
(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 14, No. 09, September 2016

Performance Evaluation of Attribute and Tuple
Timestamping In Temporal Relational Database

Nashwan Alromema1, Mohd Shafry Mohd Rahim2
1PhD Scholar, 2Associate Professor

1,2Dept. of Software Engineering, Faculty of Computing
Universiti Teknologi Malaysia,

Johor, Malaysia.
1Nashwan.alromema@gmail.com

Ibrahim Albidewi3
3Professor

3Dept. of Information Science, Faculty of Computing
and Information Technology,

Jeddah, Saudi.
3Ialbidewi@kau.edu.sa

Abstract— Modeling temporal database over relational database
using 1NF model is considered the most popular approach. This
is because of the easy implementation as well as the modeling and
querying power of 1NF model. In this paper, we compare a new
approach for representing valid-time temporal database (in
terms of structure and performance) to the main models in
literature with attribute and tuple timestamping. The
measurement of the performance is represented by the
processing time to get the required temporal data as well as the
size of the whole stored temporal data. A test has been performed
by running sample queries for the same data in the represented
models. Based on the tests, we have found that the new proposed
model required less time and used less disk space. Therefore, it is
more appropriate for modeling 1NF with interval-based
timestamping in relational data model.

Keywords-component; Time-oriented data model; Time-varying
data; interval-based event; point-time event; valid-time data;
transaction time data;

I. INTRODUCTION
Temporal Database (TDB) is a well-known database

modeling technique for managing time-varying data. This
modeling technique is considered as repository of time-
dependent data. There has been a vast amount of work
regarding developing temporal database applications starting
from the 1970s [1]. Some of these works deal with storage
structure and query processing as well as dozen-odd temporal
DBMS prototypes [2 - 6]. The research work in [7] treats the
problems of temporal databases models, integrity constraints,
storage structures, and implementation techniques using
different DBMS. A debate within the last three decades has
been on how to model, implement and query temporal database
in an efficient way [8]. Conventional relational databases store,
and process the current valid-time data [2], commercial DBMS
and standards for the query language do not fully support
temporal features [3, 21].

Much of temporal data models have been proposed since
the 1980s. These data models are categorized into temporal
relational databases and temporal object-oriented databases. A
study in [11, 19] demonstrate a new approach of implementing
temporal database in XML platform. Modeling temporal
database over relational model is one of the most popular
approaches [24]. Such approaches are based on schema

extension of Conventional Relational Model (CRM). There are
two common approaches for these extensions. The most
frequently stated approaches are tuple timestamping with First
Normal Form (1NF), and attribute timestamping with Non-
First Normal Form (N1NF). The study in [17] generalizes the
models under 1NF approach into Tuple Timestamping Single
Relation (TTSR), and Tuple Timestamping Multiple Relations
(TTMR). TTSR approach introduces redundancy, where
attribute values that change at different time are repeated in
multiple tuples. However, TTMR approach has solved the
problem of data redundancy in TTSR. The problem with this
approach is that the fact about a real world entity is spread over
several tuples in several relations. And combining the
information for an object a variation of join known as temporal
intersection join would be needed, which is generally
expensive to be implemented. For N1NF, as stated in Jensen
[6], there are some difficulties of temporal data models
capturing an object in a single tuple such that “the models may
not be capable of directly using existing relational storage
structures or query evaluation techniques that depend on atomic
attribute values”. The study in [3] shows an approach of partial
implementation of temporal database capabilities in top of
widely used commercial DBMS. The model in this study is
categorized under TTSR. This study also lacks most of
temporal features as well as data redundancy of the proposed
representational data model. The study in [10] shows an
approach of temporal database representation in standard SQL
under TTMR approach. The study explains a number of
examples of temporal data and how temporal manipulations of
such data can be effected by using standard SQL. A Column
Level Temporal System (CLTS) proposed by Kvet in [20] is
TTMR approach. The main issue of this model is to keep the
duplicity of data minimal. As reducing the duplicities of the
data is considered one of the important factors which improves
processing speed to get a current snapshot and all data during
the life cycle of the database object [22]. Atay and Tansel in
[18] proposed the Nested Bitemporal Relational Data Model
(NBRDM) under N1NF approach [18], NBRDM model
attached bitemporal data to attributes and defined a bitemporal
relational algebra and a bitemporal relational calculus language
for the proposed data model [15, 16].

In this paper, we compare a new approach for representing
valid-time temporal database with the main models in
literatures (TTSR and TTMR). A comparison study is with

374 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144790363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 14, No. 09, September 2016

respect to the structure and performance. The simplicity as well
as the ease of use are considered as other measures. The
measurement of the performance is represented by the
processing time to get the required data as well as the size of
the whole stored temporal data. The implementations of the
data models are performed in the most widely used commercial
DBMSs (Oracle RDBMS). This paper utilizes the following
concepts on temporal database theory: The representation of
real world time is as a line. Every point in the line is referred to
as an instance, a period is the time separating two instances,
and an interval is the duration of loose segment of the time-
line. Temporal data types in a temporal database can be
identified as an instant of time, period and interval [7]. It is
conceivable that time extends infinitely into the past or the
future, as such when the relational database model has time
introduced to it, it should be limited to delineate a particular
time.

