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Abstract
Ribosomal DNA clusters and telomeric repeats are important parts of eukaryotic genome. However, little 
is known about their organization and localization in karyotypes of organisms with holocentric chromo-
somes. Here we present first cytogenetic study of these molecular structures in seven blue butterflies of 
the genus Polyommatus Latreille, 1804 with low and high chromosome numbers (from n=10 to n=ca.108) 
using fluorescence in situ hybridization (FISH) with 18S rDNA and (TTAGG)n telomeric probes. FISH 
with the 18S rDNA probe showed the presence of two different variants of the location of major rDNA 
clusters in Polyommatus species: with one or two rDNA-carrying chromosomes in haploid karyotype. We 
discuss evolutionary trends and possible mechanisms of changes in the number of ribosomal clusters. We 
also demonstrate that Polyommatus species have the classical insect (TTAGG)n telomere organization. This 
chromosome end protection mechanism probably originated de novo in small chromosomes that evolved 
via fragmentations.
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Introduction

Most studied butterfly families and genera share the modal chromosome number of 
n=30 or n=31 (Robinson 1971) and this, most likely ancestral chromosome number 
is maintained in the Lepidoptera karyotype evolution (Suomalainen 1979, Lukhtanov 
2000, 2014). The vast majority of Lepidoptera species have also similar karyotype 
structure with all the chromosomes being of a similar size or forming gradually increas-
ing size series (Lukhtanov and Dantchenko 2002). The uniformity of karyotypes does 
not imply that chromosome rearrangements were not involved in genome evolution in 
butterflies and moths. Numerous inter- or intrachromosomal rearrangements such as 
translocations and inversions, can contribute to karyotype evolution without signifi-
cant changes in chromosome number and size. However, detecting these rearrange-
ments is difficult due to several specific properties of Lepidoptera karyotype. Lepidop-
tera and their sister group, caddisflies (Trichoptera), have holocentric chromosomes, 
i.e. chromosomes without localized centromeres (Wolf et al. 1997), and this makes 
impossible using the centromere as a marker. Attempts to use differential banding 
techniques have appeared but were inefficient (Guerra et al. 2010).

These are the reasons explaining why the karyotype evolution is still poorly under-
stood in Lepidoptera, though some data regarding karyotype organization and genome 
rearrangements are present for Bombyx mori (Linnaeus, 1758) (Yoshido et al. 2005), Heli-
conius melpomene (Linnaeus, 1758) (Pringle et al. 2007), Bicyclus anynana (Butler, 1879) 
(Van’t Hof et al. 2008), Samia cynthia (Drury, 1773) (Yoshido et al. 2011), Biston betu-
laria (Van’t Hof et al. 2013), and Melitaea cinxia (Linnaeus, 1758) (Ahola et al. 2014).

A molecular hybridization technique, such as fluorescence in situ hybridization 
(FISH), is a very useful method for studying molecular organization of chromatin 
and for tracing individual chromosomes in different species (Pinkel et al. 1986). FISH 
markers, specifically rDNA clusters, were proposed for some insects (Colomba et al. 
2000, Grozeva et al. 2010, 2011, Gokhman et al. 2014, Panzera et al. 2012, 2014) 
including butterflies (Nguyen et al. 2010). Ribosomal gene clusters consist of rDNA 
arrays and as a part of nucleolus organizer regions (NORs) form the nucleolus during 
interphase (Scheer and Hock 1999).

The sparse data available have contributed to generalizations about the pattern and 
mode of the major rDNA cluster evolution in Lepidoptera. According to Nguyen et 
al. (2010) rDNA distribution in Lepidoptera is a result of dynamic evolution with the 
exception of Noctuoidea, which showed the static rDNA pattern. In a compilation 
with previous data they also hypothesize multiplication of rDNA clusters as a trend 
in the Lepidoptera karyotype evolution. Using specimens with dramatically differ-
ent high and low chromosomal numbers we aim to examine the association between 
karyotype and rDNA cluster number. Thus, as a model we have chosen blue butterflies 
of the subgenus Agrodiaetus Hübner, 1822, which includes about 130 described spe-
cies within the genus Polyommatus Latreille, 1804 (Lepidoptera, Lycaenidae) (Tala-
vera et al. 2013a). This subgenus exhibits a wide diversity of karyotypes, with haploid 
chromosome numbers of different species ranging from 10 to 134 (Lukhtanov et al. 
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2005, 2014, Vershinina and Lukhtanov 2010). The variability is not associated with 
polyploidy and is caused by multiple chromosome fusions and fissions (Kandul et al. 
2007). We investigated distribution of ribosomal clusters in karyotypes by mapping 
18S ribosomal DNA probe on chromosomes of P. (A.) caeruleus (Staudinger, 1871), 
P. (A.) hamadanensis (de Lesse, 1959), P. (A.) karindus (Riley, 1921), P. (A.) morgani 
(Le Cerf, 1909), P. (A.) peilei (Bethune-Baker, 1921), P. (A.) pfeifferi (Brandt, 1938) 
and P. (A.) sennanensis (de Lesse, 1959) which are drastically different in their chromo-
some numbers (from n=10 to n=108).

