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Abstract. Regardless of the specific discretisation framework, the discrete incompressible
Navier-Stokes equations present themselves in the form of a non-linear, saddle-point Oseen-
type system. Traditional CFD codes typically solve the system via the well-known SIMPLE-like
algorithms, which are essentially block preconditioners based on Schur complement theory.
Due to their “segregated” nature, which reduces to iteratively solving a sequence of linear
systems smaller than the full Oseen and better conditioned, traditional SIMPLE-like algorithms
have long been considered as the only viable strategy.

However, recent progress in computational power and linear solver capabilities has led
researchers to develop, for Oseen-type systems (and discrete Navier-Stokes in particular), a
number of alternative preconditioners and solution schemes, found to be more efficient than
SIMPLE-like strategies but previously deemed practically unfeasible in industrial contexts.

The improved efficiency of novel preconditioners entails a) faster, more stable convergence
and b) the possibility of driving residuals below more strict tolerances, which is sometimes
difficult with SIMPLE due to stagnating behaviour. The second aspect in particular is extremely
relevant in the context of adjoint-based optimisation, as evidence suggests that an adjoint system
may be affected by convergence issues when the primal flow solution is not well converged.

In this work, we present some solution schemes (both traditional and novel) implemented
for the Mixed Hybrid Finite Volumes Navier-Stokes solver we introduced in our previous work.
Performance, in terms of robustness and convergence properties, is assessed on a series of
benchmark test cases. We also turn our attention to the discrete adjoint Navier-Stokes prob-
lem itself, which in essence requires solving a linear system similar to the original Oseen and
therefore may benefit from the same preconditioning techniques. We show how the primal algo-
rithms are adapted to the adjoint system, and we run a series of adjoint test cases to compare
performance of various solution schemes.
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1 INTRODUCTION

In numerical optimisation, gradient-based methods are defined as a way of actively searching
for a local minimum of a given cost function J via minimisation algorithms that make use of
its sensitivity, i.e. its gradient with respect to a chosen set of design parameters α. Typical
examples related to fluid mechanics include: reducing the drag force exerted on an aircraft
wing by seeking the optimal airfoil profile; minimising the total pressure loss of a flow through
a duct by modifying the shape of the duct’s cross section.

Performing numerical optimisation in an industrial context can be prohibitively costly for
two reasons. Firstly, each iteration of the optimisation loop requires an evaluation of J , and
therefore a CFD solve. Secondly, extra computations are required in order to get the sensitiv-
ity dJ

dα
. The second issue in particular is a blocking factor in an industrial context: gradient

computation via traditional methods - finite differencing (FD) or forward-mode Algorithmic
Differentiation (AD) [11] - demands as many extra CFD solves as the number of design vari-
ables nα, which may be in the order of millions. This is notably the case for shape optimisation
processes where we want to compute the surface sensitivity, i.e. the gradient of J w.r.t. the
coordinates of each mesh node lying on the surface to be optimised.

The adjoint method [12, 13, 22] provides a workaround to the problem, as it allows to com-
pute the sensitivity of J at a cost that is essentially independent of nα. Our work is based on
the discrete adjoint approach, which consists in applying adjoint theory directly to the set of
discrete equations describing the original (or primal) problem. In short, a discrete adjoint boils
down to solving a linear system in the form:(

∂r

∂u

)T
u∗ = −∂J

∂u
(1)

where r is the primal residual vector and u∗ the discrete adjoint field.
The adjoint method, powerful as it is, suffers from stability and convergence issues. Solving

linear system (1) is not always a trivial task, and it was shown [20] that, if the primal solution is
not properly converged, then the adjoint might not converge at all. Evidence suggests that such
lack of robustness is to be blamed in part on the quality of the CFD solver itself, which in turns
depends on two key factors:

• the level of consistency and robustness of the discrete operators used in the primal;

• the efficiency of the algorithm used to converge the primal flow field.

In other words, even though a conventional CFD solver is able to produce results that are “good
enough” for mere engineering purposes, its discrete adjoint counterpart may be unstable or too
inaccurate to be of any use, since its quality is highly sensitive to how the primal governing
equations were discretised, as well as the tolerance down to which they were solved.

In our previous work [17, 18, 19] we addressed the task of finding robust discretisation
schemes for the Navier-Stokes equations, which we summarise in the next section. In this
paper we will turn our attention to developing improved solution algorithms for both primal
and adjoint systems.

1.1 Previous work: discretisation schemes

Traditional CFD solvers often rely on classical Finite Volumes (FV) schemes to discretise
the incompressible Navier-Stokes equations, which seem to produce discrete adjoints that some-



what lack robustness. In our recent work we attempted to tackle such issue, focusing our re-
search on non-standard discretisation schemes. We looked in particular into a class of methods
formerly known as Mimetic Finite Differences (MFD), now renamed Virtual Elements Methods
(VE) [5], originally developed for pure anisotropic diffusion problems [3, 4] and subsequently
extended to convection-diffusion operators [7, 26] and 1st-order accurate Navier-Stokes [8].
Compared to FV, VE operators sport a series of attractive features, most notably:

• they “mimic” at a discrete level certain key properties of their continuous counterparts
(e.g. they satisfy the discrete Gauss-Green formula);

• they are perfectly consistent up to a set order of accuracy, which can be increased to an
arbitrary level by attaching extra degrees of freedom to each mesh element;

• they are fully implicit and free of numerical artefacts (e.g. the Non-Orthogonal Correctors
typically found in FV schemes);

• their requirements in terms of mesh quality are minimal, i.e. they can deal with highly
skewed, non-orthogonal or non-convex elements.