Granules are time points and the dividing scheme that
splits the time line into a measurable collection of time
segments is referred to as granularity, and is an aspect of all
temporal information [12]. Temporal databases are depicted
by the discrete time model because it is easy and
comparatively simple to use [9]. Temporal databases have
formulated a taxonomy of time which identifies when a
particular event happens or when a given statement can be
regarded at factual. User-defined time is one interpretation of
the time feature employed in temporal databases. It is
expressed in the data that is of the date/time kind (the birth
date column for example), and does not suggest anything
correlated to the validity of the other columns or temporal
time; wherein the column(s) that contain date/time information
types are employed to mark the related tuple’s time aspects.
There are three categories of temporal time: Valid time:
Where in the related time is employed to determine when a
particular statement (event-based) happened or when a
particular statement (interval based) is regarded as being
factual in the real world [13, 27]. Transaction time: The
related time is in reference to the period when the data was
actually retained inside the database. Bitemporal-time: The
related time is connected to the yield of valid-time and
transaction time in the model of bitemporal data. Tuples are
regarded as valid at instances of that time by rollback
databases [7, 8].

II. EXTENDED TEMPORAL DATABASE MODELS
In this section, the general technique of schema extension

approach for modeling interval-based temporal database
models in relational database will be discussed. The TTHR and
TTMR will be used for the attribute-timestamped approach,
whereas TTSR will be used for the tuple-timestamped
approach.

A. TTHR Data Model
The methodology of representing temporal database in this

paper is accomplished by using Schema extension approach of
CRM. This approach is referenced as Tuple Timestamp
Historical Relational (TTHR) data model. The proposed
approach does not significantly change the procedures of

designing and developing information systems. Figure 1 shows
the conceptual structure of TTHR model. The database
applications are directly connected to the main tables which
hold the current valid time data. This feature gives the
advantages that TTHR can be adapted to any functioning
database systems without any changes to the infrastructure. The
historical changes of each time-varying attributes in any table
are stored in corresponding temporal database table (auxiliary
tables) as shown in Figure 1. The data representation of
temporal database in TTHR is accomplished by two steps:
Firstly, defining the database object (entities /relations) for
which we want to track the historical changes of the stored
data, and then we add for each such relations two additional
columns Lifespan Start Time (LSST) and Lifespan End Time
(LSET), which indicate the beginning and the end of the time
interval within which the database object exists in the modeled
reality [14]. Secondly, for each such entity /relation, we create
an additional relation with the same name as in the basic
schema with the suffix VT; we use VT to indicate the valid
time model.

Figure 1. A Conceptual structure of TTHR data model

Figure 2(a) shows the schema structure of conventional
non-temporal database for EMPLOYEE and DEPARTMENT
database objects. Incorporating temporal aspects using TTHR
(in this paper we will consider valid-time aspects [13]) to this
database schema is shown in Figure 2(b).

Figure 2. Schema structure of CRM and TTHR data model

(a) CRM

(b) TTHR

Sc
he

m
a

ex
te

ns
io

n

Sc
he

m
a

re
du

ci
bl

e

375 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 14, No. 09, September 2016

The EMPLOYEE and DEPARTMENT tables in Figure 2(a),
are extended to represent the temporal database using the
proposed temporal data model (TTHR) as shown in Figure
2(b), Whereas the new table Emp_VT for the basic schema
EMPLOYEE has the schema structure Emp_VT (SSN,
Att_index, upadated_v, VST, VET), these columns
are identified as follows:

 SSN is the key attribute in the basic schema,

 Att_index attributes is used to identify the updated
attributes in EMPLOYEE table, the value of this attribute
is a function of time-varying attributes i.e.
Att_index(ADDRESS)=3,Att_index(SALARY)
=4, and Att_index(DEPT_NO)=5.

 Attribute upadated_v is used to store the old value of
the updated attributes in the basic table.

 VST and VET are used to represent the beginning and
the end of the time interval within which the values in the
specific updated attribute were valid.

As shown in Figure 2(b), Emp_VT has a primary key
consists of the primary key of the basic table, Att_index
column, and the VST column. For EMP_VT table, the primary
key is (SSN,Att_index,VST). The data in the basic table
(EMPLOYEE) keeps the latest updated data (current data),
whereas EMP_VT stores the historical changes of the validity of
the updated attributes in basic table.

B. TTSR Data Model
Temporal data modelling in the relational data model is

accomplished by adding extra time attributes to the schema
structure of CRM. The representation in Figure 3 incorporates
time in a relational data model by adding extra timestamp
columns to the conventional relation. These columns are Valid
Start Time (VST) and Valid End Time (VET) and indicate
when the information in the corresponding tuple is valid, e.g.
the period of time during which an employee e is affiliated to a
specific department d (for simplicity in representation, the
domains of VST and VET are considered as orders and
isomorphic to the domain of natural numbers). Attributes
ADDRESS, SALARY, and DEPT_NO in EMPLOYEE relation
are considered as time-varying attributes, whilst the rest (SSN,
NAME, and DOB) are considered as time-invariant attributes.

