The Crossing Number of Two Cartesian Products

Lin Zhao, Weili He, Yanpei Liu and Xiang Ren
(Department of Mathematics, Beijing Jiaotong University, Beijing 100044, P.R.China.)
E-mail:05121752@bjtu.edu.cn

Abstract

There are several known exact results on the crossing number of Cartesian products of paths, cycles, and complete graphs. In this paper, we find the crossing numbers of Cartesian products of P_{n} with two special 6-vertex graphs.

Keywords: Cartesian product; Crossing number.
AMS(2000) 05C10, 05C38.

§1. Introduction

A drawing D of a graph G on a surface S consists of an immersion of G in S such that no edge has a vertex as an interior point and no point is an interior point of three edges. We say a drawing of G is a good drawing if the following conditions hold:
(1) no edge has a self-intersection;
(2) no two adjacent edges intersect;
(3) no two edges intersect each other more than once;
(4) each intersection of edges is a crossing rather than tangential.

The crossing number $\operatorname{cr}(G)$ of a graph G is the smallest number of pairs of nonadjacent edges that intersect in a drawing of G in the plane. An optimal drawing of a graph G is a drawing whose number of crossings equals $\operatorname{cr}(G)$.

Now let G_{1} and G_{2} be two vertex-disjoint graphs. Then the union of G_{1} and G_{2}, denoted by $G_{1} \bigcup G_{2}$, is a graph with $V\left(G_{1} \bigcup G_{2}\right)=V\left(G_{1}\right) \bigcup V\left(G_{2}\right)$ and $E\left(G_{1} \bigcup G_{2}\right)=E\left(G_{1}\right) \bigcup E\left(G_{2}\right)$. The Cartesian product $G_{1} \times G_{2}$ of graphs G_{1} and G_{2} has vertex set $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge set $E\left(G_{1} \times G_{2}\right)=\left\{\left\{\left(u_{i}, v_{j}\right),\left(u_{h}, v_{k}\right)\right\} \mid\left(u_{i}=u_{h}\right.\right.$ and $\left.v_{j} v_{k} \in E\left(G_{2}\right)\right)$ or $\left(v_{j}=v_{k}\right.$ and $\left.\left.u_{i} u_{h} \in E\left(G_{1}\right)\right)\right\}$. A circuit C of a graph G is called non-separating if $G / V(C)$ is connected, and induced if the vertex-induced subgraph $G[V(C)]$ of G is C itself. A circuit is called to be an induced non-separating circuit if it is both induced and non-separating. For definitions not explained in this paper, readers are referred to [1]. The following result is obvious by definitions.

Lemma 1.1 If C is an induced non-separating circuit of G, then C must be the boundary of a face in the planar embedding.

The problem of determining the crossing number of a graph is NP-complete. As we known, the crossing number are known only for a few families of graphs, most of them are Cartesian products of special graphs. For examples,

[^0]\[

$$
\begin{aligned}
& c r\left(C_{3} \times C_{3}\right)=3(\text { Harary et al, 1973, see [5]); } \\
& c r\left(C_{3} \times C_{n}\right)=n(\text { Ringeisen and Beinekein, 1978, see [9]); } \\
& c r\left(C_{4} \times C_{4}\right)=8(\text { Dean and Richter, 1995, see [3]); } \\
& c r\left(C_{4} \times C_{n}\right)=2 n, \quad \operatorname{cr}\left(K_{4} \times C_{n}\right)=3 n \text { (Beineke and Ringeisen, 1980, see [2]) }
\end{aligned}
$$
\]

Let S_{n-1} and P_{n} be the star and path with n vertices, respectively. Klesc [6] proved that $\operatorname{cr}\left(S_{4} \times P_{n}\right)=2(n-2)$ and $\operatorname{cr}\left(S_{4} \times C_{n}\right)=2(n-1)$. He also showed that $c r\left(K_{2,3} \times S_{n}\right)=2 n$ [7] and $\operatorname{cr}\left(K_{5} \times P_{n}\right)=6 n$ in [7]. Peng and Yiew [4] proved that $\operatorname{cr}\left(P_{3,1} \times P_{n}\right)=4(n-1)$.