We refer the reader to our previous publications for details on our specific implementation
of a VE diffusion operator [17], the addition of a convective term [18], the extension to sta-
bilised 2nd-order accuracy and our implementation of a Mixed Hybrid Finite Volumes (MHFV)
Navier-Stokes solver [19]. Here we limit ourselves to providing a very simplified outline of our
framework.

The main degrees of freedom for a generic mesh cell (Figure 1) are:

• face-averaged velocities ~UF , with components uF , vF , wF ;

• cell-averaged pressure pC .

pC

UF3UF2

UF1

UF4

UF5

Figure 1: Placement of main MHFV flow variables on a generic 2D cell.



Considering now the incompressible, steady-state Navier-Stokes equations{
~U · ∇~U −∇ · ν∇~U = −∇p+ ~g

∇ · ~U = 0
, (2)

when discretised via our MHFV operators they yield an Oseen-type saddle-point system
FΦ,x 0 0 Gx

0 FΦ,y 0 Gy
0 0 FΦ,z Gz
Dx Dy Dz 0




uF
vF
wF

pC

 =


gF,u
gF,v
gF,w
0

 (3)

or, in a more compact form: [
FΦ G
D 0

](
UF

pC

)
=

(
gF
0

)
. (4)
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Figure 2: Face-to-face stencil on a generic 2D mesh.

• FΦ,i stands for any version of the MHFV hybrid convection-diffusion operator described
in [19], acting on the ith velocity component. It is identical in all 3 spatial directions
(boundary conditions aside), and it is of course non-linear, since it depends on the con-
vective flux ΦF which is a function of ~UF . However, when linearised w.r.t. ΦF , FΦ is
evidently block-diagonal, i.e. it only acts on the velocity component in its own direction.

The operator is derived by defining a face flux ΨFC , through face F outward w.r.t. cell C,
catering for both convective and diffusive fluxes and acting on its respective component
of ~UF ′ defined on all faces F ′ belonging to C. For instance, for uF :

Ψu
FC =

∑
F ′∈C

nCFF ′uF ′ . (5)

Derivation of the nCFF ′ coefficients, omitted here, is the core of the VE/MHFV scheme.
We then impose flux conservation across each face, i.e.

Ψu
FC+ + Ψu

FC− = 0 (6)



where C+ and C− denote the two cells connected by face F , which yields the above
mentioned hybrid convection-diffusion operator. FΦ therefore operates on a face-to-face
stencil, as the one shown in Figure 2;

• the divergence operator D is simply derived from the Gauss divergence theorem applied
over each cell, i.e.

DC
(
~UF

)
=
∑
F∈∂C

~UF · ~F (7)

where ~F = {Fx, Fy, Fz} is the area vector of face F , outward w.r.t. cell C;

• the gradient operator G acting on the pressure is, for a 1st-order scheme, the transpose of
the divergence operator, i.e.

GF (pC) = ~F (pC− − pC+) . (8)

For a 2nd-order scheme, the operator also includes least-squares approximations of pres-
sure face values:

GF (pC) = ~F
{[
pC− +∇LSQ

C− p · (~xF − ~xC−)
]
−
[
pC+ +∇LSQ

C+ p · (~xF − ~xC+)
]}

. (9)

1.2 MHFV discrete adjoint

Let us now turn our attention to the discrete adjoint Navier-Stokes problem. In order to
assemble the adjoint system (1) we make use of the Equational Differentiation (ED) methodol-
ogy which we describe in [21]. In a nutshell, ED stands as a clear formulation of the fact that
we differentiate the primal (4) itself, and not the solution algorithm used to solve it (which is
what AD does). In other words, ED requires assembling (1) explicitly and independently of the
primal solving algorithm. Assembly of the Jacobian matrix ∂r

∂u
and the adjoint right-hand side

−∂J
∂u

may be done via any viable method, such as hand-differentiation, FD or AD tools. In our
case, we make use of FD techniques combined with colouring algorithms in order to make the
assembly cost independent of the problem size. One of the main advantages of such approach is
that it allows to assemble the system in an automatic, non-intrusive and black-box-like fashion.
However, since one of our goals here is to devise preconditioning techniques for the adjoint
system, it is paramount that we analyse its structure.

Let us consider the Jacobian ∂r
∂u

of the MHFV Navier-Stokes problem, i.e. the matrix of
partial derivatives of the residual vector of system (4) with respect to each flow variable. The
gradient and divergence operators, G and D, are linear with respect to all variables, and there-
fore their corresponding entries in the Jacobian correspond to the operators themselves. The
convection-diffusion operator FΦ, however, is non-linear with respect to UF : this is mainly due
to its dependency on the convective flux ΦF , although further non-linearities may be also be
present if the operator includes certain solution-dependent discretisation schemes (flux limiters,
weighting coefficients...), which is notably the case for our Upwind Least Squares (ULSQR)
stabilisation technique, often used in our tests. The full Jacobian A takes the form:

A =


F̃xx F̃xy F̃xz Gx
F̃yx F̃yy F̃yz Gy
F̃zx F̃zy F̃zz Gz
Dx Dy Dz 0

 (10)



or, in compact notation:

A =

[
F̃ G
D 0

]
. (11)

Unlike its primal counterpart, the adjoint momentum block F̃ is not block-diagonal, due to
the fact that convective fluxes ΦF depend on all components of ~UF , and therefore so does the
momentum residual, regardless of its specific direction. Each entry F̃ij in (10) corresponds
to the partial derivative of the momentum residual in the ith direction with respect to the jth

velocity component. Defining now g∗F = − ∂J
∂UF

and g∗C = − ∂J
∂pC

, J being the cost function, we
can assemble the full adjoint system:[

F̃T DT
GT 0

](
U∗F
p∗C

)
=

(
g∗F
g∗C

)
, (12)

where U∗F and p∗C are the adjoint velocity and pressure fields, respectively. The system is
evidently an Oseen-type saddle-point problem, much like the primal it is derived from.