Figure 3. Schema structure of TTSR data model

This model has been used by many researchers such as in
[7, 8]. We will refer to this representation by Tuple
Timestamping Single Relation (TTSR) henceforth.

C. TTMR Data Model
Because of the data redundancy in TTSR, a trend by

database researchers has been to normalize the relations in
TTSR by decomposing the temporal relation as follows: time
varying attributes are distributed over multiple relations, and
time-invariant attributes are gathered into separate relations as
in Figure 4. This model has been used in [10]. Figure 4 shows
this temporal database representation. We will refer to this
representation as Tuple Timestamping Multiple Relations
(TTMR) henceforth.

Figure 4. Schema structure of TTSR data model

Figure 5 shows an example of a temporal database (for
EMPLOYEE table) represented by TTSR, TTMR, and TTHR
models, respectively. A closed-closed representation for
periods of validity is used in the three models, e.g. the time of
validity of the first row in Fig 3(a) is [1, 5]. The natural
numbers 1 and 5 are isomorphic to timestamp, i.e. 1 represents
'01/01/2001' and so on [12]. To represent Now temporal
variable, we have chosen a very large number such as 3000 to
indicate the current validity of a specific row, e.g. the last row
in Fig 3(a).

376 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 14, No. 09, September 2016

Figure 5. The temporal data representaion of Employee relation in the
different modeling approcahes

III. QUERY PROCESSING
Querying temporal database (using standard SQL2) is

evaluated according to the supplying time tick to the query
[24]. As stated by Snodgrass [7], querying temporal databases
is classified into current query, sequenced query and non-

sequenced query. Current query provides the current valid data
which is in the basic schema table, while sequenced query
provides the data that were valid during a certain interval of
time where these data can be obtained from basic schema,
temporal schema, or both depending on the complexity of the
query. Non-sequenced query provides the historical changes of
database objects' data. In this section, Query processing and
evaluation of the proposed data model compared to the main
models in literature (TTSR, and TTMR) will be demonstrated.
In this study, Oracle SQL developer suite is used to evaluate
and compare the performance of the queries in the three
models. The query comparison consists of the 10 queries that
are introduced in chapter 4 section 4.5.2.

A. Schemas of the three models
The schemas of the three models used in these benchmarks

are as follows:

The temporal variable "Now or " is assumed as a very

large value and isomorphic to 3000 (some authors assumed the
temporal variable "Now" as equivalent to Null and some others
assumed it as very large number).Three functions for time
interval manipulations are used (Overlap, Min_P, Max_P)
Algorithm 1, 2, 3. A coalesce function (Algorithm 4) for
temporal query results manipulations also used for the queries
under study.
Algorithm 1 Max time point Algorithm

 Input: Two-time points 1 2t , t
Output: the maximum time point.

Begin
If (1t > 2t) then

1t ; ELSE 2t ;
END if;

End Max time point;

(TTSR)

(TTMR)

(TTHR)

377 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 14, No. 09, September 2016

Algorithm 2 Min time point Algorithm.
 Input: Two-time points 1 2,t t
 Output: the minimum time point.

Begin
If (1t < 2t) then

1t ;
ELSE

2t ;
 END if;

End Max time point;

Algorithm 3 overlap Algorithm

Input: Two-time intervals 1 2[,]t t , 3 4[,]t t .
Output: overlap or not overlap.

Begin
If Max_p (1 3,t t) < Min_p (2 4,t t) then
Overlap;
ELSE
Not-Overlap;
END if;

End Overlap;

Algorithm 4 Coalesce Algorithm
Input : non-coalesce relation R (Query result)
Output: coalesced relation cR .

Begin
RR orderby),,,....,(21 vevsn TTaaa

cR

)(RCountSize ;
1j ;

Repeat
),,,....,(21 vevsnj TTaaaR ;

WHILE
)',',',....','(211 vevsnj TTaaaR AND

)',....'(11 nn aaaa AND)1'(vevs TT
)',max(veveve TTT ;

1 jj ;
END WHILE;

},,,....,{ 21 vevsncc TTaaaRR ;
1 jj ;

WHILE Sizej ;

RETURN cR ;
End Coalesce;

B. Non-sequenced query
The query suite in this paper consists of 10 English queries

that cover the three categories of temporal database queries
(Current, sequenced and non-sequenced queries)

Query 1: What are the descriptions of the current data of
employee with SSN=2019?

Fragment SQL Code 1
TTHR TTSR

SELECT * FROM EMP
WHERE SSN= 2019;

SELECT * FROM EMP
WHERE SSN= 2019;

TTMR
SELECT E.SSN, E.NAME, E.BIRTH_DATE,
AD.ADDRESS, TL.TEL_NO, SU.SUPPERVSSN ,
DN.DNO, S.SALARY, R.RANK, LS.LSST, LS.LSET
FROM EMP E, EMP_ADDRESS AD, EMP_TELNO TL,
EMP_SUPPERVSSN SU, EMP_DNO DN, EMP_SALARY S,
EMP_RANK R, EMP_LS LS
WHERE E.SSN = AD.SSN AND E.SSN = TL.SSN AND
E.SSN = SU.SSN AND E.SSN = DN.SSN AND E.SSN
= S.SSN AND E.SSN = R.SSN AND E.SSN = LS.SSN
AND AD.VET = 3000 AND TL.VET = 3000 AND
SU.VET = 3000 AND DN.VET = 3000 AND S.VET =
3000 AND R.VET = 3000 AND LS.LSET = 3000 AND
E.SSN = 2091;