In this paper, we extend these results to the product $G_{j} \times P_{n}, 1 \leq j \leq 2$ for two special graphs shown in Fig. 1 following.

Fig. 1

For convenience, we label these six vertices on their outer circuits of G_{1} consecutively by integers $1,2,3,4,5$ and 6 in clockwise, such as those shown in Fig.1. Notice that for any graph $G_{i}, i=1,2, G_{i} \times P_{n}$ contains n copies of G_{i}, denoted by $G_{i}^{j}(1 \leq j \leq n)$ and 6 copies of P_{n}. We call the edges in G_{i}^{j} black and the edges in these copies of P_{n} red. For $j=1,2, \cdots n-1$, let $L(j, j+1)$ denote the subgraph of $G_{i} \times P_{n}$, induced by six red edges joining G_{i}^{j} to G_{i}^{j+1}. Note that $L(j, j+1)$ is homeomorphic to $6 K_{2}$.

§2. The crossing number of $G_{1} \times P_{n}$

By joining all 6 vertices of G_{1} to a new vertex x, we obtain a new graph, denoted by G_{1}^{*}. Let T^{x} be the six edges incident with x, see Fig.1. We know $G_{1}^{*}=G_{1} \bigcup T^{x}$ by definition.

Lemma $2.1 \quad \operatorname{cr}\left(G_{1}^{*}\right)=2$.
Proof A good drawing of G_{1}^{*} shown in Fig. 2 following enables us to get $\operatorname{cr}\left(G_{1}^{*}\right) \leq 2$. We prove the reverse inequality by a case-by-case analysis. In any good drawing D of G_{1}^{*}, there are only three cases, i.e., $\operatorname{cr} r_{D}\left(G_{1}\right)=0, c r_{D}\left(G_{1}\right)=1$ or $c r_{D}\left(G_{1}\right) \geq 2$.

Case $1 \quad c r_{D}\left(G_{1}\right)=0$.
Use Euler's formula, $f=6$ and we note that there are 6 induced non-separating circuits 1231, $2342,3453,4564,12461,13561$. So there are at most 4 vertices of G_{1} on each boundary.

Joining all 6 vertices to x, there are 2 crossings among the edges of G_{1} and the edges of T^{x} at least. This implies $\operatorname{cr}\left(G_{1}^{*}\right) \geq 2$.

Case $2 \quad c r_{D}\left(G_{1}\right)=1$.
There are at most five vertices of G_{1} on each boundary. Joining all 6 vertices to x, there are at least one crossing made by edges of G_{1} with edges of T^{x}. So $\operatorname{cr}\left(G_{1}^{*}\right) \geq 2$.

Case $3 \quad c r_{D}\left(G_{1}\right) \geq 2$.
Then $\operatorname{cr}\left(G_{1}^{*}\right) \geq 2$. Whence, $\operatorname{cr}\left(G_{1}^{*}\right)=2$.

$G_{1} \times P_{3}$

$K_{2,3} \times S_{2}$

Fig. 2

Lemma 2.2 In any good drawing of $G_{1} \times P_{n}, n \geq 2$, there are at least two crossings on the edges of G_{1}^{i} for $i=1,2, \cdots n$.

Proof Let w_{i} denote the number of crossings on the edges of G_{1}^{i} for $i=1,2, \cdots n$ and $H_{i}=\left\langle V\left(G_{1}^{i}\right) \bigcup V\left(G_{1}^{i+1}\right)\right\rangle_{G_{1} \times P_{n}}$ for $i=1,2, \cdots n-1$. First, we prove that $w_{n} \geq 2$. Let T^{\prime} be a graph obtained by contracting the edges of G_{1}^{n-1} in H_{n-1} resulting in a graph homeomorphic to G_{1}^{*}.

