
1

Biohelikon: Immunity & Diseases, 2013 1:1

Editorial

Mosquito Microbiota and Metagenomics,
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Abstract
Application of high throughput sequencing to infer microbial diversity in environmental as well as animal and plant samples is the
central theme of metagenomics. This is an immerging area of modern biology that has huge potential to uncover the forms of life
we would have never imagined, for example the diversity of microorganisms living within a tiny insect. Metagenomics analyses of
disease spreading insects will open up new avenues for better understanding the role of gut microbiota of insect vectors, such as
mosquitoes, in ability of these vectors to spread deadly human diseases. The aim of this editorial is to provide the current state of
our knowledge on identification of microbial communities in mosquitoes, but more importantly, to give a wakeup call to the vector
biology community that it is time to take a good look on the guts of these disease-spreading insects.
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Understanding pathobiology of mosquitoes is an
important component of understanding vector-
borne diseases. Significant efforts have been made
in understanding vector competence of mosquitoes
that transmit major pathogens such as malaria,
dengue and West Nile Virus and other disease-
causing pathogens [1-6]. Study suggests that
zoonotic mosquito-borne flaviviruses are potential
candidates of future emerging diseases because
of their worldwide presence and also due to
proven pathogenicity to humans [7]. Identification
of influential factors that drive vectorial ability
of mosquitoes to spread diseases is an urgent
need. The genomic and metagenomic approaches
have shown huge potential in this direction.
Genomes of major pathogens that are transmitted by
mosquitoes have been sequenced by now. Analysis
of these sequences has revealed forces that shape
pathogen evolution and their influence on mosquito
populations. It is imperative that more insights
should be gained based on genome-wide effects of
pathogen on vector populations in order to better
understand the evolutionary dynamics of vector-
pathogen interactions. Here, I briefly describe some
of the progresses made in the areas of pathobiology,
endosymbioants as well as cultured and uncultured
bacterial populations in mosquitoes and emphasize
on the metagenomic approach for a comprehensive
analysis of role of microbiota in vectorial ability of
mosquitoes to disease transmission.

Several bacterial endosymbioants have been
identified in mosquitoes that either permanently
reside within specific species/ strains or present as
a predominant component of the entire microbiota
of related mosquito species [8,9]. Wolbachia is a
well known endosymbiont bacteria of mosquitoes
[10,11]. Because of their stable association and
peculiar effect on the host organism (effect on age),
Wolbachia has been described as a potential tool

for suppressing vectorial ability of mosquitoes to
disease transmission [12-15]. In Anopheles stephensi,
Asaia bacteria were the dominant component of the
whole microbiota of these mosquitoes, particularly
in the female gut and in the male reproductive
tract [16]. Further experimental evidences from
this study also indicated that the Asaia bacteria
are stably associated with the female guts and
salivary glands, sites that are crucial for Plasmodium
sp. development and transmission. In A. gambiae
mosquitoes also, the Asaia bacteria are primarily
localized in the midgut, salivary glands and
reproductive organs [17]. Using fluorescent in situ
hybridization on the reproductive tract of females
of A. gambiae, this study has further shown
that the density of Asaia is relatively high at
the very periphery of the eggs, suggesting that
transmission of Asaia from mother to offspring is
likely mediated by a mechanism of egg-smearing.
Furthermore, molecular studies have shown that
different Asaia strains are present in different
mosquito populations, and even in single individuals
suggesting that multiple infections of Asaia bacterial
symbionts may have occurred in these mosquito
species.

Several studies have been performed in
laboratory-raised and filed-collected mosquitoes to
survey bacterial diversity, mostly in the midgut.
The culture dependent and culture independent
methods are particularly useful approaches in this
effort to make a comprehensive assessment of
the bacterial species in mosquitoes [18]. Using
this approach in Anopheles stephensi mosquitoes,
it was found that the field-caught adult males
were predominantly infected with uncultured
Paenibacillaceae where as the female and larvae
samples had Serratia marcescens as major source of
infections. In contrast to the field-collected samples,
the lab-reared mosquitoes were mostly inhabited
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with Serratia marcescens and Cryseobacterium
meninqosepticum bacteria. Using similar approaches
in Culex quinquefasciatus, Pidiyar et al. (2004) [19]
determined that the majority of the cultured isolates
and the 16S rRNA gene library clones generated
from midgut samples belonged to the gamma-
proteobacteria class. The study also found that about
46% of all bacteria identified from rRNA sequences
were classified as unidentified and uncultured.
Recently, the microbiota associated with four
mosquito species, Anopheles stephensi, Anopheles
gambiae, Aedes aegypti, and Aedes albopictus
have been compared [20]. The results revealed
the presence of several bacterial taxa in these
mosquitoes, among which Asaia sequences were
dominant in most of the samples. Analysis of field-
collected Aedes albopictus and Aedes aegypti from
Madagascar, however, reveals that Proteobacteria
and Firmicutes are the major phyla in these
mosquitoes [21].

The major limitation of comprehensive survey
of mosquito microbiota stems from the presence
of large proportion of uncultured bacterial species
[22]. Metagenomics is the application of modern
genomics techniques to the study communities
of microbial organisms directly in their natural
environments, bypassing the need for isolation and
lab cultivation of individual species. It allows us to
identify and determine DNA sequences of species
that are difficult to grow in laboratory culture.
In a large scale metagenomic study, Dinsdale  et
al. (2008) [23] also included mosquito samples
collected from California (Mission Valley and Buena
Vista Lagoon) to understand microbial diversity
within mosquitoes. Now, several studies have
shown compelling evidences that supports role of
resident microbiota on mosquito’s ability to spread
disease causing pathogens [24-27]. The metagenome
sequencing has identified hundreds and thousands
of microbial species from various environmental
samples as well as from fossils, living animals and
plants, and the human gut [28-31]. It is needless
to argue that metagenomics has huge potential to
uncover ‘life-within-life’ that we would have never
thought in the pre-genomic era. Hence, it is not only
essential but also timely that we exploit the tools and
technologies (large number of computational tools
are also available) towards systematic investigation
on role of gut microbiota of vector mosquitoes in
disease transmission.
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