Query 2: What are the descriptions of the latest valid data

of life employees?
Fragment SQL Code 2

TTHR TTSR

SELECT * FROM EMP
WHERE LSET = 3000;

SELECT * FROM EMP
WHERE LSET = 3000;

TTMR

SELECT E.SSN, E.NAME, E.BIRTH_DATE,
AD.ADDRESS, TL.TEL_NO, SU.SUPPERVSSN,
DN.DNO, S.SALARY, R.RANK, LS.LSST, LS.LSET
FROM EMP E, EMP_ADDRESS AD, EMP_TELNO TL,
EMP_SUPPERVSSN SU, EMP_DNO DN, EMP_SALARY S,
EMP_RANK R, EMP_LS LS
WHERE E.SSN = AD.SSN AND E.SSN = TL.SSN AND
E.SSN = SU.SSN AND E.SSN = DN.SSN AND E.SSN
= S.SSN AND E.SSN = R.SSN AND E.SSN = LS.SSN

AND AD.VET = 3000 AND TL.VET = 3000 AND
SU.VET = 3000 AND DN.VET = 3000 AND S.VET =
3000 AND R.VET = 3000 AND LS.LSET=30000;

Query 3: What are the descriptions of the latest valid data of
not Life employees?

Fragment SQL Code 7.3
TTHR TTSR

SELECT * FROM
EMP
WHERE LSET <>
3000;

SELECT * FROM EMP
WHERE E.LSET = (select
max(E1.LSET) from EMP
E1 where E1.SSN =
E.SSN) AND LSET <>
3000;

TTMR

SELECT E.SSN, E.NAME, E.BIRTH_DATE,
AD.ADDRESS, TL.TEL_NO, SU.SUPPERVSSN,
DN.DNO, S.SALARY, R.RANK, LS.LSST, LS.LSET
FROM EMP E, EMP_ADDRESS AD, EMP_TELNO TL,
EMP_SUPPERVSSN SU, EMP_DNO DN, EMP_SALARY S,
EMP_RANK R , EMP_LS LS
WHERE E.SSN = AD.SSN AND E.SSN = TL.SSN AND
E.SSN = SU.SSN AND E.SSN = DN.SSN AND E.SSN

378 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 14, No. 09, September 2016

= S.SSN AND E.SSN = R.SSN AND E.SSN = LS.SSN
AND AD.VET = (select max(AD1.VET) from
EMP_ADDRESS AD1 where E.SSN = AD1.SSN)AND
TL.VET = (select max(TL1.VET) from EMP_TELNO
TL1 where E.SSN = TL1.SSN) AND
SU.VET = (select max(SU1.VET) from
EMP_SUPPERVSSN SU1 where E.SSN = SU1.SSN)
AND
DN.VET = (select max(DN1.VET) from EMP_DNO
DN1 where E.SSN = DN1.SSN) AND
S.VET = (select max(S1.VET) from EMP_SALARY
S1 where E.SSN = S1.SSN) AND
R.VET = (select max(R1.VET) from EMP_RANK R1
where E.SSN = R1.SSN) AND LS.LSET = (select
max(LS1.LSET) from EMP_LS LS1 where E.SSN =
LS1.SSN) AND LS.LSET <> 3000;

Query 4: What is the latest current valid salary of employee
Ali with SSN = 2091.

Fragment SQL Code 7.4
TTHR

SELECT SSN, NAME,
SALARY FROM EMP
WHERE SSN = 2091;

TTSR

SELECT E.SSN, E.NAME,
E.SALARY FROM EMP E
WHERE E.SSN = 2091 AND
E.VET = (SELECT
MAX(E1.VET) FROM EMP E1
WHERE E1.SSN = 2091);

TTMR

SELECT E.SSN, E.NAME, S.SALARY
FROM EMP E, EMP_SALARY S
WHERE E.SSN = S.SSN AND E.SSN = 2091 AND
S.VET = (select max(S1.VET) from EMP_SALARY
S1 where E.SSN = S1.SSN);

Query 5: What is the latest current valid name of the
department that employee Ali with SSN = 2091 works on?

Fragment SQL Code 7.5
TTHR

SELECT E.SSN,
E.Name, E.DNO,
D.D_Name FROM
EMP E, DEPT D
where E.DNO =
D.D_Number AND
E.SSN = 2091;

TTSR

SELECT E.SSN,
E.Name, E.DNO,
D.D_Name FROM EMP E,
DEPT D where E.DNO =
D.D_Number AND E.VET
= (select
max(E1.VET) from EMP
E1 where E1.SSN =
2091) AND D.VET =
(select max(D1.VET)
from DEPT D1 where
D1.D_Number = E.DNO)
AND E.SSN = 2091;

TTMR

SELECT E.SSN, E.NAME, DN.DNO, DNM.D_name
FROM EMP E, EMP_DNO DN, DEPT_D_Name DNM
WHERE E.SSN = DN.SSN AND DN.DNO =
DNM.D_Number AND
DN.VET = (select max(DN1.VET) from EMP_DNO
DN1 where DN1.SSN = E.SSN) AND
DNM.VET = (select max(DNM1.VET) from
DEPT_D_Name DNM1 where DNM1.D_Number =

DN.DNO) AND E.SSN = 2091;

Queries 1 to 5 are current queries. Querying the current
valid data in TTHR and TTSR are the same. However, TTHR
and TTSR need additional predicates for life/non-life data
objects in where clause, TTMR costs a lot as the current valid
data need to be collected from seven tables.

