

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Selection of Task Implementations in the Nanos++ Runtime

Judit Planas
a,b

, Rosa M. Badia
a,b,c

, Eduard Ayguadé
a,b

, Jesús Labarta
a,b

{judit.planas, rosa.m.badia, eduard.ayguade, jesus.labarta}@bsc.es

a Barcelona Supercomputing Center, Barcelona, Spain

b Universitat Politècnica de Catalunya, Barcelona, Spain

c Artificial Intelligence Research Institute (IIIA), Spanish National Research Council (CSIC), Madrid, Spain

Abstract

New heterogeneous systems and hardware accelerators can give higher levels of computational power to high

performance computers. However, this does not come for free, since the more heterogeneity the system presents, the

more complex becomes the programming task in terms of resource utilization.

OmpSs is a task-based programming model and framework focused on the automatic parallelization of sequential

applications. We present a set of extensions to this framework: we show how the application programmer can

expose different specialized versions of tasks (i.e. pieces of specific code targeted and optimized for a particular

architecture) and how the framework will choose between these versions at runtime to obtain the best performance

achievable for the given application. From our results, obtained in a multi-GPU system, we can prove that our

project gives flexibility to application's source code and can potentially increase application’s performance .

1. Introduction

Since the emergence of the current multi-core processors and with the promise of the future many-core processors

with hundreds to thousands of cores, both academia and industry have reacted with proposals for extending current

programming methodologies or with new programming models to support the concurrency of these devices.

Between them, we can find extensions to already existing languages or new programming models, like CUDA [1] or

OpenCL [2].

Heterogeneity and hierarchy of the many-core processors are basic aspects that have to be considered in these

proposals. The forecast speaks about scalable multi-core architectures composed of streamlined processor cores and

accelerators, with on-chip network and advanced power management technologies.

We can then expect that future many-core chips will have both heterogeneity (different type of processors , including

accelerators) and hierarchy (for example, organized in clusters of cores, possibly with associated local memory).

Selection of Task Implementations in the Nanos++ Runtime

 2

Programming models should be able to support this heterogeneity and hierarchy in such a way that the application is

unaware of the underlying hardware and that can dynamically adapt to it.

The OmpSs programming model combines ideas from OpenMP [3] and StarSs [4]: it enhances OpenMP with

support for irregular and asynchronous parallelism and heterogeneous architectures. It incorporate s data-flow

concepts that allow the compiler (Mercurium) and the runtime (Nanos++) to automatically move data as necessary

and perform different kinds of optimizations.

OmpSs is able to run applications on systems that combine shared memory processors (SMPs) and GPUs.

Moreover, we can even use clusters of SMPs and/or GPUs transparently from the application point of view with

OmpSs [5].

The contribution of this paper is the addition of a new scheduler to the OmpSs runtime. Our motivations are code

performance at low-cost maintenance: as new architectures appear, new programming paradigms do too and

applications may become obsolete in a relatively short amount of time. With this new feature of the OmpSs runtime,

we offer the ability to join separate pieces of code –i.e. new task implementations– to the original application

without having to modify it. We can then rewrite certain parts of the old application to improve performance, fit new

architectures or even adjust to user needs and join these rewritten parts to the original code, just like a puzzle.

This new scheduler is able to choose the most appropriate task implementation (at runtime) each time a task must be

executed. As tasks are executed, the scheduler learns and keeps track of their behavior so that it can make more

accurate decisions in the immediate future of the application execution.

The main targets of the scheduler are to make source code maintenance easier, give more flexibility towards

portability between heterogeneous platforms and improve application’s performance by means of resource (and

thread) cooperation.

2. Motivation

Generally, there is not a single piece of code that fits all the existing hardware architectures, and even if we find that

code, it will not be the best option (in terms of performance, energy consumption, ...) for all of them. Thus, it is not

unusual to find different ways of implementing the same algorithm.

As an example, there are uncountable versions of the matrix multiplication algorithm. Figure 1 shows a simple

implementation, with no optimizations that could run in several different architectures. However, this is not the

optimal version for any of them. A few years ago, the IBM Cell/BE [6] architecture appeared. The user could run

the code in Figure 1 in the SPE accelerators, but he would not get any benefit. Thus, by that time several

implementations of the matrix multiplication algorithm appeared specifically targeted to the SPE architecture. The

result was that the user had to rewrite a central portion of his code in order to take advantage of that powerful brand

new accelerator.

As history repeats, we are currently experiencing the same effects with the emergence of general purpose GPUs

(GPGPUs): a small amount of GPGPUs can give the same peak performance as a supercomputer, so it seems worth

using them to make computational applications much faster. Nevertheless, in this case the problem is even worse

than what happened with Cell/BE: GPUs cannot run normal CPU code. The only way is to write a specific version

for the GPU architecture, something not trivial nowadays.

In short, with the emergence of new architectures that promise providing more performance to the applications, the

code improvement and maintenance is getting more complicated and more expensive. We present in this paper a

solution to alleviate this problem and we explain the details by giving several examples.

2.1. Example

In order to illustrate our proposal, we will show an example of a tiled matrix multiplication algorith m. The basic

implementation of the computation with the appropriate OmpSs task directives is shown in Figure 1. The matrices

Analysis and Optimization of Task-based Parallel Programming Languages

 3

are stored in tiles of BS x BS elements. The input and inout clauses express data dependencies between tasks and

ensure that the computation over the different blocks is done in the correct order.

But, as this implementation is very simple and non-optimal we might want to try calling a GPU kernel instead.

Figure 2 shows the additional code that we would have to add to the original mat rix multiplication code in order to

use GPUs. The device clause specifies that the task should be run in a GPU architecture. The copy_deps clause

indicates that the data specified by the dependence clauses should be readily available in the GPU memory befo re

the task starts its execution. In this case, we directly call the CUBLAS library.

