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Abstract: There are several known exact results on the crossing number of Cartesian

products of paths, cycles, and complete graphs. In this paper, we find the crossing numbers

of Cartesian products of Pn with two special 6-vertex graphs.
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§1. Introduction

A drawing D of a graph G on a surface S consists of an immersion of G in S such that no edge

has a vertex as an interior point and no point is an interior point of three edges. We say a

drawing of G is a good drawing if the following conditions hold:

(1) no edge has a self-intersection;

(2) no two adjacent edges intersect;

(3) no two edges intersect each other more than once;

(4) each intersection of edges is a crossing rather than tangential.

The crossing number cr(G) of a graph G is the smallest number of pairs of nonadjacent

edges that intersect in a drawing of G in the plane. An optimal drawing of a graph G is a

drawing whose number of crossings equals cr(G).

Now let G1 and G2 be two vertex-disjoint graphs. Then the union of G1 and G2, denoted

by G1

⋃
G2, is a graph with V (G1

⋃
G2) = V (G1)

⋃
V (G2) and E(G1

⋃
G2) = E(G1)

⋃
E(G2).

The Cartesian product G1×G2 of graphsG1 and G2 has vertex set V (G1×G2) = V (G1)×V (G2)

and edge set E(G1 × G2) = {{(ui, vj), (uh, vk)}|(ui = uh and vjvk ∈ E(G2)) or (vj = vk and

uiuh ∈ E(G1))}. A circuit C of a graph G is called non-separating if G/V (C) is connected,

and induced if the vertex-induced subgraph G[V (C)] of G is C itself. A circuit is called to be

an induced non-separating circuit if it is both induced and non-separating. For definitions not

explained in this paper, readers are referred to [1]. The following result is obvious by definitions.

Lemma 1.1 If C is an induced non-separating circuit of G, then C must be the boundary of a

face in the planar embedding.

The problem of determining the crossing number of a graph is NP-complete. As we known,

the crossing number are known only for a few families of graphs, most of them are Cartesian

products of special graphs. For examples,
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cr(C3 × C3) = 3 (Harary et al, 1973, see [5]);

cr(C3 × Cn) = n (Ringeisen and Beinekein, 1978, see [9]);

cr(C4 × C4) = 8 (Dean and Richter, 1995, see [3]);

cr(C4 ×Cn) = 2n, cr(K4×Cn) = 3n (Beineke and Ringeisen, 1980, see [2])

Let Sn−1 and Pn be the star and path with n vertices, respectively. Klesc [6] proved that

cr(S4 × Pn) = 2(n− 2) and cr(S4 × Cn) = 2(n− 1). He also showed that cr(K2,3 × Sn) = 2n

[7] and cr(K5 × Pn) = 6n in [7]. Peng and Yiew [4] proved that cr(P3,1 × Pn) = 4(n− 1).

In this paper, we extend these results to the product Gj × Pn, 1 ≤ j ≤ 2 for two special

graphs shown in Fig.1 following.
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For convenience, we label these six vertices on their outer circuits of G1 consecutively by

integers 1, 2, 3, 4, 5 and 6 in clockwise, such as those shown in Fig.1. Notice that for any graph

Gi, i = 1, 2, Gi×Pn contains n copies of Gi, denoted by Gj
i (1 ≤ j ≤ n) and 6 copies of Pn. We

call the edges in Gj
i black and the edges in these copies of Pn red. For j = 1, 2, · · ·n − 1, let

L(j, j + 1) denote the subgraph of Gi × Pn, induced by six red edges joining Gj
i to Gj+1

i . Note

that L(j, j + 1) is homeomorphic to 6K2.

§2. The crossing number of G1 × Pn

By joining all 6 vertices of G1 to a new vertex x, we obtain a new graph, denoted by G∗
1. Let

T x be the six edges incident with x, see Fig.1. We know G∗
1 = G1

⋃
T x by definition.

Lemma 2.1 cr(G∗
1) = 2.

Proof A good drawing of G∗
1 shown in Fig.2 following enables us to get cr(G∗

1) ≤ 2. We

prove the reverse inequality by a case-by-case analysis. In any good drawing D of G∗
1 , there

are only three cases, i.e., crD(G1) = 0, crD(G1) = 1 or crD(G1) ≥ 2.

Case 1 crD(G1) = 0.

