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Abstract

Multiphysics simulations are at the core of modern Computer Aided Engineering (CAE) allowing the analysis of multiple,
simultaneously acting physical phenomena. These simulations often rely on Finite Element Methods (FEM) and the
solution of large linear systems which, in turn, end up in multiple calls of the costly Sparse Matrix-Vector Multiplication
(SpM×V) kernel. We have recently proposed the Compressed Sparse eXtended (CSX) format, which applies aggressive
compression to the column indexing structure of the CSR format and is able to provide an average performance improve-
ment of more than 40% over multithreaded CSR implementations. This work integrates CSX into the Elmer multiphysics
simulation software and evaluates its impact on the total execution time of the solver. Despite its preprocessing cost,
CSX is able to improve by almost 40% the performance of the Elmer’s SpM×V component (using multithreaded CSR)
and provides an up to 15% performance gain in the overall solver time after 1000 linear system iterations. To our
knowledge, this is one of the first attempts to evaluate the real impact of an innovative sparse-matrix storage format
within a ‘production’ multiphysics software.

1. Introduction

The number of cores in modern large scale HPC systems is growing fast, a fact attributed to the increase
of both the total number of processing nodes and the number of cores within each node. However, scaling
applications in current petascale and future exascale system poses a number of important challenges. Large
classes of applications fail to scale either along the axis of nodes (typically by hitting the communication wall),
or along the axis of cores within a node (typically by hitting the memory wall), or, even worse, along both.
This work focuses on scalability issues arising within a single node when trying to utilize all the available cores.
More specifically, we work on one of the most ubiquitous and challenging computational kernels, the Sparse
Matrix-Vector Multiplication (SpM×V).

Multiphysics simulations are at the core of modern Computer Aided Engineering (CAE) allowing the analysis
of multiple, simultaneously acting physical phenomena. These simulations often rely on Finite Element Methods
(FEM) and the solution of large linear systems which, in turn, end up in multiple calls of the costly SpM×V
kernel. Elmer [1] is a widely used, open source Finite Element software, and our preliminary experiments showed
that 60–90% of the total execution time of the solver is actually spent in the SpM×V routine.

The major, and mostly inherent, performance problem of the SpM×V kernel is its very low flop:byte ratio;
the algorithm must retrieve a significant amount of data from the memory hierarchy in order to perform a useful
operation. In modern hardware, where the processor speed has far overwhelmed that of the memory subsystem,
this characteristic becomes an overkill [2]. The widely adopted Compressed Sparse Row (CSR) storage format
for sparse matrices cannot compensate for the very low flop:byte ratio of the SpM×V kernel, despite being
relatively compact; it itself has a lot of redundant information.

We have recently proposed the Compressed Sparse eXtended (CSX) format [3], which applies aggressive
compression to the column indexing structure of CSR. Instead of storing the column index of every non-zero
element of the matrix, CSX detects dense substructures of non-zero elements and stores only the initial column
index of each substructure (encoded as a delta distance from the previous one) and a two-byte descriptor of the
substructure. The greatest advantage of CSX over similar attempts in the past [4, 5] is that it incorporates a
variety of different dense substructures (incl. horizontal, vertical, diagonal and 2-D blocks) in a single storage
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format representation allowing high compression ratios, while its baseline performance, i.e., when no substruc-
ture is detected, is still higher than CSR’s. The considerable reduction of the sparse matrix memory footprint
achieved by CSX alleviates the memory subsystem significantly, especially for shared memory architectures,
where an average performance improvement of more than 40% over multithreaded CSR implementations can
be observed.

In this work, we integrate CSX into the Elmer multiphysics simulation software and evaluate its impact
on the total execution time of the solver. Elmer employs iterative Krylov subspace methods for treating large
problems using the Bi-Conjugate Gradient Stabilized (BiCGStab) method for the solution of the resulting linear
systems. To ensure a fair comparison with CSX, we also implemented and compared a multithreaded version
of the CSR used by Elmer. CSX amortized its preprocessing cost within less than 300 linear system iterations
and built an up to 20% performance gain in the overall solver time after 1000 linear system iterations. To our
knowledge, this is one of the first attempts to evaluate the real impact of an innovative sparse-matrix storage
format within a ‘production’ multiphysics software.