Query 6: What were the Salaries of All employees at any
time?

For this query, TTHR's query and TTMR's query results are
snapshot equivalent results, while TTSR's are not. Therefore, a
new unary operator (coalesce function), is needed for querying
the historical changes of time-varying attributes in TTSR. The
coalescing operator (C) is a unary operator that merges value-
equivalent tuples (tuples with mutually identical explicit
attribute values) if the union of their timestamps is an interval
[13, 14, 25, 26]. Temporal database in TTSR model is
homogenous. Therefore, the query results of different time-
varying attributes are not snapshot equivalent.

In TTHR representation, the current salaries are located in
EMP relation. The historical changes of salary are located in
EMP_VT. Then a set operation (Union) is used to combine the
data from the main relation and the auxiliary relation. To
simplify the query process, a view is created as shown in
fragment code 6. For TTSR representation, since the model is
homogeneous (value equivalence is allowed) the result might
not be coalesced. Then, a view is created as shown in fragment
code 6 in order to avoid non-coalesced data.

Figure 6. Address history of TTSR before and after Coalesce Function
applied to query result

For example, retrieving the historical changes of
Nashwan’s Address in TTSR will result the data as shown in
Figure 6, which violates the snapshot equivalent concept
discussed by Bohlen [13]. The solution of that matter is to have
a coalesce function. Coalesce function is denoted by C.

 Note: A view for each time-varying attribute in both TTHR
and TTSR will be created. These views will have the same
names as the tables in TTMR.

379 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 14, No. 09, September 2016

Fragment SQL Code 6
TTHR

CREATE VIEW EMP_SALARY AS SELECT E.SSN,
E.SALARY,
MAX(CASE
 WHEN EV.VET IS NULL THEN
 E.LSST
 WHEN EV.VET IS NOT NULL
 AND E.LSST > EV.VET THEN
 E.LSST
 WHEN EV.VET IS NOT NULL
 AND
 E.LSST < EV.VET THEN
 (EV.VET +1) END) AS VST ,
 E.LSET AS VET
FROM EMP E LEFT OUTER JOIN (SELECT EV1.SSN,
TO_NUMBER(EV1.UPDATED_V), EV1.VST, EV1.VET
FROM EMP_VT EV1 WHERE EV1.ATT_INDEX = 7) EV
ON E.SSN = EV.SSN
GROUP BY E.SSN, E.SALARY, E.LSET
UNION
SELECT SSN, TO_NUMBER(UPDATED_V), VST, VET
FROM EMP_VT WHERE ATT_INDEX = 7;

TTSR

CREATE VIEW EMP_SALARY AS
SELECT F.SSN, F.SALARY, F.VST,L.VET FROM EMP
F, EMP L
WHERE F.VST < L.VET AND
F.SSN = L.SSN AND
F.SALARY = L.SALARY AND
 NOT EXISTS (SELECT * FROM EMP
 M WHERE M.SSN=F.SSN AND
 M.SALARY = F.SALARY AND
 F.VST < M.VST AND
 (M.VST -1) <= L.VET AND
 NOT EXISTS (SELECT * FROM EMP
 M1 WHERE M1.SSN=F.SSN AND
 M1.SALARY = F.SALARY AND
 M1.VST < M.VST AND
(M.VST -1) <= M1.VET))AND
 NOT EXISTS (SELECT * FROM EMP
 M2 WHERE M2.SSN = F.SSN AND
 M2.SALARY = F.SALARY AND
((M2.VST < F.VST AND (F.VST -1) <= M2.VET)
OR
((M2.VST - 1) <= L.VET AND L.VET<M2.VET)));

Fragment SQL Code 7

TTHR TTSR

SELECT SSN, SALARY,
VST, VET
FROM EMP_SALARY;

SELECT SSN, SALARY,
VST, VET
FROM EMP_SALARY;

TTMR

SELECT SSN, SALARY,VST, VET
FROM EMP_SALARYY;

Query 7: What are the historical change(s) of the Address

of All employees?

This query is identical to query (6), but for time varying
attribute Address, the same view as EMP_salary will be

created for Address in TTHR and in TTSR with the same
reason mentioned in query six.

Fragment SQL Code 8
TTHR

SELECT SSN, ADDRESS,
VST, VET
FROM EMP_ADDRESS;

TTSR

SELECT SSN, ADDRESS,
VST, VET
FROM EMP_ADDRESS;

TTMR

SELECT SSN, Address, VST, VET
FROM EMP_Address;

TTHR's query and TTMR's query results are a snapshot

equivalent, while TTSR's are not. Therefore, a new unary
operator which is called coalesce function is needed for
querying the historical changes of time-varying attributes in
TTSR. The coalescing operator (C) is a unary operator that
merges value-equivalent tuples (tuples with mutually identical
explicit attribute values) if the union of their timestamps is an
interval [13]. Temporal database in TTSR model are
homogeneous. Therefore, the query results of different time-
varying attributes are not snapshot equivalent.