Use Euler’s formula, f = 6 and we note that there are 6 induced non-separating circuits

1231, 2342, 3453, 4564, 12461, 13561. So there are at most 4 vertices of G1 on each boundary.
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Joining all 6 vertices to x, there are 2 crossings among the edges of G1 and the edges of T x at

least. This implies cr(G∗
1) ≥ 2.

Case 2 crD(G1) = 1.

There are at most five vertices of G1 on each boundary. Joining all 6 vertices to x, there

are at least one crossing made by edges of G1 with edges of T x. So cr(G∗
1) ≥ 2.

Case 3 crD(G1) ≥ 2.

Then cr(G∗
1) ≥ 2. Whence, cr(G∗

1) = 2. �
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Fig.2

Lemma 2.2 In any good drawing of G1 × Pn, n ≥ 2, there are at least two crossings on the

edges of Gi
1 for i = 1, 2, · · ·n.

Proof Let wi denote the number of crossings on the edges of Gi
1 for i = 1, 2, · · ·n and

Hi = 〈V (Gi
1)

⋃
V (Gi+1

1 )〉G1×Pn
for i = 1, 2, · · ·n− 1. First, we prove that wn ≥ 2. Let T ′ be a

graph obtained by contracting the edges of Gn−1
1 in Hn−1 resulting in a graph homeomorphic

to G∗
1.

By the proof of Lemma 2.1, wn ≥ cr(T ′) = cr(G∗
1) = 2. For i = 1, 2, · · ·n − 1, let Ti be

the graph obtained by contracting the edges of Gi+1
1 in Hi resulting in a graph homeomorphic

to G∗
1. Similarly, by Lemma 2.1, we get that wi ≥ cr(Ti) = cr(G∗

1) = 2 for i = 1, 2, · · ·n− 1. �

Lemma 2.3 If D is a good drawing of G1 × Pn in which every copy of G1 has at most three

crossings on its edges, then D has at least 4(n− 1) crossings.

Proof Let D be a good drawing of G1 × Pn in which every copy of G1 has at most three

crossings on its edges. We first show that in D no black edges of Gi
1 cross any black edges of

Gj
1 for i 6= j. If not, suppose there is a black edge of Gi

1 crossing with a black edge of Gj
1. Since

D is a good drawing and every edge of G1 is an edge of a cycle, there exists a cycle induced by

V (Gi
1) which contains a black edge crossing with at least two black edges of Gj

1. Now delete

the black edges of Gi
1. The resulting graph is either

(1) homeomorphic to G1 × Pn−1 for i = 2, 3, · · ·n− 1; or
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(2) contains a subgraph homeomorphic to G1 × Pn−1 for i = 1 or i = n.

Since every copy of G1 in G1×Pn has at most three crossings on its edges, the drawing of

the resulting graph has at most one crossing on the edges of Gj
1. Contradicts to Lemma 2.2.

Next, we show that no black edge of Gi
1 crosses with a red edge of L(t− 1, t) for t 6= i and

t 6= i + 1. If not, suppose that in D there is a black edge of Gi
1, (i 6= t or i 6= t − 1) crossing

with a red edge of L(t − 1, t). Then the red edge crosses at least two black edges of Gi
1, for

otherwise, in D, the subdrawing D(Gi
1) separates two G1 and Gi

1 is crossed by all six edges of

L(t−1, t), a contradiction. Therefore, the red edge crosses at least two black edges of Gi
1. Thus,

D contains a subdrawing of a graph homeomorphic to G1×P2 induced by V (Gi−1
1 )

⋃
V (Gi

1) or

V (Gi
1)

⋃
V (Gi+1

1 ) with at most one crossing on the edges of Gi
1. Also contradicts to the Lemma

2.2.

For i = 2, 3, · · ·n− 1, let

Qi = 〈V (Gi−1
1 )

⋃
V (Gi

1)
⋃
V (Gi+1

1 )〉G1×Pn
.

Thus, Qi has six red edges in each of L(i− 1, i) and L(i, i+ 1), and ten black edges in each of

Gi−1
1 , Gi

1 and Gi+1
1 . Note that Qi is homeomorphic to G1 × P3. See Fig.2 for details.

Denote by Qi
c the subgraph of Qi obtained by removing nine edges u2u3, u3u4,u4u6,v2v3,

v3v4, v4v6, w2w3, w3w4 and w4w6. Notice that Qi
c is homeomorphic to K2,3×S2, such as shown

in Fig.2.