2 PRECONDITIONING OF OSEEN-TYPE PROBLEMS

In the past few decades, constant increases in computing power have driven the advances
in algorithm development, specifically towards block preconditioners for Oseen-type systems
more efficient than the traditional SIMPLE-like strategies. Research has successfully produced
a number of alternative algorithms, although mostly restricted so far to the FE community:
variants of classical ILU preconditioners [28]; those based on the so-called approximate com-
mutators [9] - in particular the Pressure Convection-Diffusion (PCD) commutator [15]; the
Augmented Lagrangian approach [1]. Several interesting comparisons amongst various Navier-
Stokes preconditioners have also been published [23, 24].

We showed above how our discrete Navier-Stokes problem, both primal and adjoint, indeed
takes the form of a saddle-point Oseen-type problem. The main difference is that the primal
is non-linear due to the contributions of convective terms to FΦ, which depend on UF , and
therefore requires an outer iterative procedure (Picard iteration) on top of the inner one that
solves the linearised Oseen problem itself. However, since there is no interest in obtaining the
exact Oseen solution at each Picard iteration, the two are typically performed at the same time
in a one-shot fashion: this gives rise to the well-known CFD solution algorithms, which are in
fact the mere combination of preconditioners for linearised Oseen-type systems with outer non-
linear iterations. The adjoint is simply a linear saddle-point problem; it is therefore perfectly
legitimate to devise generic algorithms that can be adapted to both primal and adjoint, provided
that a few subtle differences are taken care of. For this reason, in the following sections we will
first describe preconditioners for a generic Oseen system written in the following notation:[

F G
D 0

](
U
p

)
=

(
gu
gp

)
, (13)

then adapt them to the MHFV framework and highlight the differences between primal and
adjoint.

Notice that we set the lower right matrix block in (13) to zero, which is the case for our
Navier-Stokes scheme (4) and for its adjoint (12). This is typically true for FE schemes satisfy-
ing the so-called inf-sup stability condition, but false in general - most notably for classical FV
using Rhie-Chow interpolation, as well as for many common stabilised FE schemes.



In the following sections we cover some of the algorithms we implemented so far, which are
mostly MHFV adaptations of preconditioners developed for traditional FV or FE schemes. It
is worth mentioning that, although our main goals are a) to achieve a better converged primal
in order to produce a more robust discrete adjoint and b) to devise efficient ways of solving the
adjoint itself, the potential benefits of our investigation go beyond the scope of adjoint-based
optimisation, since the ability to solve the discrete Navier-Stokes to higher accuracy and in as
few iterations as possible is highly desirable in the industry, regardless of adjoint computation.

2.1 SIMPLEC

Classical FV often make use of the ever-popular SIMPLE-like solution algorithms (see e.g.
[25]). The efficiency of SIMPLE-like preconditioners is debatable at best: they are somewhat
stable but they exhibit a rather poor convergence rate, they are prone to stagnation and their per-
formance is affected by mesh refinement. They mostly owe their popularity to legacy reasons,
being amongst the first devised working methods, and to their segregated nature, as they require
solving linear systems that are relatively small and better conditioned in comparison to the full
Oseen.

Despite traditionally being presented as segregated algorithms, highlighting the fact that they
solve separately for velocity and pressure, SIMPLE-like strategies can in fact be seen as a way
of preconditioning the discrete Oseen problem [24]. Notice that the generic Oseen matrix in
(13) can be factorized as [

F G
D 0

]
=

[
F 0
D −S

] [
I F−1G
0 I

]
, (14)

where I is the identity matrix and S is known as Schur complement:

S = DF−1G. (15)

This suggests a potentially very efficient way of preconditioning the Oseen system; in fact,
an exact Schur complement would provide an exact preconditioner, i.e. it would allow us to
solve the linearised (13) in one iteration only. However, this would require inverting operator
F, which would be computationally extremely expensive in real-life engineering applications.
Hence, practicality dictates that we compute an approximate Schur complement instead:

Ŝ = DF̂−1G (16)

and solve iteratively (relaxing if necessary) as follows:

1. solve FUn+1/2 = gu −Gpn (predictor step for velocity);

2. solve Ŝδp = DUn+1/2 − gp (pseudo-Laplacian for pressure correction);

3. update pressure: pn+1 = pn + δp;

4. update velocity: Un+1 = Un+1/2 − F̂−1Gδp (corrector step);

5. if non-linear, update operator F (Picard step).



If F happens to be block-diagonal, as is the case for the primal Navier-Stokes system, then step
1 can be split into three separate linear solves, each corresponding to the momentum equation
in its respective spatial dimension.

In its most basic implementation, SIMPLE approximates the inverse of F with the inverse of
its main diagonal:

F−1 ≈ F̂−1 = (DIAG (F))−1 . (17)

In this paper, we focus on the variant of SIMPLE known as SIMPLEC. It operates by adding to
the momentum equations in (13) some form of implicit relaxation by factor α:

Fα = F + αDIAG (F) (18)

and subsequently approximating the inverse of F as:

F−1 ≈ F̂−1 =
1

α
(DIAG (F))−1 . (19)

It has been observed [25] that SIMPLEC, in the steady-state case, yields a pseudo-Laplacian
pressure equation aimed at correcting the velocity increment

(
Un+1/2 −Un

)
rather than the

velocity itself, and since it acts on relaxed velocity increments, it does not require relaxing the
pressure correction step.