Additionally, we analyzed molecular organization of telomeric repeats in Poly-
ommatus (subgenus Agrodiaetus). In animals there are three main types of telomeric 
tandem repeats: TTAGGG, TTAGGC, and TTAGG. The TTAGGG motif is prob-
ably ancestral for all Metazoa and has been found in all multicellular animals, except 
round worms and arthropods (Traut et al. 2007). TTAGGC repeats are specific for 
nematodes (Wicky et al. 1996), whereas the TTAGG motif prevails in most arthro-
pod groups providing support for a common origin (Vítková et al. 2005, Lukhtanov 
and Kuznetsova 2010). The (TTAGG)n telomeric structure has been demonstrated in 
several lepidopteran species, such as the silkmoths Bombyx mori (Linnaeus, 1758) and 
B. mandarina (Moore, 1872) (Bombicidae, Okazaki et al. 1993, Sahara et al. 1999); 
saturniid moths Antheraea pernyi (Guérin-Méneville, 1855), A. yamamai (Guérin-
Méneville, 1861) and Samia cynthia (Drury, 1773) (Okazaki et al. 1993); the va-
pourer Orgyia antiqua (Linnaeus, 1758) (Lymantriidae, Rego and Marec 2003); the 
wax moth Galleria mellonella (Linnaeus, 1758) and the flour moth Ephestia kuehniella 
(Zeller, 1879) (Pyralidae, Sahara et al. 1999, Rego and Marec 2003). Thus, TTAGG 
telomeric structure is expected in other butterfly and moth families. However, several 
exceptions from the (TTAGG)n motif are known for insects (for additional informa-
tion see Frydrychová et al. 2004, Lukhtanov and Kuznetsova 2010, Kuznetsova et al. 
2011; Gokhman et al. 2014). Exceptions in the telomere structure occur at different 
taxonomic levels, not only at the level of order but also on the level of infraorder in 
Heteroptera (Kuznetsova et al. 2012) and Hymenoptera (Gokhman et al. 2014), at the 
level of family in Curculionidae (Sahara et al. 1999), and even within Curculionidae 
(Frydrychová and Marec 2002). So far nothing is known about telomeres in Lycae-
nidae butterflies. Here we study the structure of telomeres in Polyommatus (subgenus 
Agrodiaetus) butterflies by using FISH with (TTAGG)n probes.

Material and methods

Butterfly species were collected from 2005 to 2011 by V. Lukhtanov, A. Dantchenko and 
N. Shapoval in Iran (Table 1). Only male adult specimens (from 1 to 5 individuals for 
each population) were analyzed. In field, gonads were fixed in a solution of absolute alco-
hol and glacial acetic acid (3:1) and then stored at -4 °C; meiotic chromosomes were ob-
tained from testes, according to the standard protocol for squash preparation (Lukhtanov 
and Dantchenko 2002, Lukhtanov et al. 2008; Vila et al. 2010). Tissues were prepared in 
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a drop of 45% acetic acid and then fixed on a slide by freezing on a dry ice and following 
dehydration in a series of ethanol solutions (70-80-96%, 2 minutes each). Prior to DNA 
hybridization karyotypes were examined by phase contrast microscopy.

18S rDNA and (TTAGG)n probe preparation and hybridization were carried out 
as described in Grozeva et al. (2011). In brief, chromosome preparations were treated 
with 100 µg/ml RNaseA and 5 mg/ml Pepsin solution to remove excess RNA and 
proteins. Chromosomes were denatured on a slide in hybridization mixture with bi-
otinylated 18S rDNA probe from the genomic DNA of Pyrrhocoris apterus and rhoda-
minated (TTAGG)n probes with addition of salmon sperm DNA blockage and then 
hybridized for 42 h. 18S rDNA loci were detected with NeutrAvidin-FITC. Chro-
mosomes were mounted in an antifade medium (ProLong Gold antifade reagent with 
DAPI, Invitrogen) and covered with a glass coverslip. Images were taken with a Leica 
DFC 345 FX camera using Leica Application Suite 3.7 software.