So, by adding just the piece of code in Figure 2, OmpSs with our proposed extension will evaluate the performance

of the two implementations of matmul_tile task and choose the most suitable version at each time. There is no hard

limit on the number of task versions, so we could add as many as we want (i.e. CBLAS library on CPU, specific

implementation for SPE, …). Figure 3 shows another example of a CUDA implementation of matmul_tile task. This

implementation configures and calls a hand-coded CUDA kernel called gemm_kernel.

1 #pragma omp target device (smp) copy_deps

2 #pragma omp task inout([BS*BS]C) input([BS*BS]A,[BS*BS]B)

3 void matmul_tile (float *A, float *B, float *C , int BS)

4 {

5 int i, j, k;

6 for (i = 0; i < BS; i++)

7 for (j = 0; j < BS; j++)

8 for (k = 0; k < BS; k++) {

9 C[i*BS+j] += A[i*BS+k] * B[k*BS+j];

10 }

11 }

12

13 void matmul (int m, int l, int n, float **A, float **B,

14 float **C, int BS)

15 {

16 int i, j, k;

17 for (i = 0; i < m; i++)

18 for (j = 0; j < n; j++)

19 for (k = 0; k < l; k++) {

20 matmul_tile(A[i*l+k],B[k*n+j],C[i*n+j],BS);

21 }

22 }

 1 #pragma omp target device(cuda) implements(matmul_tile) \

2 copy_deps

3 #pragma omp task inout([BS*BS]C) input([BS*BS]A,[BS*BS]B)

4 void matmul_tile (float *A, float *B, float *C , int BS)

5 {

6 cublasSgemm (’T’,’T’,BS,BS,BS,1.0,A,BS,B,BS,1.0,C,BS);

7 }

 Figure 2: OmpSs Matrix Multiplication task calling

CUBLAS

 1 #pragma omp target device(cuda) implements(matmul_tile) \

2 copy_deps

3 #pragma omp task inout([BS*BS]C) input([BS*BS]A,[BS*BS]B)

4 void matmul_tile_cuda(float *A,float *B,float *C,int BS)

5 {

6 dim3 block(16, 16);

7 dim3 grid(NB/block.x, NB/block.y);

8

9 gemm_kernel<<<grid, block>>> (A, B, C);

10 }

Figure 1: A simple C implementation of Matrix

Multiplication

 Figure 3: OmpSs Matrix Multiplication task calling a

hand-coded CUDA kernel

Selection of Task Implementations in the Nanos++ Runtime

 4

3. OmpSs Programming Model

The OmpSs programming model [7] covers different homogeneous and heterogeneous architectures used nowadays

and is open to cover future systems designed with new emerging architectures.

OmpSs is based on the OpenMP programming model with some modifications to its execution model: it uses a

thread-pool execution model instead of the traditional OpenMP fork-join model. There is a master thread that starts

the execution and several other threads that cooperate executing the work it creates from work sharing or task

constructs. Therefore, there is no need for a parallel region. Nesting of constructs allows other threads to generate

work as well.

OmpSs also differs from OpenMP in its memory model: it assumes that multiple address spaces may exist. So,

shared data may reside in memory locations that are not directly accessible from all processing elements in the

system. Therefore, all parallel code can only safely access private data and shared data that have been marked

explicitly with OmpSs extended syntax. The runtime takes care of where data resides and manages data transfers as

tasks consume or produce them. Data can be replicated on different memory spaces and coherency is transparently

managed by the runtime.

In addition, OmpSs allows annotating function declarations or definitions with a task directive. In this case, any call

to the function creates a new task that will execute the function body. The data environment of the task is captured

from the function arguments. It integrates the StarSs dependence support [8] and allows annotating tasks with three

clauses: input, output, inout. They allow expressing, respectively, that a given task depends on some data produced

before, that will produce some data, or both. The syntax in the clause allows specifying scalars, arrays, pointers and

pointed data. Data addresses and sizes do not need to be constant at compile time since they are detected at runtime.

Also, the taskwait construct (used as a barrier after parallel code) is extended as well with the on clause, which

allows the encountering task to block until some data is produced.

The target construct [9] supports heterogeneity and data motion and can be applied to either tasks o r functions. It

accepts the device clause to express heterogeneity. It is used to specify which devices should run the associated code

(e.g., cell, gpu, smp, ...). It also accepts the copy_in, copy_out and copy_inout clauses that are used to specify the

memory spaces where data must be available and where they are produced. Another accepted clause is the

copy_deps clause which is used to specify that if the attached construct has any dependence clauses, then they will

also have copy semantics (i.e., input will also be considered copy_in, output copy_out and inout copy_inout). The

different copy clauses do not necessarily imply a copy before and after the execution of each task. This allows the

runtime to take advantage of devices with access to the shared memory or implement different data caching and

prefetching techniques without the user needing to modify his code. To make sure that data that have moved to a

device is valid again in the host, SMP tasks must also use the copy clauses or appear after an OpenMP flush (either

explicit or implicit). The taskwait construct has also been extended with the noflush clause which allows

synchronizing tasks without flushing all the data on remote devices. Finally, the target construct also accepts the

implements clause which is used to specify that the annotated task is an implementation of another task
a
. The

information kept in this last clause will be used at execution time by our proposed scheduler to group different

versions of the same task together and decide which version is run each time.

Thanks to the flexible design and implementation of OmpSs runtime, it is very easy to extend any of its features,

like adding a new scheduler or even the support for a new architecture. We can add a new feature as a new plug-in

and later on, when we run an application, we can decide which plug -ins should be enabled through configuration

arguments or environment variables. Thus, it is very easy to run several times the same application using, for

example, different schedulers since there is no need to recompile neither the OmpSs runtime nor the application; we

just have to set the appropriate environment variables or configuration arguments just before each execution.

a Although OmpSs syntax accepts the implements clause, none of the available OmpSs runtime schedulers take it into account:

only the main implementation of each task will be run and the rest will be ignored.