We previously adapted SIMPLEC to the MHFV framework. The main difference with re-
spect to classical FV is that, when relaxing our operator FΦ, instead of using its diagonal coef-
ficients as in (18), we apply inertial relaxation in the form:

FΦ,α = FΦ + α [diag (βF )] (20)

where βF is a suitable scaling factor defined for each face, related to the hybridisation procedure
(i.e. the elimination of cell-averaged velocity components in the convection-diffusion operator)
and the flux conservation (6) we impose at each face. Our inertial relaxation is proportional
to the local Reynolds number ReF , meaning that stronger relaxation is applied in areas where
convection-to-diffusion ratio is higher. The explicit definition of βF , omitted here, can be found
in [19].

For the primal, the overall iterative algorithm is analogous to the generic one outlined above,
the only difference being that, since we are dealing with incompressible flow, there is no source
term for the continuity equation.

Primal SIMPLEC:

1. solve relaxed momentum:

FΦn,αU
n+1/2
F = gF − GpnC + α [diag (βF )]Un

F ; (21)

2. solve pseudo-Laplacian:

D
[

diag
(

1

αβF

)]
DT δpC = DUn+1/2

F ; (22)

3. update pressure:
pn+1
C = pnC + δpC ; (23)



4. update velocity:

Un+1
F = U

n+1/2
F −

[
diag

(
1

αβF

)]
DT δpC ; (24)

5. update convective fluxes and assemble new operator FΦn+1,α.

Notice that here, in the Schur complement appearing in step 2, we use the transpose of the diver-
gence operatorDT rather than the gradient operator G. As mentioned in Section 1.1, the two are
identical - barring boundary conditions - when the pressure gradient term is discretised via the
1st-order scheme (8). For the 2nd-order scheme (9) that is no longer the case, meaning that by
using DT we introduce a further level of approximation in the Schur complement. We do so in
order not to degrade the sparsity pattern of the pseudo-Laplacian, which is already rather chal-
lenging for standard linear solvers even with 1st-order connectivity. Since this approximation
only affects the pressure correction step, the overall algorithm still converges.

SIMPLEC can be easily adapted to the adjoint system. The main difference is that the adjoint
momentum operator F̃T is not block-diagonal; since the ability to solve separately for each
velocity component is arguably one of the most attractive features of SIMPLE-like algorithms,
we aim to to maintain such de-coupled nature in the adjoint version. We therefore need to find
a suitable block-diagonal approximation to F̃T to be used as system matrix for the velocity
prediction step, whilst treating all extra-diagonal blocks explicitly. Intuitively, we choose to use
the transpose of operator FΦ itself, assembled using convective flux values ΦF taken at the last
primal iteration and therefore, presumably, converged.

As we did for the primal, we apply inertial relaxation in the form (20) to the adjoint mo-
mentum equation, which is necessary for steady-state SIMPLEC. We choose for simplicity to
recycle the same scaling factor βF from the primal, but we reserve the possibility to set a relax-
ation factor α independently. As for the adjoint pressure correction step, again we replace GT
with D, regardless of the order of accuracy of G, in order not to deteriorate the sparsity pattern
of the Schur complement.

Adjoint SIMPLEC:

1. solve relaxed adjoint momentum:

FTΦ,αU∗F
n+1/2 = g∗F −DTp∗C

n −
(
F̃T −FTΦ

)
U∗F

n + α [diag (βF )]U∗F
n. (25)

2. solve pseudo-Laplacian:

D
[

diag
(

1

αβF

)]
DT δp∗C = GTU∗F

n+1/2 − g∗C . (26)

3. update adjoint pressure:
p∗C

n+1 = p∗C
n + δp∗C ; (27)

4. update adjoint velocity:

U∗F
n+1 = U∗F

n+1/2 −
[

diag
(

1

αβF

)]
DT δp∗C . (28)



The term
(
F̃T −FTΦ

)
U∗F

n on the right-hand side of (25) is the contribution due to the coupling
of adjoint velocity components that we treat explicitly, and in adjoint jargon it is known as
Adjoint Transposed Convection (ATC), a name borrowed from continuous adjoint theory.

It is also worth noticing that our adjoint SIMPLEC algorithm is very similar to what we
would obtain if we were to apply AD to our solver via the so-called Christianson’s method.
The method, described in [6], operates by 1) applying reverse-mode AD to the last CFD iter-
ation only, and 2) iterating until the adjoint states are converged. This can be interpreted as
transposing the primal algorithm by using FTΦ with a converged ΦF for the momentum linear
solves, with all off-diagonal blocks of the Jacobian - the ATC - relegated to the right-hand side.

2.2 Block-Coupled

The Block-Coupled (BCPL) solution strategy is arguably the most intuitive and straight-
forward way of solving a system like (13). In our framework, for the primal, it simply requires
solving (4) after linearisation, i.e. with a frozen convective flux ΦF , then update the value of
ΦF with the newly computed UF , re-assemble operator FΦ, and iterate. In other words, BCPL
proceeds from one Picard iteration to the next, without any inner Oseen iterations; it does not
in general require any relaxation.

As for the adjoint system, since it is linear, a BCPL approach reduces to one linear solve
with no iterations at all except for those that may be performed internally by the linear solver in
use (which may or may not be iterative).