In a good drawing of G1 × Pn, define the force f(Qi
c) of Qi

c to be the total number of

crossing types following.

(1) a crossing of a red edge in L(i− 1, i)
⋃
L(i, i+ 1) with a black edge in Gi

1;

(2) a crossing of a red edge in L(i− 1, i) with a red edge in L(i, i+ 1);

(3) a self-intersection in Gi
1.

The total force of the drawing is the sum of f(Qi
c) for i = 2, 3, · · ·n− 1. It is readily seen

that a crossing contributes at most one to the total force of a drawing.

Consider now a drawing Di
c of Qi

c induced by D. As we have shown above, in Di
c no

two black edges of different Gx
1 and Gy

1 , for x, y ∈ {i − 1, i, i + 1} cross each other, no red

edge of L(i − 1, i) crosses a black edge of Gi+1
1 and no red edge of L(i, i + 1) crosses a black

edge of Gi−1
1 . Thus, we can easily see that in any optimal drawing Di

c of Qi
c there are only

crossing of types (i) , (ii) or (iii) above. This implies that in D, for every i, i = 2, 3, · · ·n− 1,

f(Qi
c) ≥ cr(K2,3 × S2) = 4 ([7]), and thus the total force of D is

∑n−1
i=2 f(Qi

c) ≥ 4(n− 2).

By lemma 2.2, in D there are at least two crossings on the edges of G1
1 and at least

two crossings on the edges of Gn
1 . None of these crossings is counted in the total force of D.

Therefore, in D there are at least
∑n−1

i=2 f(Qi
c) + 4 ≥ 4(n− 1) crossings. �

Theorem 2.1 cr(G1 × Pn) = 4(n− 1), for n ≥ 1.

Proof The drawing in Fig.3 shows that cr(G1 × Pn) ≤ 4(n− 1) for n ≥ 1.
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G1 × Pn

Fig.3

We prove the reverse inequality by the induction on n. First we have cr(G1 × P1) =

4(1 − 1) = 0. So the result is true for n = 1. Assume it is true for n = k, k ≥ 1 and suppose

that there is a good drawing of G1 × Pk+1 with fewer than 4k crossings. By Lemma 2.3, some

Gi
1 must then be crossed at least four times. By the removal of all black edges of this Gi

1, we

obtain either

(1) a graph homeomorphic to G1 × Pk for i = 2, 3, · · ·n− 1; or

(2) a graph which contains the subgraph G1 × Pk for i = 1 or i = n.

The drawing of any of these graphs has fewer than 4(k− 1) crossings and thus contradicts

the induction hypothesis. �

§3. The crossing number of G2 × Pn

By joining all 6 vertices of G2 to a new vertex y, we obtain a new graph denoted by G∗
2.

y

G∗
2

G2 × P3

Fig.4

Lemma 3.1 cr(G∗
2) = 3.

Proof A good drawing of G∗
2 in Fig.4 shows that cr(G∗

2) ≤ 3.|V (G∗
2)| = 7, |E(G∗

2)| = 18.

Apply
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|E| ≤ 3|V | − 6,

|E(G∗
2)|+ 2× cr(G∗

2) ≤ 3× (|V (G∗
2|+ cr(G∗

2))− 6,

it follows that cr(G∗
2) ≥ 3. Therefore cr(G∗

2) = 3. �

Lemma 3.2 In any good drawing of G2 × Pn, n ≥ 2, there are at least three crossings on the

edges of Gi
2 for i = 1, 2, · · ·n.

Proof Using the same way as in the proof of Lemma 2.2 just instead of Gi
1 by Gi

2), we can

get the result. �

Lemma 3.3 If D is a good drawing of G2 × Pn in which every copy of G2 has at most five

crossings on its edges, then D has at least 6(n− 1) crossings.

Proof Let D be a good drawing of G2 × Pn in which every copy of G2 has at most five

crossings on its edges. We first show that in D no black edges of Gi
2 crosses with any black

edges of Gj
2 for i 6= j. if not, suppose there is a black edge of Gi

2 crossing with a black edge of

Gj
2. Since D is a good drawing and there are four disjoint paths between any two vertices in

G2, there are at least four crossings on the edges of Gj
2 crossed with edges of Gi

2. Now delete

the black edges of Gi
2. Then the resulting graph is either

(1) homeomorphic to G2 × Pn−1 for i = 2, 3, · · ·n− 1; or

(2) contains a subgraph homeomorphic to G2 × Pn−1 for i = 1 or i = n.