By the proof of Lemma 2.1, $w_{n} \geq \operatorname{cr}\left(T^{\prime}\right)=\operatorname{cr}\left(G_{1}^{*}\right)=2$. For $i=1,2, \cdots n-1$, let T_{i} be the graph obtained by contracting the edges of G_{1}^{i+1} in H_{i} resulting in a graph homeomorphic to G_{1}^{*}. Similarly, by Lemma 2.1, we get that $w_{i} \geq \operatorname{cr}\left(T_{i}\right)=\operatorname{cr}\left(G_{1}^{*}\right)=2$ for $i=1,2, \cdots n-1$.

Lemma 2.3 If D is a good drawing of $G_{1} \times P_{n}$ in which every copy of G_{1} has at most three crossings on its edges, then D has at least $4(n-1)$ crossings.

Proof Let D be a good drawing of $G_{1} \times P_{n}$ in which every copy of G_{1} has at most three crossings on its edges. We first show that in D no black edges of G_{1}^{i} cross any black edges of G_{1}^{j} for $i \neq j$. If not, suppose there is a black edge of G_{1}^{i} crossing with a black edge of G_{1}^{j}. Since D is a good drawing and every edge of G_{1} is an edge of a cycle, there exists a cycle induced by $V\left(G_{1}^{i}\right)$ which contains a black edge crossing with at least two black edges of G_{1}^{j}. Now delete the black edges of G_{1}^{i}. The resulting graph is either
(1) homeomorphic to $G_{1} \times P_{n-1}$ for $i=2,3, \cdots n-1$; or
(2) contains a subgraph homeomorphic to $G_{1} \times P_{n-1}$ for $i=1$ or $i=n$.

Since every copy of G_{1} in $G_{1} \times P_{n}$ has at most three crossings on its edges, the drawing of the resulting graph has at most one crossing on the edges of G_{1}^{j}. Contradicts to Lemma 2.2.

Next, we show that no black edge of G_{1}^{i} crosses with a red edge of $L(t-1, t)$ for $t \neq i$ and $t \neq i+1$. If not, suppose that in D there is a black edge of $G_{1}^{i},(i \neq t$ or $i \neq t-1)$ crossing with a red edge of $L(t-1, t)$. Then the red edge crosses at least two black edges of G_{1}^{i}, for otherwise, in D, the subdrawing $D\left(G_{1}^{i}\right)$ separates two G_{1} and G_{1}^{i} is crossed by all six edges of $L(t-1, t)$, a contradiction. Therefore, the red edge crosses at least two black edges of G_{1}^{i}. Thus, D contains a subdrawing of a graph homeomorphic to $G_{1} \times P_{2}$ induced by $V\left(G_{1}^{i-1}\right) \bigcup V\left(G_{1}^{i}\right)$ or $V\left(G_{1}^{i}\right) \bigcup V\left(G_{1}^{i+1}\right)$ with at most one crossing on the edges of G_{1}^{i}. Also contradicts to the Lemma 2.2.

For $i=2,3, \cdots n-1$, let

$$
Q^{i}=\left\langle V\left(G_{1}^{i-1}\right) \bigcup V\left(G_{1}^{i}\right) \bigcup V\left(G_{1}^{i+1}\right)\right\rangle_{G_{1} \times P_{n}}
$$

Thus, Q^{i} has six red edges in each of $L(i-1, i)$ and $L(i, i+1)$, and ten black edges in each of G_{1}^{i-1}, G_{1}^{i} and G_{1}^{i+1}. Note that Q^{i} is homeomorphic to $G_{1} \times P_{3}$. See Fig. 2 for details.

Denote by Q_{c}^{i} the subgraph of Q^{i} obtained by removing nine edges $u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{6}, v_{2} v_{3}$, $v_{3} v_{4}, v_{4} v_{6}, w_{2} w_{3}, w_{3} w_{4}$ and $w_{4} w_{6}$. Notice that Q_{c}^{i} is homeomorphic to $K_{2,3} \times S_{2}$, such as shown in Fig.2.

In a good drawing of $G_{1} \times P_{n}$, define the force $f\left(Q_{c}^{i}\right)$ of Q_{c}^{i} to be the total number of crossing types following.
(1) a crossing of a red edge in $L(i-1, i) \bigcup L(i, i+1)$ with a black edge in G_{1}^{i};
(2) a crossing of a red edge in $L(i-1, i)$ with a red edge in $L(i, i+1)$;
(3) a self-intersection in G_{1}^{i}.