Analysis and Optimization of Task-based Parallel Programming Languages

 5

4. Versioning Scheduler

This section is focused on the implementation details of our proposal. It is divided into two different parts: the first

part talks about the syntax and compiler support needed and the second one explains the runtime implementation.

4.1. Syntax and Compiler Support

As described before, tasks must be annotated in a certain way to make the runtime aware of all task

implementations.

Between all the existing task implementations, only one will be the main implementation and the other

implementations will be versions of it. This distinction is only a compiler issue and will not affect the runtime

execution; from the runtime point of view, all task versions are treated equally.

Figure 4 shows an example of a source code with three task versions implementing the same task. The main version

is called main_impl and the other two versions are another_impl and yet_another_one. Note that all of them receive

exactly the same parameters and have the same inputs and outputs. The implements clause is only valid for

functions annotated as tasks (it cannot be used in inlined tasks) and its argument always references the main

implementation. It is not possible to create an implementation of another implementation if the second one is not the

main version (i.e. yet another one task cannot be an implementation of another impl because it is not the main

version). There is no implements clause in the annotation for the main version. There is no restriction about task’s

device: the main implementation does not need to be SMP-targeted, the programmer can give more than one

implementation for each device or even the same implementation can be targeted to more than one device (provided

that all devices specified in the device clause are able to run the code). For each set of task implementations, the

compiler creates a structure with the necessary information for the runtime to identify the different task versions as a

set of implementations for the same task. Basically, this structure contains a list of devices where the task can be

executed and a pointer to the corresponding task function for each device.

1 #pragma omp target device (cuda) copy_deps

2 #pragma omp task input ([N]A) output ([N]B) inout ([N]C)

3 void main_impl (int N, float *A, float *B, float *C)

4 {

5 // Task code

6 }

7 #pragma omp target device (cuda) implements (main_impl) \

8 copy_deps

9 #pragma omp task input ([N]A) output ([N]B) inout ([N]C)

10 void another_impl (int N, float *A, float *B, float *C)

11 {

12 // Task code

13 }

14 #pragma omp target device (cuda) implements (main_impl) \

15 copy_deps

16 #pragma omp task input ([N]A) output ([N]B) inout ([N]C)

17 void yet_another_one (int N, float *A, float *B, float *C)

18 {

19 // Task code

20 }

Figure 4: Example of different task versions

Selection of Task Implementations in the Nanos++ Runtime

 6

4.2. Runtime Implementation

We have implemented a new scheduling policy for the OmpSs runtime (Nanos++): the versioning scheduler. It is

based on the already existing dependency-aware scheduler which tries to follow task dependency chains in order to

promote data locality and minimize data transfers in a fast and simple way.

4.2.1. Data structures

The versioning scheduler keeps and updates several data structures during the whole application execution that

collect information related to each set of task implementations . Table 1 and Figure 5 show the schema of the

structures.

TaskVersionSet DataSize <VersionId, ExecTime, #Exec>

TaskVersionSet

DataSize <VersionId, ExecTime, #Exec>

<VersionId, ExecTime, #Exec>

DataSize

<VersionId, ExecTime, #Exec>

<VersionId, ExecTime, #Exec>

<VersionId, ExecTime, #Exec>

TaskVersionSet

DataSize <VersionId, ExecTime, #Exec>

DataSize <VersionId, ExecTime, #Exec> Figure 5: Worker’s task queue

<VersionId, ExecTime, #Exec>

Table 1: TaskVersionSet data structure

A TaskVersionSet (Table 1) represents a set of task versions. Since data set size needed by each task at run time is

taken into account , each set is divided into different groups, according to the amount of data needed (DataSize) by

each task instance
b
. For each task version set and data set size, the information is kept per task implementation

(VersionId) . The information associated to a task implementation is the number of executions #Exec and their mean

execution time ExecTime.

Each OmpSs worker thread
c
 has its own task queue, as shown in Figure 5. Each element of the list is a pointer to a

task and it will be used at runtime to assign tasks to threads and keep track of the amount of work each thread has in

order to balance the task execution between all the available threads and resources.

4.2.2. Runtime scheduling policy

Before explaining the scheduling policy, we need to give several definitions of scheduler-related concepts:

- Mean execution time of a task version: Each time a task is run, its execution time is recorded and its mean

execution time is updated as the arithmetic mean
d
 of all the task executions. This value is used by the

scheduler as the estimated execution time of that task version for future executions.

b Calling a task may imply some data movements, so the scheduler takes into account data set sizes of tasks. Each task’s

parameter size is counted just once, even if it is an input/output parameter.

c Each worker thread is currently devoted to only one device -SMP, GPU, etc.- and there can be as many workers as machine
resources -cores, GPGPUs, etc.

d Optionally, we could try computing a weighted mean to give more weight to recent execution information and less weight to

past information, but we have not tried this option yet.

Analysis and Optimization of Task-based Parallel Programming Languages

 7

- Fastest executor of a task version set: The fastest task version of the task version set. We will use this

concept to refer to the OmpSs workers that can run such task versions.

- Earliest executor of a task version set: The OmpSs worker that can finish the execution of a task version at

the earliest time. It will be usually the fastest executor, but in some cases, when the fastest executor is busy

running other tasks, the earliest executor may be another OmpSs worker.

We can divide application’s execution into two different phases from the scheduler’s point of view: the initial

learning phase and the reliable information phase respectively. We consider that the initial learning phase finishes

when the scheduler has enough reliable information about the execution of task version sets.

The initial learning phase consists of picking task versions from ready tasks in a Round-Robin fashion and

distributing them among OmpSs workers. For each task version run, its execution time is recorded and thus data

structures of Table 1 are filled with this information. We force the scheduler to run each task version at least lambda

(a user configurable threshold) times during the initial learning phase. Once all tasks versions belonging to the same

task version set and the same data set size have been run at least lambda times, we consider that the scheduler has

enough reliable information and it switches to the reliable information phase
e
 for the given task version set and the

given data set size. This means that the scheduler can have different criteria for the ready tasks that picks from the

task graph, depending whether their corresponding task version set has enough reliable information or not.