Since every copy of G2 in G2 × Pn has at most five crossings on its edges, the drawing of

the resulting graph has at most one crossing on the edges of Gj
1. Contradicts to Lemma 3.2.

Next, we show that no black edge of Gi
2 is crossed by a red edge of L(t− 1, t) for t 6= i and

t 6= i+1. If not, suppose that in D there is a black edge of Gi
2, (i 6= t or i 6= t− 1) crossed by a

red edge of L(t− 1, t). Then the red edge crosses at least four black edges of Gi
2, for otherwise,

in D, the subdrawing D(Gi
2) separates two G2 and Gi

2 is crossed by all six edges of L(t− 1, t),

a contradiction. Therefore, the red edge crosses at least four black edges of Gi
2. Thus, D

contains a subdrawing of a graph homeomorphic to G2 × P2 induced by V (Gi−1
2 )

⋃
V (Gi

2) or

V (Gi
2)

⋃
V (Gi+1

1 ) with one crossing on the edges of Gi
2 at most. Contradicts to Lemma 3.2.

For i = 2, 3, · · ·n− 1, let

Qi = 〈V (Gi−1
2 )

⋃
V (Gi

2)
⋃
V (Gi+1

2 )〉G2×Pn
.

Thus, Qi has six red edges in each of L(i− 1, i) and L(i, i+ 1), and twelve black edges in each

of Gi−1
2 , Gi

2, and Gi+1
2 . Note that Qi is homeomorphic to G2 × P3. See Fig.4 for details.

It is easy to see that G2 × P3 contains a subgraph homeomorphic to G1 × P3, denoted by

Qi
c. In a good drawing of G2 × Pn, define the force f(Qi

c) of Qi
c to be the total number of

crossing types following.

(1) a crossing of a red edge in L(i− 1, i)
⋃
L(i, i+ 1) with a black edge in Gi

2;

(2) a crossing of a red edge in L(i− 1, i) with a red edge in L(i, i+ 1);

(3) a self-intersection in Gi
2.

The total force of the drawing is the sum of f(Qi
c) for i = 2, 3, · · ·n− 1. It is readily seen

that a crossing contributes at most one to the total force of the drawing.
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Consider now a drawing Di
c of Qi

c induced by D. As we have shown previous, in Di
c no

two black edges of Gx
2 and Gy

2 , for x, y ∈ {i − 1, i, i + 1} cross each other, no red edge of

L(i− 1, i) crosses with a black edge of Gi+1
2 and no red edge of L(i, i+ 1) crosses with a black

edge of Gi−1
2 . Thus, we can easily see that in any optimal drawing Di

c of Qi
c there are only

crossings of types (i), (ii) or (iii) above. This implies that in D, for every i, i = 2, 3, · · ·n− 1,

f(Qi
c) ≥ cr(G1 × P3) = 8, and thus the total force of D is

∑n−1
i=2 f(Qi

c) ≥ 8(n− 2).

By lemma 2.2, in D there are at least three crossings on the edges of G1
2 and at least

three crossings on the edges of Gn
2 . None of these crossings is counted in the total force of D.

Therefore, there are at least
∑n−1

i=2 f(Qi
c) + 6 ≥ 6(n− 1) crossings in D. �

6

y

?

Y
^

q

G2 × Pn

Fig.5

Theorem 3.1 cr(G2 × Pn) = 6(n− 1), for n ≥ 1.

Proof The drawing in Fig.5 following shows that cr(G2 × Pn) ≤ 6(n − 1) for n ≥ 1. We

prove the reverse inequality by the induction on n. First we have cr(G2 × P1) = 6(1− 1) = 0.

So the result is true for n = 1. Assume it is true for n = k, k ≥ 1 and suppose that there is a

good drawing of G2 × Pk+1 with fewer than 6k crossings. By Lemma 2.3, some Gi
2 must then

be crossed at least six times. By the removal of all black edges of this Gi
2, we obtain either

(1) a graph homeomorphic to G2 × Pk for i = 2, 3, · · ·n− 1; or

(2) a graph which contains the subgraph G2 × Pk for i = 1 or i = n.

The drawing of any of these graphs has fewer than 6(k− 1) crossings and thus contradicts

the induction hypothesis.
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