The rest of the paper is organized as follows: Section 2. briefly describes the integration of the CSX storage
format into Elmer, Section 3. presents our experimental evaluation process and the performance results, and
Section 4. concludes the paper.

2. Integration of CSX into Elmer

2.1. The CSX storage format

The most widely used storage format for non-special (e.g., diagonal) sparse matrices is the Compressed Sparse
Row (CSR) format. CSR compresses the row indexing information needed to locate a single element inside a
sparse matrix by keeping only number-of-rows ‘pointers’ to the start of each row (assuming a row-wise layout of
the non-zero elements) instead of number-of-nonzeros indices. However, there is still a lot of redundant informa-
tion lurking behind the column indices, which CSR keeps intact in favor of simplicity and straightforwardness.
For example, it is very common for sparse matrices, especially those arising from physical simulations, to have
sequences of continuous non-zero elements. In such cases, it would suffice to store just the column index of the
first element and the size of the sequence. CSX [3] goes even further by replacing the column indices with the
delta distances between them, which can be stored with one or two bytes in most of the cases, instead of the
typical four-byte integer representation of the full column indices.
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Fig. 1. The data structure used by CSX to encode the column indices of a sparse matrix.

Figure 1 shows in detail the data structure (ctl) used by CSX to store the column indices of the sparse
matrix. The main component of the ctl structure is the unit, which encodes either a dense substructure or a
sequence of delta distances of the same type. The unit is made up of two parts: the head and the body. The
head is a multiple byte sequence that stores basic information about the encoded unit. The first byte of the head
stores a unique 6-bit ID of the substructure being encoded (e.g., 2×2 block) plus some metadata information
for changing and/or jumping rows, the second byte stores the size of the substructure (e.g., 4 in our case), while
the rest store the initial column index of the encoded substructure as a delta distance from the previous one in
a variable-length field. The body can be either empty, if the type ID refers to a dense substructure, or store the
delta distances, if a unit of delta sequences is being encoded.

CSX supports all the major dense substructures that can be encountered in a sparse matrix (horizontal,
vertical, diagonal, anti-diagonal and row- or column-oriented blocks) and can easily be expanded to support
more. For each encoded unit, we use LLVM [6] to generate substructure-specific optimized code in the runtime.
This adds significantly to the flexibility of CSX, which can support indefinitely many substructures, provided
that only 64 are encountered simultaneously in the same matrix. The selection of substructures to be encoded
by CSX is made by a heuristic favoring those encodings that lead to higher compression ratios. Detecting so
many substructures inside a sparse matrix though, can be costly and this is not strange to CSX. Nonetheless,
we have managed to considerably reduce the preprocessing cost without losing in performance by examining a
mere 1% of the total non-zero elements using samples uniformly distributed all over the matrix [3].

2.2. CSX Integration

To integrate CSX into Elmer, we first needed to slightly modify the interface for computing sparse matrix
vector products. Elmer is configured to optionally load a user supplied library for computing the sparse matrix
vector multiplication product. This library is loaded at runtime and searches for a user specified function, which
computes SpM×V. The original function signature of Elmer was
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void matvec ( i n t ∗n , i n t ∗ rowptr , i n t ∗ co l ind , double ∗ values , double ∗x , double ∗y ) ;

where n is the number of rows of the matrix, rowptr, colind and values describe the sparse matrix in the CSR
format and x and y are the input and output vectors, respectively. This interface, however, does not capture the
notion of tuning the sparse matrix representation. The idea behind every tuned sparse matrix representation is
that, first you tune the initial matrix, and then use that tuned matrix for the subsequent SpM×V operations [4].
Therefore the interface was changed to the following:

void matvec ( void ∗∗ tuned , i n t ∗n , i n t ∗ rowptr , i n t ∗ co l ind , double ∗ values , double ∗x ,
double ∗y , i n t ∗ r e i n i t ) ;

Now *tuned is a pointer to the tuned matrix representation (e.g., CSX) and the reinit flag serves the recon-
struction of the tuned matrix, in case the original matrix changes. The construction of the final CSX matrix
takes place when *tuned is NULL or reinit is set and is performed in two phases. First, we build from the initial
CSR matrix an internal representation that facilitates the mining of the substructures, and then we scan this
internal representation for substructures and produce the final CSX matrix.