During the reliable information phase, the scheduler tries to assign each task version to its earliest executor. To

make this decision, it takes into account who is the fastest executor of the task version set, but also how busy is each

worker –by checking each worker’s task list-. In this phase, execution information is also recorded exactly in the

same way as the previous phase: for each task version, its execution time is computed and its corresponding mean

execution time is updated accordingly, so, somehow, the scheduler is always learning and recording execution

information.

When the data set size of a ready task differs from what the scheduler has registered in its previous executions, it is

considered like a new set of task implementations and it switches back to the initial learning phase behavior until it

has again enough reliable information to move forward to the next phase, the reliable information phase.

The learning costs of our proposed scheduler are very application-dependent. Although the scheduler never stops

learning (because it is always updating TaskVersionSet structures), we could say that the duration of the initial

learning corresponds to the learning cost. Its cost is still application-dependent. For example, if one of the task

versions is much slower than the others, the impact of the learning cost will be higher. In the same way, a short run

with a few task instances (less than 10) will be highly affected by the learning costs (applications with 50-100 or

more task instances have low learning costs).

5. Evaluation

This section covers the evaluation work that we have done in order to measure the performance of the presented

OmpSs scheduler while running OmpSs applications using SMP and GPU specialized kernels.

5.1. Methodology

In order to evaluate our environment we selected a set of OmpSs applications and measured their scalability and

performance with our scheduler, comparing it to the other schedulers of the runtime environment.

Additionally, and with the purpose of having a better understanding of the results, we also measured the amount of

data transferred between host and device memory over the whole execution of the application. It may happen that

the amount of data transferred is much bigger than the total size of application’s data, because we may need to

transfer data back and forth several times and all these memory transfers are taken into account. The amount of data

is classified between three categories (we abbreviate “transfers” as “Tx”):

e Changing from one phase to the other just means that the scheduler changes the criteria to assign task versions to workers.

Selection of Task Implementations in the Nanos++ Runtime

 8

- Device Tx: when using two GPU devices, the amount of data transferred between these devices .

- Output Tx: the total amount of data transferred from all GPU memory spaces to the host memory space

(main memory).

- Input Tx: the total amount of data transferred from the host memory space (main memory) to any of the

GPU devices. If a piece of data is transferred to two different devices, both transfers are taken into account.

Finally, we also counted for the versioning scheduler the number of times each implementation was run. This gives

us an idea of how SMP and GPU devices cooperate together with application’s execution.

5.1.1. Environment

We used MinoTauro machine at the Barcelona Supercomputing Center, a multi-GPU system running Linux with

two Intel Xeon E5649 6-Core at 2.53 GHz and two NVIDIA GPUs M2090 with 512 CUDA cores and 6 GB of

memory each. The total amount of memory of the system is 24 GB of memory.

All the codes were compiled with OmpSs compiler version 1.3.5.8 with optimization -O3 level. GCC version 4.4.4

and CUDA version 4.0 were used as back-end compilers for the SMP and GPU codes respectively. The OmpSs

version is 0.7a.

5.1.2. Experiments

We run the selected applications with different configurations of numbers of cores and GPU devices to obtain the

performance or execution time of each application.

For each application, we show the results of running the regular application (where each annotated task of the source

code is targeting one device) with the hybrid version of the application (where annotated tasks can have one or more

implementations for different devices). For the regular version of the application, we chose the fastest combinations

of task implementations, and this is used to evaluate the quality of our scheduler. For the hybrid version, we gave

several SMP and GPU implementations of tasks and let the versioning scheduler to choose at run time.

We used three different OmpSs schedulers to compare the results:

- Dependencies-aware scheduler: In order to reduce the number of transfers between devices, this is a simple

implementation of a scheduler that tries to find chains of dependencies and sch edule consecutive tasks of

the same chain to the same device. Its decisions are fast, but in some cases cannot fully exploit data

locality.

- Affinity scheduler: This scheduler is a smarter implementation that tries to minimize the amount of

transfers between devices. For each task, it evaluates the amount of data that should be transferred to a

certain device in order to execute the task. The scheduler chooses the device where the minimum amount of

data must be transferred. We can exploit data locality this way, and reduce significantly the time spent in

memory transfers.

- Versioning scheduler: This is the scheduler that we present in this paper which is described in Section 4.

Since the dependency-aware and affinity schedulers do not support having more than one implementation for a task,

we can only run hybrid applications with several task implementations using the versioning scheduler.

Even though OmpSs tries to minimize the amount of data transfers, they still represent a significant amount of

execution time, so we configured OmpSs to overlap data transfers with task execution. We also combined this

feature with prefetching task data to achieve higher performance. These features do not depend on the scheduling

policy we are using, so we could enable them for all the three different scheduling policies.

5.2. Results

We present here the evaluation of the versioning scheduler presented in this paper. We are going to compare the

results of three applications (matrix multiplication, Cholesky factorization and PBPI) run with the three different

scheduling policies mentioned before. We will also evaluate how the number of resources impacts application’s

performance.

Analysis and Optimization of Task-based Parallel Programming Languages

 9

5.2.1. Matrix Multiplication

The application performs a dense matrix multiplication of two square matrices. Each matrix is divided into tiles;

each created task performs a matrix multiplication operation on a given block of the destination matrix: each product

of a sub-block of the two input matrices is a task. We used three different kernels to do this computation: the

CUBLAS kernel and a hand-coded CUDA implementation (both for a GPU architecture) and an SMP-targeted

kernel calling the CBLAS library. The matrix size is 16384 x 16384 double-precision floating point elements (2 GB)

and the block size is 1024 x 1024 elements (8 MB).

We present the results of two different application versions we tested. We omitted an SMP-only version of matrix

multiplication algorithm because its performance is too low to be comparable to the tested versions:

- mm-gpu: only the GPU vers ion of a matrix multiplication task is given. The task calls the cublasDgemm

function from CUBLAS library.