Query 8: Retrieve the historical change(s) of the Salaries
and the Addresses of All Employees?

Fragment SQL Code 9
TTHR

SELECT S.SSN,
AD.ADDRESS, S.SALARY,
MAX_P(S.VST, AD.VST)
AS VST, Min_P(S.VET,
AD.VET) AS VET
FROM EMP_ADDRESS AD,
EMP_SALARY S
WHERE AD.SSN = S.SSN
AND
overlap(AD.VST,
AD.VET, S.VST,
S.VET) = 1 ;

TTSR

SELECT S.SSN,
AD.ADDRESS,
S.SALARY,
MAX_P(S.VST, AD.VST)
AS VST, Min_P(S.VET,
AD.VET) AS VET
FROM EMP_ADDRESS AD,
EMP_SALARY S
WHERE AD.SSN = S.SSN
AND
overlap(AD.VST,
AD.VET, S.VST,
S.VET) = 1 ;

TTMR

SELECT S.SSN, AD.ADDRESS, S.SALARY,
MAX_P(S.VST, AD.VST) AS VST, Min_P(S.VET,
AD.VET) AS VET
FROM EMP_ADDRESS AD, EMP_SALARY S
WHERE AD.SSN = S.SSN AND
IV_overlap(AD.VST, AD.VET, S.VST, S.VET) =
1 order by ssn,vst;

380 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 14, No. 09, September 2016

Query 9: What was the salary of Ali (SSN = 2091) when
Jon (SSN = 2092) was a manager?

Fragment SQL Code 10
TTHR

SELECT S.SSN,
S.SALARY,
MAX_P(S.VST, DM.VST)
AS VST, Min_P(S.VET,
DM.VET) AS VET
FROM EMP_SALARY S,
 Dept_Mngssn DM
WHERE S.SSN = 2091
AND
 S.SSN = 2092
AND overlap(S.VST,
S.VET, DM.VST,
DM.VET) = 1 ;

TTSR

SELECT S.SSN,
S.SALARY,
MAX_P(S.VST, DM.VST)
AS VST, Min_P(S.VET,
DM.VET) AS VET
FROM EMP_SALARY S,
 Dept_Mngssn DM
WHERE S.SSN = 2091
AND
 S.SSN = 2092
AND overlap(S.VST,
S.VET, DM.VST,
DM.VET) = 1 ;

TTMR

SELECT S.SSN, S.SALARY, MAX_P(S.VST, DM.VST)
AS VST, Min_P(S.VET, DM.VET) AS VET
FROM EMP_SALARY S,Dept_Mng_ssn DM
WHERE S.SSN = 2091 AND
 DM.MNG_SSN = 2092 AND
 IV_overlap(S.VST, S.VET, DM.VST,
DM.VET) = 1 ;

In this query, join is inevitable between Emp_SALARY and

Dept_Mngssn. Query 10 requests the valid data of one
employee's salary during the time of another employee when
he was managing a department. This query uses join as well as
interval comparison operator overlap.

Query 10: What were the Salaries of All employees during

the time interval [10, 23]?
Fragment SQL Code 11

TTHR TTSR

SELECT S.SSN,
S.SALARY, S.VST,
S.VET
FROM EMP_SALARY S,
WHERE overlap(S.VST,
s.VET, 10,23) = 1 ;

SELECT S.SSN,
S.SALARY, S.VST,
S.VET
FROM EMP_SALARY S,
WHERE overlap(S.VST,
s.VET, 10,23) = 1 ;

TTMR

SELECT S.SSN, S.SALARY, S.VST, S.VET
FROM EMP_SALARY S,
WHERE IV_overlap(S.VST, s.VET, 10,23) = 1 ;

In this query, TTHR and TTMR are identical because they

request information for a valid time interval.

C. Query Results analysis
An experiment has been carried out on a temporal database

with TTHR representation and the equivalent database for
TTSR and TTMR representations as shown in Figure 5. The
data set of this experiment has been randomly generated in the
three models to simulate real-world scenarios (the same

approach has been taken by Anselma [23]). The schema
structure of each model has been depicted early in this section.

The experiments have been provided using SQL developer
suite and Oracle11g running in virtual machine with Microsoft
Windows XP, i7.3740QM CPU @2.70GB, 3.8 GB of RAM.
The SQL Trace facility and TKPROF (Transient Kernel
Profiler) are two basic performance diagnostic tools that have
been used for queries analysis in the three approaches.
TKPROF program outputs the parameters of each query as
follows:

CPU = CPU time in seconds executing.
Elapsed = elapsed time in seconds executing.
Disk = number of physical reads of buffers from disk.
Query = number of buffers gotten for consistent read.