2.3. Tackling the preprocessing cost of CSX

Figure 2 shows the execution time breakdown for libcsx when using one or multiple threads on a dual SMP
quad-core Intel Xeon E5405 to run the vortex3d test case modified to create a 1000-point mesh. This creates a
47740×47740 matrix with 4607344 nonzeros taking up 52.9 MB in CSR format. The matrix vector multiplication
is performed 46 times. The execution time of single threaded CSR executed in libcsx is also presented.
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Fig. 2. Libcsx’s execution time breakdown for vortex3d before applying preprocessing optimizations (in parenthesis the
number of cores used).

Two key observations can be made here. First, the time required to convert CSR to the internal data
structure takes up more than half of the preprocessing time. Second, the time to build CSX does not scale with
the number of threads, despite being multithreaded.

In addition to the poor preprocessing performance, significant variation was observed in the preprocessing
time, in spite of explicitly setting the affinity of the preprocessing threads to the different cores. Detailed
profiling of the code revealed that the problem was caused by the memory allocations, performed both during
the construction of the internal representation and the construction of the final CSX matrix. In both cases
we used successive calls to the realloc() function with an allocation grain of 512 bytes for the allocations of
the SpM×V data structures. For small data structures this is not a major problem; most probably, no actual
reallocation will take place. For large data structures though, as is the case of those involved in SpM×V,
actual reallocations will almost certainly happen, leading to huge memory copies and significant performance
degradation. This problem is aggravated further with the use of multiple threads sharing the same virtual
address space, since all the threads contend for very large continuous address regions. This explains not only
the lack of speedup in the preprocessing phase, but also the degradation of the preprocessing performance when
using 4 or 8 threads.

Having identified the performance bottleneck, the solution is straightforward: if possible, try to infer the
exact allocation requirements right from the beginning; otherwise, be generous. In the first phase of the
conversion, the exact size of the data structures of libcsx’s internal representation of the sparse matrix can be
computed directly from the size of the CSR input, and therefore we allocate it with a single large allocation.
In the second phase of the construction of the final CSX matrix though, it is not possible to know the exact
size of the output without iterating over the entire internal representation. To avoid unnecessary and costly
iterations, we are generous with our initial allocation of the CSX’s ctl structure which we set equal to the CSR’s
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Fig. 3. Libcsx’s execution time breakdown for vortex3d after applying preprocessing optimizations (in parenthesis the
number of cores used).

colind. At the end, we truncate any trailing unused space with a call to realloc(), passing it the actual size of
the structure.

Figure 3 shows the execution time breakdown on the same platform for the vortex3d problem for 2000 SpM×V
calls after applying the aforementioned solution. Compared to the previous implementation, the preprocessing
cost is now reasonable and consistent. The conversion time is now, as expected, minimal and constant across
the different thread configurations, while the rest of the preprocessing time scales reasonably with the number
of threads. Finally, it is apparent that the preprocessing cost can be easily amortized within much less than 600
linear system iterations. Indeed, our experiments showed that up to 300 linear system iterations are enough to
amortize the preprocessing cost against the multithreaded CSR.