The BCPL approach entails two major drawbacks:

• it has been observed [27] that the saddle-point nature of system (4) poses a challenge for
standard linear solvers, as it is difficult to precondition and, for certain types of solvers,
even difficult to factorise/solve via direct methods due to the so-called zero-block on the
main diagonal in the discrete continuity equation;

• while more traditional algorithms (such as SIMPLEC) require at each iteration solving
multiple smaller linear systems, the BCPL approach requires solving the full linearised
Oseen system (4) which can indeed be extremely large for industrial cases - even more so
in our MHFV framework, since the number of velocity unknowns scales with the number
of faces in the mesh, and not cells like in FV.

2.3 V-Coupled

We mentioned in Section 2.1 how the adjoint version of SIMPLEC solves for u∗F , v∗F and w∗F
in a segregated fashion, moving the ATC to the right-hand side. Although we did not record any
issues in our experiments, the ATC is known to be a troublesome term especially when treated
explicitly, causing severe instabilities to the point where some researchers, such as [14, 20],
resort to arbitrarily damping it, or even eliminating it completely in sensitive areas, in the hope
that the final sensitivities won’t be excessively affected qualitatively.

The issue is particularly evident in continuous adjoints, where the ATC appears explicitly at
a PDE level, thus posing the challenge of finding a suitable discretisation as well as a stable way
of treating it in the solution algorithm. However, it is reasonable to expect robustness issues in
a discrete adjoint as well, especially at high Re, since high values on the right-hand side of (25)
might cause instabilities, leading to divergence unless heavy relaxation is applied.

The obvious solution is to treat the ATC implicitly; we do so in our V-Coupled (VCPL)
algorithm, which is simply a version of the adjoint SIMPLEC from Section 2.1 in which, in the



predictor step, we couple all velocity components by keeping them on the left-hand side:

F̃TαU∗F
n+1/2 = g∗F −DTp∗C

n + α [diag (βF )]U∗F
n; (29)

the pressure correction step (26), on the other hand, remains unchanged.
Besides tackling the above mentioned stability issues, by treating the ATC implicitly we can

also expect an overall reduction on the iteration count. On the downside, the VCPL approach
(29) comes with the obvious drawback of having to store larger matrices and solve larger linear
systems in comparison with SIMPLEC.

Of course the VCPL approach is only relevant to the adjoint system; applying VCPL to the
primal would be exactly equivalent to applying SIMPLEC, the only difference being that we
would be solving at each iteration a single, larger linear system rather than breaking it down
into three smaller ones.

2.4 Augmented Lagrangian

The Augmented Lagrangian (AL) preconditioning scheme for Oseen-type problems was first
presented by [1], and further developed with several variants by e.g. [2, 16]. AL-based precon-
ditioners have been so far investigated mostly within FE frameworks, and have been proven to
be theoretically almost optimal [2] in terms of mesh andRe-dependency. Despite its drawbacks,
we therefore deem it worth investigating the AL methodology and attempting to adapt it to our
MHFV scheme.

The AL core idea is to re-write system (13) as[
Fγ G
D 0

](
U
p

)
=

(
gu,γ
gp

)
, (30)

where
Fγ = F + γGW−1D (31)

and
gu,γ = gu + γGW−1gp. (32)

Systems (30) and (13) are clearly equivalent, since (31) and (32) simply add to the velocity
blocks a term proportional to residual of the continuity equation. In other words, the AL method
corresponds to adding to the momentum equations a penalisation term which is driven to zero
for a converged solution. In (31) and (32), γ is a positive augmentation factor, and W an
arbitrary symmetric positive definite (SPD) matrix.

As observed by [2], an advantage of using an AL formulation (besides theoretical near-
optimality of the preconditioner itself) is that the issue of finding a good approximation for the
Schur complement (15) is circumvented. If the augmentation factor is large enough, then the
penalisation term will prevail on the operator F itself, thus justifying the approximation

F−1
γ ≈ F̂−1

γ =
(
γGW−1D

)−1 (33)

which yields an approximate Schur complement in the form:

Ŝ = D
(
γGW−1D

)−1 G =
1

γ
W. (34)

The generic AL iterative procedure is outlined as follows:



1. solve FγUn+1 = gu,γ −Gpn (penalised momentum equation);

2. solve 1
γ
Wδp = DUn+1 − gp (pressure correction);

3. update pressure: pn+1 = pn + δp;

4. if non-linear, assemble new augmented momentum operator Fγ .

In FE, matrix W is often chosen to be the so-called pressure mass matrix or, for practical rea-
sons, a diagonal approximation of it (usually a lumped mass matrix, or else simply its main
diagonal); in that case, the pressure correction step 2 involving the approximate Schur comple-
ment (34) simply requires inverting a diagonal matrix, i.e. it doesn’t actually involve a linear
solve. The main drawbacks of AL-based preconditioners are:

• the augmented momentum operator Fγ is no longer block-diagonal, because each of the
velocity components contributes to the penalisation term of the momentum equations in
all spatial dimensions. Therefore, step 1 in the procedure above entails a single coupled
linear solve for u, v and w at the same time and, unlike with SIMPLEC, it cannot be
de-coupled into segregated smaller systems, at least for the basic AL formulation;

• as shown by [1], too large values of γ cause the penalised block Fγ to become increasingly
ill-conditioned since GW−1D is a singular matrix, and therefore increasingly challenging
for linear solvers. On the other hand, the approximated Schur complement (34) is only
close to the exact one if γ is large enough, hence if γ is chosen too small, the overall
algorithm may underperform or even diverge. A trade-off between these two extremes
is thus required, possibly combined with inexact solves of the augmented momentum
equations.