- mm-hyb: hybrid application with three different implementations for the matrix multiplication task are

given: the main implementation is the same as the one given in the mm-gpu. One of the other two

implementations runs on the GPU, too, and calls a hand-coded CUDA kernel that performs the

multiplication. The last implementation is an SMP-targeted task that calls the CBLAS library to compute

the result.

Figure 6 shows the performance results of the two tested versions of matrix multiplication enabling the different

schedulers. We can see that for the mm-gpu version there is no difference between using the affinity scheduler (mm-

gpu-aff) or the dependency-aware scheduler (mm-gpu-dep). In addition, the application shows the linear scalability

when using one or two GPUs. There is no difference between using one, two, four or eight SMP threads because

there is no parallelism to exploit for the SMP threads.

The only OmpSs scheduler that exploits the hybrid version of the application is the versioning scheduler, so we can

only present the results of running the matrix multiplication with this scheduler (mm-hyb-ver). For a small number

of threads, we can see that the overall performance is slightly lower due to several reasons: firstly, the overheads of

sharing data between different memory spaces and secondly, because the execution time of the SMP version of

matrix multiplication tasks is much higher than the execution time of the GPU version (SMP task duration is about

60 times the GPU task duration). Nevertheless, the more SMP worker threads collaborate in the application

execution, the more benefit versioning scheduler takes despite the fact that more data is transferred.

The performance benefit may look very small in this case, but we cannot expect a huge speed-up because the peak

performance of eight SMP cores is still quite far from the performance of a single GPU: one SMP core represents

less than 1% of the machine’s peak performance and one GPU represents around 45% of the peak.

Figure 6: Matrix multiplication performance results Figure 8: Matrix multiplication task statistics for

versioning scheduler

Selection of Task Implementations in the Nanos++ Runtime

 10

 Figure 7: Data transferred for matrix multiplication

Figure 7 shows the amount of data transferred for each execution. GA represents the mm-gpu version run with the

affinity scheduler, GD represents the same version run with the dependency-aware scheduler and HV represents the

mm-hyb version run with the versioning scheduler. Because part of the computation is done on SMP devices and

partial results are shared between CPU and GPU memory spaces , the amount of data transfers for the mm-hyb-ver

increases. As we increase the number of SMP workers, we can see that memory transfers increase too, because more

work is done by SMP workers and, thus, they need to share more data between SMP and GPU memory spaces. The

versioning scheduler is also transferring data between GPU devices due to a lack of data locality.

Finally, we show in Figure 8 the number of times each version is run for the mm-hyb version. As we mentioned

before, the application provides three different task versions: SMP version (that calls CBLAS library), CUDA

version (that calls a hand-coded CUDA kernel) and CUBLAS version (that calls CUBLAS library). The fastest

implementation (the CUBLAS version) is picked most of the times while the CUDA version is called only a few

times at the beginning of the execution, because there is a faster implementation for the same device (its

corresponding portion in the chart of Figure 8 is in the middle of each bar, but it is almost invisible). The SMP

worker threads keep picking the SMP version while the GPUs are busy (except for the final part of the computation,

where only the GPUs run the fastest implementation to avoid losing performance), and still take about 10% of the

work on average that helps improving application’s performance. We can notice that as we add more SMP workers,

more work is done by them. And for the same number of SMP worker threads, we can see that they do more work

when there is only one GPU, because the GPU computation is slower and they have more time (and more chances)

to pick tasks.

5.2.2. Cholesky Factorization

The Cholesky factorization is a matrix operation commonly used to solve normal equations in linear least square

problems. It mainly calculates a triangular matrix (L) from a symmetric and positive definite matrix (A). The

product of this triangular matrix L and its transposed copy is A: Cholesky(A) = L, where LL
t
 = A.

The source code is the main algorithm of a tiled Cholesky factorization. The matrix A is organized in blocks of 2048

x 2048 single-precision floating point elements (4 GB), with a total of 32768 x 32768 elements (16 MB). The

annotated application primitives (tasks) operate on these blocks. There are four annotated tasks: potrf, syrk, gemm

and trsm. For the last three tasks we give a single GPU-targeted implementation that calls MAGMA [10] or

CUBLAS libraries. For the potrf, we give two different implementations: one calls CBLAS and runs on the CPU

and the other one calls MAGMA and runs on the GPU.

In order to get good performance in this application, it is important to carefully schedule the execution of potrf,

because in Cholesky’s task graph, there are some points where all the following tasks depend on the potrf task. So, it

acts like a bottleneck and if it is not run as soon as its data dependencies are satisfied, there is less parallelism to

exploit and, thus, we observe a slowdown in application’s performance.

Analysis and Optimization of Task-based Parallel Programming Languages

 11

The different application versions we used are described below:

- potrf-smp: only SMP-targeted implementation of potrf task is given. Although we add the ”smp” suffix, the

other three tasks are always run on the GPU, because running them on the CPU would take too much time

for the amount of data they are computing.

- potrf-gpu: a single GPU-targeted implementation is given for each task.

- potrf-hyb: two different implementations (SMP and GPU versions) are given for the potrf task. The other

three tasks are always run on the GPU.

We show the results for the three Cholesky versions in the figures below. Performance results are shown in Figure 9.

Running the potrf task in the SMP implies several data transfers from and to the GPU memory, plus the SMP

version is slower than the GPU version. Thus, potrf-smp is the version that achieves less performance in all cases.

Figure 9: Cholesky factorization performance results Figure 11. Cholesky task statistics for versioning

scheduler

Figure 10. Data transferred for Cholesky

Although we can see the same performance trend for the potrf-hyb-ver version as for the matrix multiplication test

(as we increase the number of SMP workers, the performance of the versioning scheduler gets better than the other

tested versions and schedulers), the situation is different here. In this case, there is a small number of task instances,

so the initial learning phase of the versioning scheduler impacts on application’s performance. However, as we can

see in Figure 10, having more SMP worker threads benefits performance for two reasons: the initial learning phase

takes less time and a smaller amount of data is transferred compared to the other schedulers. In this case, the affinity

scheduler cannot exploit data locality because there is load imbalance, so there is one GPU that steals tasks from the

other one and this increases the number of memory transfers. However, it still achieves good performance because

the data transfers can be overlapped with computation.

