

2 7 0 8 4 6 5 1 3

6 5 1 3 2 7 0 8 4

4 6 5 1 3 2 7 0 8

5 1 3 2 7 0 8 4 6

Latin square formed by

6x2 + 3y2 + 3xy + x+ 5y

0 4 2 3 7 5 6 1 8

7 8 3 1 2 6 4 5 0

2 0 1 5 3 4 8 6 7

3 7 5 6 1 8 0 4 2

1 2 6 4 5 0 7 8 3

5 3 4 8 6 7 2 0 1

6 1 8 0 4 2 3 7 5

4 5 0 7 8 3 1 2 6

8 6 7 2 0 1 5 3 4

Latin square formed by

3x2 + 6y2 + 6xy + 4x+ 7y

We have found many examples in which the rows or columns of the Latin square formed

by quadratic bivariates over Zn are cyclic shifts of a single permutation of {0, 1, 2, ....., n− 1}.
If two bivariates give such Latin squares, then corresponding to any one entry in one Latin

square, if there are n different entries in n rows of the other Latin square, then those two Latin

squares will be orthogonal. For instance, in the above example, the entries in the second square

corresponding to the entry 0 in the first square are 0,8,7,6,5,4,3,2,1. The rows of the first square

are all cyclic shifts of the permutation (0,8,4,6,5,1,3,2,7), not in order. Also the columns of the

second square are the cyclic shifts of the permutation (0,7,2,3,1,5,6,4,8), not in order. We have

listed below the number of quadratic bivariates that form Latin squares over Zn, for 5 ≤ n ≤ 24.
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number of quadratic bivariates number of quadratic bivariates

n (with constant term = 0) n (with constant term = 0)

forming Latin squares forming Latin squares

5 16 15 64

6 16 16 32,768

7 36 17 256

8 1,024 18 32,888

9 972 19 324

10 64 20 512

11 100 21 144

12 128 22 400

13 144 23 484

14 144 24 4,096

The following have been noted from the extensive computations carried out on a Personal

Computer:

If we write a quadratic bivariate P (x, y) = a10x + a01y + a11xy + a20x
2 + a02y

2, then the

numbers in the above table can be explicitly given as the possible choices for the coefficients in

P (x, y). We can clearly observe that if P (x, y) forms a Latin square then P (y, x) will form the

Latin square which is just a transpose of the former.

In Z9, there are 972 quadratics with constant term zero, forming Latin squares. These

polynomials have the coefficients a10 and a01 from the set {1, 2, 4, 5, 7, 8}, coefficients a20 and

a02 from the set {0, 3, 6} and the coefficient a11 from the set {0, 3, 6}. So,there are 6 choices for

both a10 and a01, and 3 choices for each of the coefficients a20, a02 and a11. So, the number of

such polynomials is equal to 6 × 6 × 3 × 3 × 3 = 972. Also we observe that in the case of Zn

where n is a prime or a product of distinct odd primes, the coefficients of x2, y2 and xy are all

zero. So, in these type of rings we find the number of polynomials that yield Latin squares is

k2, where k is the number of possible coefficients of x and y. When n is a prime number, all

n − 1 nonzero elements of Zn occur as coefficients of both x and y. When n is a product of

distinct odd primes, then all the ϕ(n) nonzero elements of Zn which are coprime with n occur

as as coefficients of both x and y.

We tabulate a few cases below:

n number of P(x,y) set of possible values of a10 and a01

3 4 = 22 {1, 2}
5 16 = 42 {1, 2, 3, 4}
7 36 = 66 {1, 2, 3, 4, 5, 6}
11 100 = 102 {1, 2, ....10}
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n number of P(x,y) set of possible values of a10 and a01

13 144 = 122 {1, 2, .....12}
15 64 = 82 {1, 2, 4, 7, 8, 11, 13, 14}
17 256 = 162 {1, 2, .....16}
19 324 = 182 {1, 2, .....18}
21 144 = 122 {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}
23 484 = 222 {1, 2, .....22}

From the above table we can see that the number N of bivariate quadratic polynomials

P (x, y) with constant term zero which yield Latin squares is given by N = (ϕ(n))2, if n is a

prime or product of distinct odd primes.

§3. Conclusion

We have examined Rivest’s results when n 6= 2w. A computational study, though on a small

scale, has revealed lot of surprises. The bivariate permutation polynomials producing Latin

squares do not seem to depend on the behavior of the corresponding univariate polynomials.

Several pairs of orthogonal Latin squares are obtained through Latin squares got via permuta-

tion polynomials. It would be interesting to know the relation between the coefficients of the

polynomials and the relation to the Latin squares and if possible get an expression for their

number in terms of the prime decomposition of n. Also, the cubic and higher degrees seem to

be much more challenging and will be taken up for later study.
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