Developing an AL preconditioner for our primal MHFV solver is fairly straight-forward. We
already described in Section 1.1 the divergence operator D (7); we proceed by adding a penali-
sation term in the form (31) to our MHFV momentum operator as follows:

FΦ,γ = FΦ − γµDT
[

diag
(

1

|C|

)]
D, (35)

whereas the right-hand side remains unchanged since there is no source term for the continuity
equation. A few observations are in order:

• as we did for the SIMPLEC Schur complement, here we use DT rather than G in the
AL augmentation term. We already highlighted how the two are identical in the case
of 1st-order pressure gradient scheme (8), and since a 2nd-order accurate G as defined in
(9) would further increase the complexity of the already challenging augmented operator
(35), we choose to stick with the 1st-order operator DT . It is important to stress that such
choice does not in any way affect the order of accuracy of the solution itself: the AL
algorithm ultimately drives DUF , and therefore the penalisation term, to zero, and the
final flow field satisfies the original non-augmented Navier-Stokes problem (4);

• |C| is the volume of cell C, and the diagonal matrix diag (|C|) plays in (35) the role of W
in the generic formulation (31). In a FV-like framework, such as ours, this is indeed the
equivalent of the FE pressure mass matrix, and since it is diagonal it can be inverted with
no further approximation;



• besides the augmentation parameter γ, we also multiply the penalisation term by a scal-
ing factor µ, in order to maintain γ within a range of values that work reasonably well
regardless of the specific mesh size and problem physics. Following suggestions from [1],
we set µ to scale with the velocity: µ = max|~UC |, where |~UC | the cell-averaged velocity
magnitude.

We can now outline our primal AL iterative procedure.

Primal Augmented Lagrangian:

1. solve augmented momentum:

FΦn,γU
n+1
F = gF − GpnC ; (36)

2. compute pressure correction:

δpC = −γµ
[

diag
(

1

|C|

)]
DUn+1

F ; (37)

3. update pressure:
pn+1
C = pnC + δpC ; (38)

4. update convective fluxes and assemble new augmented operator FΦn+1,γ .

Lastly, we propose here an adaptation of the AL preconditioner to the adjoint Navier-Stokes
system. Following the generic methodology above, the penalised adjoint momentum operator
becomes

F̃Tγ = F̃T − γµDT
[

diag
(

1

|C|

)]
D, (39)

and its right-hand side:

g∗F,γ = g∗F − γµDT
[

diag
(

1

|C|

)]
g∗C . (40)

The scaling factor µ is taken from the primal, while the penalisation coefficient γ is defined
independently.

Notice that, as we did for the primal, in (39) we replaced GT with D in the adjoint aug-
mentation term in order to avoid excessively complex connectivities. For the adjoint, however,
we need to take a few extra measures: the adjoint continuity equation dictates that we pe-
nalise by a quantity proportional to

(
GTU∗F − g∗C

)
exactly; therefore, if GT 6= D, penalising for

(DU∗F − g∗C) as we do in (39) and (40) may never converge, as it would be the equivalent to
solving the adjoint of a 1st-order accurate primal, which would be inconsistent with the actual
Jacobian. A way around the issue is to treat all the (presumably small) 2nd-order contributions
explicitly, as shown in the algorithm below.

Adjoint Augmented Lagrangian:

1. solve adjoint augmented momentum:

F̃Tγ U∗F
n+1 = g∗F,γ −DTp∗C

n − γµDT
[

diag
(

1

|C|

)] (
GT −D

)
U∗F

n; (41)



2. compute adjoint pressure correction:

δp∗C = −γµ
[

diag
(

1

|C|

)] (
GTU∗F

n+1 − g∗C
)

; (42)

3. update adjoint pressure:
p∗C

n+1 = p∗C
n + δp∗C . (43)

3 NUMERICAL RESULTS

L
wall

wall

wall

u = 1 , v = 0

Figure 3: Lid-driven cavity test case.

Mesh Type A Mesh Type B

Figure 4: Mesh types used for the lid-driven cavity test case.

For a first evaluation of the performance of our (primal) algorithms, we test them on the well-
known 2D lid-driven cavity benchmark test case, set-up as shown in Figure 3. We run it at two
different Reynolds numbers, Re = 102 and Re = 103, on the two different mesh types shown



in Figure 4, with Type A being a quadrilateral, highly distorted/non-orthogonal mesh, and Type
B a more regular, polygonal honeycomb-like mesh. We test on a series of progressively refined
meshes of both types in order to assess h-dependency.

As for the discretisation schemes, we use 2nd-order MHFV operators for both velocity and
pressure, the first stabilised via our ULSQR technique described in [19], the second as in (9).
All simulations are run down to a tolerance of 10−4 on scaled residuals.

3.1 Block-Coupled
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Figure 5: MHFV Block-Coupled. Lid-driven cavity test case. Iteration count in function of mesh type, mesh size
and Re.

Results for BCPL are shown in Figure 5 where we plot, for each mesh type and each Re, the
iteration count niter against the number of mesh faces, i.e. against mesh refinement.

The figures are rather positive: at Re = 102 the iteration count is consistently small (below
10), and does not appear to be affected by mesh size or quality; at Re = 103 we record an
asymptotic behaviour of niter with respect to mesh size, namely the iteration count is higher on
coarser meshes and tends to settle around a value in the order of 10 as we refine the mesh; such
behaviour is identical over both mesh types. Evidence thus suggests that our BCPL algorithm is
independent of mesh quality and mesh size (barring coarse mesh cases, where it underperforms



slightly), and only marginally affected by an increase of Re.