The total force of the drawing is the sum of $f\left(Q_{c}^{i}\right)$ for $i=2,3, \cdots n-1$. It is readily seen that a crossing contributes at most one to the total force of a drawing.

Consider now a drawing D_{c}^{i} of Q_{c}^{i} induced by D. As we have shown above, in D_{c}^{i} no two black edges of different G_{1}^{x} and G_{1}^{y}, for $x, y \in\{i-1, i, i+1\}$ cross each other, no red edge of $L(i-1, i)$ crosses a black edge of G_{1}^{i+1} and no red edge of $L(i, i+1)$ crosses a black edge of G_{1}^{i-1}. Thus, we can easily see that in any optimal drawing D_{c}^{i} of Q_{c}^{i} there are only crossing of types $(i),(i i)$ or (iii) above. This implies that in D, for every $i, i=2,3, \cdots n-1$, $f\left(Q_{c}^{i}\right) \geq \operatorname{cr}\left(K_{2,3} \times S_{2}\right)=4([7])$, and thus the total force of D is $\sum_{i=2}^{n-1} f\left(Q_{c}^{i}\right) \geq 4(n-2)$.

By lemma 2.2, in D there are at least two crossings on the edges of G_{1}^{1} and at least two crossings on the edges of G_{1}^{n}. None of these crossings is counted in the total force of D. Therefore, in D there are at least $\sum_{i=2}^{n-1} f\left(Q_{c}^{i}\right)+4 \geq 4(n-1)$ crossings.

Theorem $2.1 \quad \operatorname{cr}\left(G_{1} \times P_{n}\right)=4(n-1)$, for $n \geq 1$.

Proof The drawing in Fig. 3 shows that $\operatorname{cr}\left(G_{1} \times P_{n}\right) \leq 4(n-1)$ for $n \geq 1$.

Fig. 3

We prove the reverse inequality by the induction on n. First we have $\operatorname{cr}\left(G_{1} \times P_{1}\right)=$ $4(1-1)=0$. So the result is true for $n=1$. Assume it is true for $n=k, k \geq 1$ and suppose that there is a good drawing of $G_{1} \times P_{k+1}$ with fewer than $4 k$ crossings. By Lemma 2.3, some G_{1}^{i} must then be crossed at least four times. By the removal of all black edges of this G_{1}^{i}, we obtain either
(1) a graph homeomorphic to $G_{1} \times P_{k}$ for $i=2,3, \cdots n-1$; or
(2) a graph which contains the subgraph $G_{1} \times P_{k}$ for $i=1$ or $i=n$.

The drawing of any of these graphs has fewer than $4(k-1)$ crossings and thus contradicts the induction hypothesis.

§3. The crossing number of $G_{2} \times P_{n}$

By joining all 6 vertices of G_{2} to a new vertex y, we obtain a new graph denoted by G_{2}^{*}.

Fig. 4

Lemma $3.1 \quad \operatorname{cr}\left(G_{2}^{*}\right)=3$.
Proof A good drawing of G_{2}^{*} in Fig. 4 shows that $\operatorname{cr}\left(G_{2}^{*}\right) \leq 3 .\left|V\left(G_{2}^{*}\right)\right|=7,\left|E\left(G_{2}^{*}\right)\right|=18$. Apply

$$
\begin{aligned}
& |E| \leq 3|V|-6, \\
& \left|E\left(G_{2}^{*}\right)\right|+2 \times \operatorname{cr}\left(G_{2}^{*}\right) \leq 3 \times\left(\mid V\left(G_{2}^{*} \mid+\operatorname{cr}\left(G_{2}^{*}\right)\right)-6,\right.
\end{aligned}
$$

it follows that $\operatorname{cr}\left(G_{2}^{*}\right) \geq 3$. Therefore $\operatorname{cr}\left(G_{2}^{*}\right)=3$.
Lemma 3.2 In any good drawing of $G_{2} \times P_{n}, n \geq 2$, there are at least three crossings on the edges of G_{2}^{i} for $i=1,2, \cdots n$.