Figure 11 shows the percentage of times each task version has been run for the potrf-hyb-ver version. In contrast to

the matrix multiplication case, the scheduler decides to assign all the work to the GPUs because they run faster and

Selection of Task Implementations in the Nanos++ Runtime

 12

there is not enough ahead scheduling (due to Cholesky’s data dependency graph complexity) to assign a slow SMP

task version to an SMP worker thread.

5.2.3. PBPI

PBPI is a parallel implementation of a Bayesian phylogenetic inference method for DNA sequence data. This

solution is based on the construction of phylogenetic trees from DNA or AA sequences using a Markov chain Monte

Carlo (MCMC) sampling method. There are two factors that determine the computation time: the length of the

Markov chains used later to approximate the probability of the phylogenetic trees and the time actually needed to

evaluate the likelihood values at each generation. The data set size used for this application is 50000 elements (500

MB).

In the implementation used in this paper, three different tasks are defined for each of the three computational loops

that account for the majority of the execution time of the program.

In order to simplify the presentation of the results, we have provided up to two implementations for each of the first

two computational loops. The third computational loop, although it is still a task, has a single SMP-targeted version.

We present the results of three different application versions:

- pbpi-smp: only the SMP versions of each of the three tasks are given. In this case, data always stay in the

host memory and no data transfers will be needed.

- pbpi-gpu: for the first two computational loops (that have been taskified), we give only the GPU version.

The third computational loop is always run on SMP architecture.

- pbpi-hyb: we give two implementations for the first two computational loops: the first ones run on the GPU

and the other ones run on an SMP device. The third computational loop is always run on SMP architecture.

Unfortunately, this application has no floating point operations, so we cannot give its results in GFLOP/s like we did

with the other two applications presented in this paper; we have to report its total execution time instead
f
.

Figure 12 shows the execution time of each version (remember that lower is better in this chart). We can see that

pbpi-smp versions run faster than the pbpi-gpu versions. This is due to the fact that sending all the computational

work of first and second loops to the GPU is not worth, since all the data will have to be transferred back and forth

to run the third loop on the SMP workers and memory transfers cannot be overlapped properly due to data

dependences.

However, the versioning scheduler is able to find the appropriate balance between SMP and GPU execution to take

advantage and decrease the execution time. Although the amount of data transfers is higher, as shown in Figure 13,

thanks to the look-ahead scheduling , it is able to overlap more data transfers with computation, so that we can see

some benefit.

Figures 14 and 15 show the percentage of times each task version has been run for the first and second loop

respectively. For the first loop, the versioning scheduler decides to send it most of the times to the GPU, but the

execution of tasks of the second loop is shared between GPU and SMP. Although it may not be clear in the chart

(because hundreds of thousands of tasks are run for the second loop), the SMP version is run many times (thousands

of times) and this helps balancing the trade-off between sending data back and forth and running the tasks on SMP

workers (the task itself is between three and four times slower for the SMP versions, but the time of transferring all

the data to the GPU is high enough to consider sending all the work to the SMP workers).

f Although we could also report matrix multiplication and Cholesky results as their execution time to make all the charts

homogeneous, we think that giving their results in GFLOP/s is better for the reader understanding, since this measure for such

applications is widely used among the Computer Scientific community.

Analysis and Optimization of Task-based Parallel Programming Languages

 13

Figure 12. PBPI execution time results

Figure 13. Data transferred for PBPI

Figure 14. PBPI task statistics for versioning scheduler

(first loop)

Figure 15. PBPI task statistics for versioning scheduler

(second loop)

6. Related Work

Heterogeneous architectures that combine different types of computational units (i.e., GPUs and traditional

processors) are becoming more common. However, the programmability of these nodes is an issue since the

programmer needs to take into account several aspects at a time: parallelism, different programming styles (i.e.,

traditional programming languages like C/C++ for the CPUs and CUDA for the GPUs), and the existence of

different memory spaces and therefore the management of the data transfers between them.

With regard to traditional node level parallel programming models, OpenMP is a widely adopted approach that

focuses on shared memory systems. It was designed for productivity, initially focused on loop parallelism. Recently

it has been extended with task based parallelism in its version 3.0 [3].

Cilk [11] is a task-based programming model based on the identification of tasks with the spawn keyword, and the

sync statement is used to wait for spawned tasks. Both OpenMP and Cilk consider nested tasks (tasks that generate

new tasks), but data dependency detection is not supported and additional synchronization points are required.

Although Cilk only supported parallel tasks, Cilk++ also supports parallel loops.

Selection of Task Implementations in the Nanos++ Runtime

 14

NVIDIA GPUs became very popular in the recent years and are extensively integrated in the HPC clusters. CUDA

is almost the de-facto standard for programming GPUs. CUDA [1] is an extension to C++ and it is based on kernels

that are executed concurrently by several threads. With CUDA, the programmer is not only responsible of writing

the application code and computational kernels, but also of performing memory allocation and managing the data

transfers from host memory to device memory. In [12] tools to better map the algorithms to the memory hierarchy

have been proposed. In this approach, programmers provide straight-forward implementations of the application

kernels using only global memory and the CUDA-lite tools do the transformations automatically to exploit local

memories.

OpenCL has been proposed as an alternative to program accelerators that can also be used to program general

purpose multi-cores [2]. Although the portability is a strong aspect of OpenCL, it offers a too low-level API to the

programmer, exposing her to explicitly manage the data and threads. For example, it is the responsibility of the

programmer to build the program executable or to move data between the cores and accelerators.