The data set consists of 108,004 instances of employees in

Emp table. Queries from 1 to 10 have been run in sequence for
each approach. Table I shows the experimental results of
executing these queries for each Model. From Table I, Figures
7 and 8 have been plotted to compare the performance of each
model in graphical view. It can be shown that TTSR satisfies
good query performance in current query (Q1-Q5); the same
performance is achieved by TTHR. However, TTMR costs a
lot for current queries, but it costs less for both sequenced (Q6,
Q7 and Q8) and non-sequenced (Q9, and Q10) queries and the
same performance is achieved by TTHR. TTSR costs a lot for
both sequenced and non-sequenced queries due to coalesce
function that needs to be applied to the query results to make
sure the query result is in snapshot equivalence.

SQL developer suite with TKPROF have been used for
these experiments. Measuring the performance of the query by
only running the query a few times is a pretty bad idea -
equivalent to just accepting that the cost of the explanation plan
tells you the best query. Therefore, it is really a need to take
into account what resources query is taking up and therefore
how it could affect the production system.

TABLE I. AN OUTPUT OF QUERY PROCESSING EXPERIMENTAL RESULTS

The measurement of the performance is represented by the
processing time to get the required data as well as the size of
the whole stored temporal data. Figure 8 shows the number of
buffer read by each query of each model. Although large disc
capacity is currently available, there is still a need to effectively
store and process data because temporal data are really
extensive and contain changes of the object states over time.

381 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 14, No. 09, September 2016

Figure 7. Query processing time for the 10 queries in the three models

Figure 8. Number of Buffers read in the three models for the 10 Queries

IV. MEMORY STORAGE EFFICIENCY
The performance evaluation of the proposed model is

considered in terms of memory storage efficiency. The
Employees relation that is represented by the three models and
the size in byte for the attributes in Employees relation is given
as in Table II. The cost improvement of the memory storage is
considered during one lifespan time and with a frequency of
time-varying attributes update equal to 5. The results of
memory storage efficiency for the three models are shown in
Table II. As many parameters affect the cost improvements of
TTHR over other models, Figure 9 shows the cost
improvements where all the parameters have been fixed with
varying the values of the frequency of time-varying attributes
update from 5 to 440 times in a period of time. The memory
efficiency has direct effect to the performance of the systems
especially for image data as applications in [28, 29].

As shown in Figure 9, TTHR has achieved significant
saving in storage memory space that ranges between 68%-81%
over TTSR approach, and 10%-32% over TTMR that is based
on the average change of the time varying attributes. TTHR has
achieved some significant saving in storage memory space that
is roughly equal or greater than TTMR. The proposed temporal
data model is suggested for its simplicity as fewer database
objects will be needed to capture the temporal aspects of time-
varying data compared to TTMR. Moreover, applying TTHR
to an existing database application does not require many
changes compared to TTMR. Moreover, the only need is to

create the auxiliary relation to capture the historical changes of
time-varying attributes but without touching the system itself.
This is contrary to TTMR, where the relations need to be
decomposed and the integrity constraints need to be redefined.

TABLE II. COST MODEL OF EMPLOYEES RELATION REPRESENTED BY
TTSR, TTMR AND TTHR.

TABLE III. COST MODEL OF EMPLOYEES RELATION REPRESENTED BY
TTSR, TTHR AND TTMR

Figure 9. Memory storage cost efficiency of Employees relation
represented by TTSR, TTMR and TTHR

V. CONCLUSION
A comparison study of TTHR with the main models in the

literature with respect to the structure and performance has
been demonstrated. The simplicity as well as the
expressiveness of the model are considered as one measure.
The measurement of the performance is represented by the
processing time to get the required data as well as the size of
the whole stored temporal data. TTHR satisfies good query
performance in current query. The same performance is
achieved by TTSR. However, TTMR costs a lot for current
queries, but it costs less for both sequenced and non-sequenced
queries and the same performance is achieved by TTHR. TTSR
costs a lot for both sequenced and non-sequenced queries due
to coalesce function that needs to be applied to the query
results to make sure that the query result is in snapshot
equivalence. This paper has also examined the representation
of TTHR in the main models in literature namely, TTSR and

382 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 14, No. 09, September 2016

TTHR (expression power). It has been proved that TTHR has
achieved significant saving in storage memory space that
ranges between 68%-81% over TTSR approach, and 10%-32%
over TTMR that is based on the average change of the time
varying attributes. Finally, TTHR mimics TTMR in data
representation by removing the needless redundancy of data
and achieve better query processing for sequence and non-
sequenced queries. Moreover, TTHR mimics TTSR in
representing the current valid data in one relation, to benefit
from querying the current snapshot data which costs a lot in
TTMR.

REFERENCES
[1] Findler, N. V., & Chen, D. (1973). "On the problems of time retrieval of

temporal relations causality, and coexistence". International Journal of
Computer & Information Sciences, 2, 3, 161-185.

[2] Date, C. D., Darwen, H., & Lorentzos, N. A. (2003). "Temporal data and
the relational data model". San Francisco: Morgan Kaufmann.

[3] Novikov, B. A., & Gorshkova, E. A. (2008). "Temporal databases: From
theory to applications". Programming and Computer Software, 34, 1, 1-
6. Pleiades Publishing, Ltd., 2008. Original Russian Text

[4] Tansel, A. U. (2004). "On handling time-varying data in the relational
data model". Information and Software Technology, 46, 2, 119-126.