Proof Using the same way as in the proof of Lemma 2.2 just instead of G_{1}^{i} by G_{2}^{i}), we can get the result.

Lemma 3.3 If D is a good drawing of $G_{2} \times P_{n}$ in which every copy of G_{2} has at most five crossings on its edges, then D has at least $6(n-1)$ crossings.

Proof Let D be a good drawing of $G_{2} \times P_{n}$ in which every copy of G_{2} has at most five crossings on its edges. We first show that in D no black edges of G_{2}^{i} crosses with any black edges of G_{2}^{j} for $i \neq j$. if not, suppose there is a black edge of G_{2}^{i} crossing with a black edge of G_{2}^{j}. Since D is a good drawing and there are four disjoint paths between any two vertices in G_{2}, there are at least four crossings on the edges of G_{2}^{j} crossed with edges of G_{2}^{i}. Now delete the black edges of G_{2}^{i}. Then the resulting graph is either
(1) homeomorphic to $G_{2} \times P_{n-1}$ for $i=2,3, \cdots n-1$; or
(2) contains a subgraph homeomorphic to $G_{2} \times P_{n-1}$ for $i=1$ or $i=n$.

Since every copy of G_{2} in $G_{2} \times P_{n}$ has at most five crossings on its edges, the drawing of the resulting graph has at most one crossing on the edges of G_{1}^{j}. Contradicts to Lemma 3.2.

Next, we show that no black edge of G_{2}^{i} is crossed by a red edge of $L(t-1, t)$ for $t \neq i$ and $t \neq i+1$. If not, suppose that in D there is a black edge of $G_{2}^{i},(i \neq t$ or $i \neq t-1)$ crossed by a red edge of $L(t-1, t)$. Then the red edge crosses at least four black edges of G_{2}^{i}, for otherwise, in D, the subdrawing $D\left(G_{2}^{i}\right)$ separates two G_{2} and G_{2}^{i} is crossed by all six edges of $L(t-1, t)$, a contradiction. Therefore, the red edge crosses at least four black edges of G_{2}^{i}. Thus, D contains a subdrawing of a graph homeomorphic to $G_{2} \times P_{2}$ induced by $V\left(G_{2}^{i-1}\right) \bigcup V\left(G_{2}^{i}\right)$ or $V\left(G_{2}^{i}\right) \bigcup V\left(G_{1}^{i+1}\right)$ with one crossing on the edges of G_{2}^{i} at most. Contradicts to Lemma 3.2.

For $i=2,3, \cdots n-1$, let

$$
Q^{i}=\left\langle V\left(G_{2}^{i-1}\right) \bigcup V\left(G_{2}^{i}\right) \bigcup V\left(G_{2}^{i+1}\right)\right\rangle_{G_{2} \times P_{n}}
$$

Thus, Q^{i} has six red edges in each of $L(i-1, i)$ and $L(i, i+1)$, and twelve black edges in each of G_{2}^{i-1}, G_{2}^{i}, and G_{2}^{i+1}. Note that Q^{i} is homeomorphic to $G_{2} \times P_{3}$. See Fig. 4 for details.

It is easy to see that $G_{2} \times P_{3}$ contains a subgraph homeomorphic to $G_{1} \times P_{3}$, denoted by Q_{c}^{i}. In a good drawing of $G_{2} \times P_{n}$, define the force $f\left(Q_{c}^{i}\right)$ of Q_{c}^{i} to be the total number of crossing types following.
(1) a crossing of a red edge in $L(i-1, i) \bigcup L(i, i+1)$ with a black edge in G_{2}^{i};
(2) a crossing of a red edge in $L(i-1, i)$ with a red edge in $L(i, i+1)$;
(3) a self-intersection in G_{2}^{i}.

The total force of the drawing is the sum of $f\left(Q_{c}^{i}\right)$ for $i=2,3, \cdots n-1$. It is readily seen that a crossing contributes at most one to the total force of the drawing.