In Lee et al. [13] propose OpenMPC, which is an OpenMP-to-CUDA translation system, which performs a source-

to-source conversion of a standard OpenMP program to a CUDA program and applies various optimizations to

achieve high performance. The compiler interprets OpenMP semantics under the CUDA programming model and

identifies kernel regions (code sections to be executed on a GPU) and transforms eligible kernel regions into CUDA

kernel functions and inserts necessary memory transfer code to move data between CPU and GPU. Compared to

OmpSs, OpenMPC focuses on loop parallelization, while OmpSs focuses on the exploitation of task-based

concurrency.

HiCUDA [14] proposes the use of a set of directives that give hints to the compiler about regions of code that can be

exploited in the GPUs, and data directionality. Mint [15] implements a translator that transforms stencil

computations expressed in C, into CUDA code. Right now Mint does not support multi-GPU environments.

The CAPS HMPP [16] toolkit is a set of compiler directives, tools and software runtime that supports parallel

programming in C and Fortran. HMPP works based on codelets that define functions that will be run in a hardware

accelerator. These codelets can either be hand–written for a specific architecture or be generated by some code

generator. Offload [17] is a programming model for offloading portions of C++ applications to run on accelerators.

Code to be offloaded is wrapped in an offload block, indicating that the code should be compiled for an accelerator,

and executed asynchronously as a separate thread. Call graphs rooted at an offload block are automatically identified

and compiled for the accelerator. Data movement between host and accelerator memories is also handled

automatically. The Sequoia [18] alternative focuses on the mapping of the application kernels onto the appropriate

engines to exploit the memory hierarchy. The PGI Accelerator Compilers [19] and the Cray OpenMP Accelerator

compilers [20] provide support for NVIDIA GPUs. Both compiler systems recognize regions of code annotated with

a special pragma, and they outline the code to be run on GPUs. Data directionality clauses are also incorporated in

both approaches.

StarPU [21] is based on a tasking API and also on the integration of a data-management facility with a task

execution engine. With regard to data management, StarPU proposes a high level library that automates data

transfers throughout heterogeneous machines [22]. In StarPU codelets are defined as an abstraction of a task (e.g., a

matrix multiplication) that can be executed on a core or offloaded onto an accelerator using an asynchronous

continuation passing paradigm. StarPU offers low level scheduling mechanisms (e.g., work stealing) so that

scheduler programmers can use them in a high level fashion, regardless of the underlying (possibly heterogeneous)

target architecture. OmpSs and StarPU present several similarities with regard the execution model, but StarPU is

not proposing a programming model and therefore the programmer is confronted with lower APIs and execution

details that are hidden in the OmpSs case.

In [23] the authors describe a runtime framework to schedule Direct Acyclic Graphs (DAGs) in heterogeneous

parallel platforms. The proposal is based four important criteria: Suitability, Locality, Availability and Criticality

(SLAC) and show that all these criteria must be considered by a heterogeneous runtime framework in order to

achieve good performance under varying application and platform characteristics. Again as StarPU, the authors

propose a runtime scheduler while OmpSs is proposing a whole programming model and execution model.

Analysis and Optimization of Task-based Parallel Programming Languages

 15

7. Conclusions and Future Work

In this work we have presented the implementation of a new feature for the OmpSs model. OmpSs runtime has been

extended with the ability to run different implementations of a task, collect information about these task executions,

learn how they perform and, finally, decide by itself which is the most appropriate implementation to run each time

a task is called. This new feature has been presented as a new scheduling policy for the OmpSs framework: the

versioning scheduler.

With this new scheduler, the programmer can write hybrid applications where more than one implementation for

one or more devices (SMP, GPU, ...) is given for their tasks. This feature enhances the programmability of

applications and makes its maintenance easier, because the programmer, at any time, can develop a new

implementation for an already existent task in his code that targets the same or a different device and that can

potentially improve application’s performance.

From our results, we observe that, in most of the cases, the versioning scheduler out-performs the other existent

schedulers for the OmpSs runtime and at the same time, gives more flexibility to the programmer. Only in a few

cases the versioning scheduler slightly slows down the application compared to the other OmpSs schedulers.

Nevertheless, we have detected some limitations in our scheduler when using it in some specific applications: for

example, the amount of data transfers is not optimal because data locality is not taken into account. We are going to

provide the versioning scheduler with data locality information as future work in order to further improve the

performance of applications.

In addition, also as future work, we are aware of some scheduler weaknesses and we are going to enhance them. For

example, each set of tasks implementations has its own execution information depending on the size of the data that

the task needs. It is true that the execution time of a task can potentially depend on the size of the data that it

computes or processes, but this implementation decision means that if the data needed by two calls to the same task

differs by only 1 byte, the scheduler will consider that these calls are completely different and will not reuse the data

collected at the first call when the task is called for the second time. In this case, it would be better to group data

sizes in a reasonable range so that different calls to a task that process different amounts of data of the same

magnitude would be grouped together. With this optimization, the initial learning phase of the scheduler would take

less time, so better decisions would be taken earlier.

Finally, as new features, the versioning scheduler should be able to combine the good aspects of both affinity-aware

and dependency-aware schedulers. The scheduler should also offer the possibility to receive external hints for tasks

versions: for example, read an XML file with additional information about tasks versions. This file can be written by

the programmer, but it could also be written by OmpSs runtime in a previous execution of the application.

Acknowledgements

This work has been supported by the European Commission through the ENCORE project (FP7-248647), the

TERAFLUX project (FP7-249013), the TEXT project (FP7-261580), the HiPEAC-2 Network of Excellence

(FP7/ICT 217068), the Intel-BSC Exascale Lab collaboration project, the funding from the European Community’s

Seventh Framework Programme (FP7/2007-2013) under grant agreement nr. RI-283493, the support of the Spanish

Ministry of Education (TIN2007-60625, CSD2007-00050 and FPU program) and the Generalitat de Catalunya

(2009-SGR-980).

Selection of Task Implementations in the Nanos++ Runtime

 16

References

[1] NVIDIA CUDA Compute Unified Device Architecture Version 2.0, NVIDIA Corporation, 2008.