[5] Elmasri, R., and Navathe (2000). "Fundamentals of Database Systems".
3rd edition. Addison Wesley.

[6] Jensen, C. S., Clifford, J., Gadia, S. K., Segev, A., & Snodgrass, R. T.
(1992). "A glossary of temporal database concepts". ACM Sigmod
Record, 21, 3, 35-43.

[7] Snodgrass, R. T., (2000). "Developing Time-Oriented Database
Applications in SQL", 1st edition, Morgan Kaufmann Publishers, Inc.,
San Francisco.

[8] Jensen, C. S., Snodgrass, R. T., & Soo, M. D. (1995). "The tsql2 data
model", (pp. 157-240). Springer US.

[9] Patel, J. (2003). "Temporal Database System Individual Project".
Department of Computing, Imperial College, University of London,
Individual Project, 18-June-2003.

[10] Zimányi, E. (2006). "Temporal aggregates and temporal universal
quantification in standard SQL". ACM SIGMOD Record, 35, 2, 16-21.

[11] Wang, F., Zhou, X., & Zaniolo, C. (2006, April). "Using XML to build
efficient transaction-time temporal database systems on relational
databases". In Proceedings of the 22nd International Conference on Data
Engineering, 2006. ICDE'06 (pp. 131-131). IEEE.

[12] A-Qustaishat, M. (2001). "A visual temporal object-oriented model
embodied as an expert C++ Library". ADVANCES IN MODELLING
AND ANALYSIS-D-,6, 3/4, 3-43.

[13] Bohlen, M. H., Busatto, R., & Jensen, C. S. (1998, February). "Point-
versus interval-based temporal data models". In Proceedings of 14th
International Conference on Data Engineering, (pp. 192-200). IEEE.

[14] Dyreson, C., Grandi, F., Käfer, W., Kline, N., Lorentzos, N.,
Mitsopoulos, Y., ... & Wiederhold, G. (1994)."A consensus glossary of
temporal database concepts".ACM Sigmod Record, 23, 1, 52-64.

[15] Tansel, A. U. (2006). "Modeling and Querying Temporal Data". Idea
Group Inc.

[16] Tansel, A. U. (2004). "Temporal data modeling and integrity constraints
in relational databases". In Computer and Information Sciences-ISCIS
2004 (pp. 459-469). Springer Berlin Heidelberg.

[17] Halawani, S. M., & Romema, N. A. (2010). "Memory storage issues of
temporal database applications on relational database management
systems". Journal of Computer Science, 6, 3, 296.

[18] Atay, C. (2016). "An attribute or tuple timestamping in bitemporal
relational databases". Turkish Journal of Electrical Engineering &
Computer Sciences. (2016) 24: (pp. 4305 – 4321). doi:10.3906/elk-
1403-39.

[19] Noh, S.Y., Gadia, S.K. and Jang, H., (2013). "Comparisons of three data
storage models in parametric temporal databases". Journal of Central
South University, 20(7), pp.1919-1927.

[20] Kvet, M., Matiako, K. and Kvet, M., (2014). "Transaction management
in fully temporal system". In Computer Modelling and Simulation
(UKSim), 2014 UKSim-AMSS 16th International Conference on (pp.
148-153). IEEE.

[21] Snodgrass R, Ahn I. "Performance evaluation of a temporal database
management system". Commun ACM 1986; 15:96-107.

[22] Arora, S. (2015). "A comparative study on temporal database models: A
survey". In Advanced Computing and Communication (ISACC), 2015
International Symposium on (pp. 161-167). IEEE.

[23] Anselma, L., Stantic, B., Terenziani, P., and Sattar, A. (2013). "Querying
now-relative data". Journal of Intelligent Information Systems, 41(2),
285-311.

[24] McKenzie Jr., and Snodgrass, R. T. (1991a). "Evaluation of relational
algebras incorporating the time dimension in databases". ACM
Computing Surveys (CSUR), 23(4), 501-543.

[25] Noh, S. Y., & Gadia, S. K. (2008). "Benchmarking temporal database
models with interval-based and temporal element-based timestamping".
Journal of Systems and Software, 81(11), 1931-1943.

[26] Petkovic, D., (2016). "Temporal Data in Relational Database Systems: A
Comparison". In New Advances in Information Systems and
Technologies (pp. 13-23). Springer International Publishing.

[27] Ab Rahman Ahmad, Nashwan AlRomema, Mohd Shafry Mohd Rahim,
and Ibrahim Albidewi. "Temporal Database: An Approach for Modeling
and Implementation in Relational Data Model." Life Science Journal
12.3 (2015).

[28] Rad, A. E., Rahim, M. S. M., Rehman, A., & Saba, T. (2016). Digital
Dental X-ray Database for Caries Screening. 3D Research, 7(2), 1-5

[29] SaberiKamarposhti, M., Mohammad, D., Rahim, M. S. M., & Yaghobi,
M. (2014). Using 3-cell chaotic map for image encryption based on
biological operations. Nonlinear Dynamics, 75(3), 407-416.

383 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