3.2 SIMPLEC
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Figure 6: MHFV SIMPLEC. Lid-driven cavity test case. Iteration count in function of mesh type, mesh size, Re
and relaxation factor α.

We perform on our SIMPLEC scheme the same tests presented above for BCPL. For SIM-
PLEC we also try out different values of relaxation factor α, in order to verify whether the
optimal value depends on the other parameters.

The resulting graphs are reported in Figure 6. It appears that, for both mesh types and both
Re, setting α = 0.1 gives the best performance in terms of both iteration count and algorithm
scaling against problem size. Results are encouraging in that sense, as that they suggest that the
optimal relaxation factor does not depend on mesh quality, and it is only slightly influenced by
grid coarseness and problem physics.

On the other hand, these results also highlight two severe limitations of SIMPLEC itself:

• the iteration count scales with the problem size, i.e. refining the mesh causes niter to
grow. The iteration count itself is in general very high, roughly an order of magnitude
greater than with the BCPL approach;



• the algorithm heavily depends on numerical parameters, and in particular on mesh type.
Notice how niter is in general much higher, and grows more rapidly with the problem
size, for mesh Type A. This can be attributed to the irregularity of Type A, which fea-
tures several strongly distorted cells as well as a wide range of cell volumes/face areas -
whereas Type B is only slightly non-orthogonal, and perfectly regular in terms of element
size. This might be causing SIMPLEC to underperform on Type A compared to Type B,
despite the considerably smaller problem size.

3.3 Augmented Lagrangian
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Figure 7: MHFV Augmented Lagrangian. Lid-driven cavity test case. Iteration count in function of mesh type,
mesh size, Re and augmentation factor γ.

Once again we run the lid-driven test case to validate the performance of AL in function of
Re, mesh quality and mesh size; we also test for different values of penalisation factor γ. Results
are reported in Figure 7. The curves show that there is no definite correlation between niter
and grid size nor grid quality, hence our AL implementation is completely mesh independent.
Similarly to the other preconditioners, we observe however a slight increase in iteration count
for higher Re values. The value of niter itself remains in the order of 10, hence much lower
than that of SIMPLEC and fairly close to BCPL results, thus confirming the near-optimality of



the AL algorithm.
Results also highlight how higher values of γ consistently reduce the total number of iter-

ations; this is expected because, when γ is high, the convection-diffusion operator FΦ in (35)
becomes negligible compared to the penalisation term, and therefore the diagonal approximate
Schur complement used in (37) is close to the exact one. However, as observed in Section 2.4,
too high values of γ will cause the augmented operator FΦ,γ to be nearly singular, thus hinder-
ing the linear solve for velocity prediction. Keeping γ in the order of 1 appears to be a resonable
choice; in order to run tests at higher γ values, we circumvent the linear solver issue by using
direct solvers, which is however not a viable option for real industrial cases.

3.4 Comparison of primal Navier-Stokes solution algorithms
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Figure 8: S-bend test case. Convergence history of the x-momentum and continuity scaled residual norms for
different solution algorithms.

We run a further comparison of the primal BCPL, SIMPLEC and AL algorithms on a 3D
flow solve: the S-bend, a popular benchmark test case involving an internal flow simulation
through an S-shaped air duct. We run the S-bend at a fairly low Re ≈ 400 and over a relatively
coarse, hexahedral mesh (approximately 41k elements and 126k faces). We show in Figure 9
the S-bend geometry and some solution contours.

For the current test, we set the following algorithm parameters: no relaxation for BCPL;
α = 0.1 for SIMPLEC (experimentally determined to be close to optimal); γ = 5 for AL (which
we found to produce good overall convergence properties whilst maintaining the augmented
system relatively well-conditioned). Tolerance is set to 10−4 for both momentum and continuity
equations. As for the numerical scheme, we set our MHFV solver to 2nd-order accuracy for both
pressure and velocity, the latter stabilised via the previously mentioned ULSQR strategy.

A comparison is shown in Figure 8, where we report the history of the x-momentum and
continuity scaled residuals for each preconditioner. The graph demonstrates once again the
definite superiority of both BCPL and AL over SIMPLEC in terms of convergence rate. The
reader may also notice a stagnation-like behaviour of SIMPLEC at the last few iterations, also
noticeable in other graphs throughout this paper. This is due to the fact that our CFD solver
only performs a linear solve if the initial residual norm for the specific equation being solved
is above the global tolerance; not all segregated equations reach convergence at the exact same
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Figure 9: S-bend test case. Domain geometry (a), velocity magnitude (b), pressure field (c).

iteration, hence a synchronisation phase happens at the end of the process, essentially causing
the equations to be solved alternately until all residual norms align just below tolerance.

It is remarkable how BCPL and AL exhibit very similar convergence properties. The differ-
ence is that AL runs several extra iterations, due to the fact that the continuity equation does
not converge at the same rate for the two: BCPL solves it exactly at each step, while AL itera-
tively reduces the continuity residual via the penalisation mechanism. The extra AL iterations
evidently result in a better converged momentum equation, at the expense of continuity being
solved only down the set global tolerance, whilst BCPL solves it exactly - or almost, depending
on the linear solver in use.