3. Experimental Evaluation

The default implementation of CSR inside Elmer is single-threaded, so we also implemented a multithreaded
version to perform a fair comparison with the multithreaded CSX. The experimental platform consisted of
192 cores (24 nodes of two-way quad-core Intel Xeon E5405 processors interconnected with 1Gbps Ethernet)
running Linux 2.6.38. We used GCC 4.5 for compiling both Elmer (revision number 5477) and the CSX library
along with LLVM 2.9 for the runtime code generation for CSX. Table 1 shows the 5 problems selected from the
Elmer test suite for the evaluation of our integration. We appropriately increased the size of each problem to
be adequately large for our system. Specifically, we opted for problem sizes leading to matrices with sizes larger
than 576MiB, which is the aggregate cache of the 24 nodes we used. Finally, we have used a simple Jacobi
(diagonal) preconditioner for all the tested problems.

Table 1. The test problems used for the experimental evaluation.

Problem name Equations involved SpM×V exec. time (%)

fluxsolver Heat + Flux 57.4
HeatControl Heat 57.5
PoissonDG Poisson + Discontinuous Galerkin 62.0
shell Reissner-Mindlin 83.0
vortex3d Navier-Stokes + Vorticity 92.3

Figure 4 presents the speedup achieved by multithreaded CSR and CSX within a single node of our system
for two of the selected problems, namely vortex3d and shell. The results correspond to 1000 linear system
iterations (equivalent to 3000 SpM×V calls) and the preprocessing cost is included in the case of CSX. For
each thread count, we have selected the most favorable thread configuration for the SpM×V kernel, i.e., the
one with the least possible sharing of the highest-level caches. For example, in the two-threads configuration,
the threads are placed one per processor and in the four-threads one, the threads are placed one per L2 cache.
This placement achieves the highest performance with the least possible threads and explains the plateau of the
speedup encountered by both CSR and CSX in the eight-thread configuration, since in this case the contention
in the common bus becomes apparent. In both problems, however, CSX was able to achieve considerable
performance improvement over the multithreaded CSR implementation, despite its preprocessing cost. More
specifically, CSX achieves a performance improvement of around 35% over CSR.

Figure 5 shows the average speedups achieved by simply the SpM×V code (Fig. 5(a)) and the total solver
time (Fig. 5(b)) using the original Elmer CSR, our multithreaded CSR version and the CSX (including the
preprocessing cost), respectively. In the course of 1000 linear system iterations, CSX was able to achieve a
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Fig. 4. Intra-node speedup (1000 linear system iterations).
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library, including the preprocessing cost in the case of CSX.
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Fig. 5. Average speedup of the Elmer code up to 192 cores using the CSX library (1000 linear system iterations).

significant performance improvement of 37% over the multithreaded CSR implementation, which translates to
a noticeable 14.8% average performance improvement of the total execution time of the solver. Nevertheless,
we believe that this improvement could be even higher if other parts of the solver exploited parallelism within
a single node as well, since the SpM×V component would become then even more prominent, allowing a higher
performance benefit from the CSX optimization. Regarding the preprocessing cost of CSX, we used the typical
case of exploring all the candidate substructures using matrix sampling. Yet the cost was fully amortized within
224–300 linear system iterations.

4. Conclusions & Future Work

Scaling applications for petascale or exascale systems is very challenging as large classes of applications do not
scale either with the number of nodes, or the number of cores within a single node, or, even worse, with both.
In this paper we focused on scalability issues arising within a single node, when trying to utilize all the available
cores. More specifically, we presented and evaluated the integration of the recently proposed Compressed Sparse
eXtended (CSX) sparse matrix storage format into the widely used Elmer multiphysics software package. This
is, to our knowledge, one of the first approaches of evaluating the impact of an innovative sparse matrix storage
format on a ‘real-life’ production multiphysics software. CSX was found able to improve the performance of the
SpM×V component by nearly 35% compared to the multithreaded CSR when executed on a single node and
offered a 15% overall performance improvement of the solver in a 24-node, 192-core SMP cluster.

In the near future, we plan to expand our evaluation to NUMA architectures and even larger systems.
Additionally, we are investigating ways for minimizing the initial preprocessing cost of CSX and also extensions
to the CSX’s interface to efficiently support problem cases where the non-zero values of the sparse matrix change
during the simulation. Finally, we plan to investigate sparse matrix reordering techniques and how these affect
the overall execution time of the solver using the CSX format.
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