Consider now a drawing D_{c}^{i} of Q_{c}^{i} induced by D. As we have shown previous, in D_{c}^{i} no two black edges of G_{2}^{x} and G_{2}^{y}, for $x, y \in\{i-1, i, i+1\}$ cross each other, no red edge of $L(i-1, i)$ crosses with a black edge of G_{2}^{i+1} and no red edge of $L(i, i+1)$ crosses with a black edge of G_{2}^{i-1}. Thus, we can easily see that in any optimal drawing D_{c}^{i} of Q_{c}^{i} there are only crossings of types $(i),(i i)$ or (iii) above. This implies that in D, for every $i, i=2,3, \cdots n-1$, $f\left(Q_{c}^{i}\right) \geq \operatorname{cr}\left(G_{1} \times P_{3}\right)=8$, and thus the total force of D is $\sum_{i=2}^{n-1} f\left(Q_{c}^{i}\right) \geq 8(n-2)$.

By lemma 2.2, in D there are at least three crossings on the edges of G_{2}^{1} and at least three crossings on the edges of G_{2}^{n}. None of these crossings is counted in the total force of D. Therefore, there are at least $\sum_{i=2}^{n-1} f\left(Q_{c}^{i}\right)+6 \geq 6(n-1)$ crossings in D.

$$
G_{2} \times P_{n}
$$

Fig. 5

Theorem $3.1 \operatorname{cr}\left(G_{2} \times P_{n}\right)=6(n-1)$, for $n \geq 1$.
Proof The drawing in Fig. 5 following shows that $\operatorname{cr}\left(G_{2} \times P_{n}\right) \leq 6(n-1)$ for $n \geq 1$. We prove the reverse inequality by the induction on n. First we have $\operatorname{cr}\left(G_{2} \times P_{1}\right)=6(1-1)=0$. So the result is true for $n=1$. Assume it is true for $n=k, k \geq 1$ and suppose that there is a good drawing of $G_{2} \times P_{k+1}$ with fewer than $6 k$ crossings. By Lemma 2.3, some G_{2}^{i} must then be crossed at least six times. By the removal of all black edges of this G_{2}^{i}, we obtain either
(1) a graph homeomorphic to $G_{2} \times P_{k}$ for $i=2,3, \cdots n-1$; or
(2) a graph which contains the subgraph $G_{2} \times P_{k}$ for $i=1$ or $i=n$.

The drawing of any of these graphs has fewer than $6(k-1)$ crossings and thus contradicts the induction hypothesis.

References

[1] Bondy J. A. and Murty U.S.R., Graph Theory with Applications, New York: Macmilan Ltd Press, 1976.
[2] L.W.Beineke and R.D.Ringeisen, On the crossing numbers of product of cycles and graphs of order four, J. Graph Theory, 4 (1980), 145-155.
[3] A.M.Dean, R.B.Richter, The crossing number of $C_{4} \times C_{4}$, J. Graph Theory, 19(1995), 125129.
[4] Y.H.Peng, Y.C.Yiew, The crossing number of $P(3,1) \times P_{n}$, Discrete Mathematics, 306(2006), 1941-1946.
[5] F.Harary, P.C.Kainen, A.J.Schwenk, Toriodal graphs with arbitratily high crossing numbers, Nanta Math., 6(1973), 58-67.
[6] M.Klesc, On the crossing numbers of Cartesian products of paths and stars or cycles, Math. Slovaca, 41(1991), 113-120.
[7] M.Klesc, On the crossing numbers $K_{2,3} \times S_{n}$, Tatra Mountains Math Publ., 9(1996), 51-56.
[8] M.Klesc, The crossing numbers of $K_{5} \times P_{n}$, Tatra Mountains.Publ., 18(1999), 63-68.
[9] R.D.Ringeisen, L.W.Beineke, The crossing number of $C_{3} \times C_{n}$, J.Combin.Theory, Ser.B, 24(1978), 134-136.

[^0]: ${ }^{1}$ Received August 15, 2007. Accepted September 20, 2007