3.5 Comparison of adjoint Navier-Stokes solution algorithms

To test and compare performances of our adjoint preconditioners, we first run a simulation
on the simple 2D square box test case represented in Figure 10, a popular benchmark case
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Figure 10: Square box test case.

often used to illustrate adjoint-based optimisation techniques; the cost function J , necessary
to compute the adjoint right-hand side, is defined as the total pressure drop across the box’s
boundary ∂Ω:

J = −
∫
∂Ω

(
p+

1

2
|~U |2

)
(44)

We run the primal at Re ≈ 103 on a regular polygonal mesh (Type B in Figure 4); MHFV
operators are all 2nd-order accurate. We converge the primal down to a normalised resudual
of 10−6 in order to secure a robust discrete adjoint; for the adjoint itself, we set a tolerance of
10−4. We relax by α = 0.3 both SIMPLEC and VCPL, while for AL we use γ = 10. We report
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Figure 11: Square box test case. Convergence history of the adjoint x-momentum scaled residual norm for different
solution algorithms.

in Figure 11 the convergence history for the adjoint x-momentum. SIMPLEC and VCPL both
exhibit a somewhat oscillatory behaviour, and both converge roughly at the same rate. The gain
in iteration count obtained by opting for VCPL over SIMPLEC is moderate at best; a series
of other test cases, not reported here, also confirm that the reduction on niter, when present,



is limited to a maximum of about 10%, at the considerable cost of having to solve a velocity
coupled system at each iteration. It should also be mentioned, however, that we mostly test on
fairly low-Re; we therefore maintain the argument that, for higher Re simulations, treating the
ATC implicitly may bring about significant advantages in terms of solver stability.

AL, on the other hand, outperforms by far the SIMPLE-like preconditioners. For this particu-
lar test case the adjoint momentum residual falls well below tolerance - in fact, down to machine
precision - from the very first iteration, whilst the adjoint continuity equation, not shown here,
converges to the given tolerance in 4 iterations only. Therefore, as for the primal, AL displays a
behaviour very close to the optimal BCPL approach - the adjoint system is linear, hence a fully
implicit adjoint BCPL approach does not need any outer iterations.
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Figure 12: S-bend test case. Convergence history of the adjoint x-momentum scaled residual norm for different
solution algorithms.

To further validate, we also assemble and solve the discrete adjoint of the 3D S-bend test case
whose primal we described in section 3.4; again we define as cost function the total pressure
drop (44). We use an optimal relaxation factor, found to be α = 0.28, for both SIMPLEC and
VCPL, and an augmentation factor γ = 10 for AL. Results are reported in Figure 12; we also
show, for the sake of generating reader interest, the computed surface sensitivity field in Figure
13.

Results on the S-bend confirm the observations previously made on the 2D square box: SIM-
PLEC and VCPL perform comparably (in fact, to be precise, for the S-bend VCPL even takes a
few more iterations than SIMPLEC due to the final residual synchronisation process explained
in Section 3.4), whilst AL drops the adjoint momentum residual down to near-machine preci-
sion from the very start, and only takes 3 iterations to converge the adjoint continuity below
tolerance. It should be mentioned, however, that all of the drawbacks highlighted for the primal
AL also affect the adjoint AL, namely: on one hand, the difficulties in solving the augmented
momentum other than via direct methods for too large values of γ; on the other hand, the failure
of the overall AL algorithm for a γ too small.
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Figure 13: S-bend test case. Surface sensitivity field: red areas indicate zones where pulling the surface outwards
results in total pressure loss reduction.

4 CONCLUSIONS

Despite our MHFV discretisation scheme being an alternative, non-standard form of the
discrete Navier-Stokes equations, numerical results shown in this paper reveal how the adap-
tation of preconditioning techniques developed for classical Finite Volumes or Finite Elements
schemes leads to algorithms exhibiting behaviours similar to those described in traditional lit-
erature. SIMPLE-type schemes suffer from poor convergence rates and excessive dependency
on mesh quality and size; alternative schemes, such as BCPL and AL, although fully mesh-
independent and theoretically near-optimal, are affected by several practical issues, notably
caused by the size and/or complexity of the linear solves involved. The same applies when such
algorithms are run for the adjoint Navier-Stokes system.

Convergence properties and robustness aside, there is one other aspect, paramount in indus-
trial contexts, which we haven’t yet delved into: the cost in terms of CPU time. Our tests show
that SIMPLEC benefits from a lower CPU time per iteration, as it involves solving smaller,
better conditioned systems. On the other hand, the CPU time per iteration is found to scale
similarly for all algorithms, and since the BCPL/AL iteration count is an order of magnitude
lower than for SIMPLEC, the former two remain by far the best choice.

Interestingly enough, an AL iteration appears to be roughly twice as expensive as a BCPL
one, despite AL solving for smaller matrices; this is easily explained by the fact that AL matri-



ces, although smaller, are also less sparse: the face-to-face connectivity (Figure 2) repeated on
the off-diagonal blocks of the augmented momentum operator easily gives rise to AL matrices
with more non-zeroes than the full Oseen matrix itself. Of course the issue - which is scheme-
dependent and may be less aggravating for traditional FV methods - could be circumvented via
a more efficient preconditioning of the AL linear solves but, as we mentioned, this can prove to
be a very challenging task and beyond the scope of our current research.

In the near future we therefore plan to implement a MHFV version of the Modified Aug-
mented Lagrangian (MAL) described in [2], which is indeed designed to alleviate some of
the issues discussed above whilst still benefiting from most advantages brought about by AL.
We also plan to conduct further research related to Navier-Stokes preconditioning in general,
namely by investigating approximate commutators such as the Pressure Convection-Diffusion
(PCD) [15] and the Least Squares approximate commutator [10].
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