[2] Khronos OpenCLWorking Group, The OpenCL Specification, version 1.0.29, 8 December 2008. [Online]. Available:

http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf

[3] OpenMP ARB, “OpenMP Application Program Interface, v.3.0,” May 2008.

[4] J. M. Perez, R. M. Badia, and J. Labarta, “A dependencyaware task-based programming environment for multi-core architectures,” IEEE Int.

Conference on Cluster Computing, pp. 142–151, September 2008.

[5] J. Bueno-Hedo, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguad´e, and J. Labarta, “Productive programming of gpu clusters with

ompss,” in Proceedings of the 26th IEEE International Parallel and Distributed Processing Symposium, ser. IPDPS 2012, May 201 2.

[Online]. Available: http://www.ipdps.org/ipdps2012/2012 advance program.html

[6] C. Johns and D. Brokenshire, “Introduction to the Cell Broadband Engine Architecture,” IBM Journal of Research and Development, vol. 51,

pp. 503–519, September 2007.

[7] E. Ayguade, R. Badia, P. Bellens, D. Cabrera, A. Duran, M. Gonzalez, F. Igual, D. Jimenez-Gonzalez, J. Labarta, L. Martinell, X. Martorell,

R. Mayo, J. Perez, J. Planas, and E. Quintana-Orti, “Extending OpenMP to Survive the Heterogeneous Multi-core Era,” International Journal

of Parallel Programming, vol. 38, no. 5-6, pp. 440–459, June 2010.

[8] A. Duran, J. M. Perez, E. Eduard Ayguade, R. M. Badia, and J. Labarta, “Extending the OpenMP Tasking Model to Allow Dependent Tasks,”

in OpenMP in a New Era of Parallelism. Springer Berlin / Heidelberg, 2008, pp. 111–122.

[9] E. Ayguade, R. M. Badia, D. Cabrera, A. Duran, M. Gonzalez, F. Igual, D. Jimenez, J. Labarta, X. Martorell, R. Mayo, J. M . Perez, and E. S.

Quintana-Orti, “A Proposal to Extend the OpenMP Tasking Model for Heterogeneous Architectures,” in IWOMP: Evolving OpenMP in an

Age of Extreme Parallelism, vol. 5568. Dresden, Germany: Springer, June 2009, pp. 154–167.

[10] R. Nath, S. Tomov, and J. Dongarra, “An Improved MAGMA GEMM for Fermi GPUs,” University of Tennessee Computer Science (also

LAPACK Working Note 227), Tech. Rep. UTCS-10-655, July 2010.

[11] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou, “Cilk: an efficient multithreaded runtime system,”

SIGPLAN Not., vol. 30, no. 8, pp. 207–216, 1995.

[12] S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W. mei W. Hwu, “CUDA-lite: Reducing GPU Programming Complexity,” in In Languages

and Compilers for Parallel Computing (LCPC) 21st Annual Workshop, August 2008.

[13] S. Lee and R. Eigenmann, “Openmpc: Extended openmp programming and tuning for gpus,” in Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC ’10. Washington, DC, USA: IEEE

Computer Society, 2010, pp. 1–11. [Online]. Available: http://dx.doi.org/10.1109/SC.2010.36

[14] T . D. Han and T. S. Abdelrahman, “hicuda: High-level gpgpu programming,” IEEE Transactions on Parallel and Distributed Systems, vol.

22, pp. 78–90, 2011.

[15] D. Unat, X. Cai, and S. B. Baden, “Mint: Realizing cuda performance in 3d stencil methods with annotated c,” in Proceedings of the 25th

ACM International Conference on Supercomputing, ser. ICS ’11. New York, NY, USA: ACM, 2011, pp. 214–224. [Online]. Available:

http://doi.acm.org/10.1145/1995896.1995932

[16] R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A Hybrid Multicore Parallel Programming Environment,” in Workshop on General Processing

Using GPUs, 2006.

[17] P. Cooper, U. Dolinsky, A. F. Donaldson, A. Richards, C. Riley, and G. Russell, “Offload – automating code migration to heterogeneous

multicore systems,” in Lecture Notes in Computer Science, HiPEAC Conference 2010, 2010, pp. 307–321.

[18] T . J. Knight, J. Y. Park, M. Ren, M. Houston, M. Erez, K. Fatahalian, A. Aiken, W. J. Dally, and P . Hanrahan, “Compilation for explicitly

managed memory hierarchies,” in Proceedings of the 2007 ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, 2007.

[19] Portland Group Inc., “PGI Accelerator Compilers,” Sep 2011.

[20] Alistair Hart and Harvey Richardson and Alan Gray and Karthee Sivalingham, “Directive-based programming for GPUs, accelerators and

HPC,” December 2010. [Online]. Available: www.many-core.group.cam.ac.uk/ukgpucc2/talks/Hart.pdf

[21] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore

Architectures,” Concurrency and Computation: Practice and Experience, Euro-Par 2009 best papers issue, 2010, accepted for publication, to

appear. [Online]. Available: http://hal.inria.fr/inria-00550877

[22] C. Augonnet and R. Namyst, “A unified runtime system for heterogeneous multicore architectures,” in Proceedings of the International

Euro-Par Workshops 2008, HPPC’08, ser. Lecture Notes in Computer Science, vol. 5415. Las Palmas de Gran Canaria, Spain: Springer,

Aug. 2008, pp. 174–183. [Online]. Available: http://hal.inria.fr/inria-00326917

[23] J. A. Pienaar, A. Raghunathan, and S. Chakradhar, “Mdr: performance model driven runtime for heterogeneous parallel platforms,” in

Proceedings of the international conference on Supercomputing, ser. ICS ’11. New York, NY, USA: ACM, 2011, pp. 225–234. [Online].

Available: http://doi.acm.org/10.1145/1995896.1995933

http://www.ipdps.org/ipdps2012/2012