Abbreviations

ca. (circa) approximately.
FISH fluorescence in situ hybridization.
MI meiotic metaphase I.
MII meiotic metaphase II.
NOR nucleolus organizer region.

Results

In all karyotypes weak and strong telomeric signals were present (Figs 1–8). The chromo-
somes of blue butterflies are very small and some of them are at the limit of the resolving 

Table 1. List of Polyommatus (subgenus Agrodiaetus) populations used in the present study and their 
haploid chromosome numbers (n) according to original data.

Species n Province Locality altitude date
P. (A.) caeruleus 10 Golestan Shahkuh 2700–3100 m 2005.VII.22

P. (A.) hamadanensis 19 Lortestan Sarvand, 33°22.38'N/ 49°10.25'E 2070 m 2009.VII.22

P. (A.) hamadanensis 21 Esfahan Kuhe-Tamandar Mts, 33°12.72'N/ 
49°56.43'E 2336 m 2011.VII.16

P. (A.) karindus ca.68 Kurdistan 40 km SW Saqqez, 36°04.39'N/ 
45°59.06'E 1869 m 2009.VII.29

P. (A.) morgani 25 Kurdistan 14 km N of Chenareh, 35°42.12'N/ 
46°22.35'E 2025 m 2009.VII.28

P. (A.) peilei 39 - 14 km N of Chenareh, 35°42.127'N/ 
46°22.35'E 2025 m 2009.VII.28

P. (A.) pfeifferi ca.108 Fars Barm-i-Firuz Mts, 30°23'N/ 51°56'E 2900 m 2002.VII.19
P. (A.) sennanensis 27 Qom Qom-Qamsar, 33°43.80'N/ 51°29.53'E 1862 m 2009.VII.16
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power of light microscopy. For this reason, TTAGG signals in some cases could not be dis-
tinguished from background noise. Unlike the telomere probes, rDNA probes produced 
strong signals of different intensity. The chromosomal distribution pattern of telomeric 
repeats was similar in all seven species, the exact location of telomeres (terminal or intersti-
tial) was impossible to identify since the meiotic chromosomes were extremely contracted. 
The distribution pattern of 18S rDNA signals varied markedly showing two different vari-
ants – with one or two rDNA-carrying bivalents in MI karyotype and, correspondingly, 

Figures 1–8. Localization of FISH signals on telomeres (red) and rDNA clusters (green) in squash chro-
mosome preparations of seven species of Polyommatus (subgenus Agrodiaetus). Chromosomes are coun-
terstained with DAPI. Note telomeric signals of different intensity. 1–7 one 18S rDNA cluster is found 
8 two 18S rDNA clusters are found 1 P. (A.) caeruleus, MII 2–3 P. (A.) hamadanensis, MI cells from two 
different populations with different karyotypes (n=19 and n=21 accordingly) 4 P. (A.) karindus, MII 5 P. 
(A.) morgani, MI 6 P. (A.) peilei, MII 7 P. (A.) pfeifferi, MII 8 P. (A.) sennanensis, MII. The inset in the 
upper right corner shows twice enlarged image of rDNA-carrying chromosomes.
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with one or two rDNA-carrying chromosomes in MII karyotype. All chromosome num-
bers were found to coincide with previously published karyotype data for seven studied 
species (Lukhtanov et al. 2005, Kandul et al. 2007). In two P. (A.) hamadanensis popula-
tions intraspecific chromosomal polymorphism has been discovered.

P. (A.) caeruleus had n=10 with one rDNA cluster localized in one of the chromo-
some pairs (Table 1, Fig. 1). In MII cells this cluster appeared as a combination of two 
signals, localized on sister chromatids on one of the chromosomes. Weak (TTAGG)n 
signals were found in all chromosomes.

In P. (A.) hamadanensis, the haploid chromosome number of n=19 was found 
in MI cells of one studied individual from Lorestan province. In the specimens from 
another population (Esfahan province) the number of n=21 was found in MI cells 
(Table 1, Figs 2–3). The karyotype had no especially large or small bivalents; all bi-
valents were nearly equal in size and formed a gradient size series. In both specimens, 
one rDNA cluster was found. In MI cells this cluster appeared as a combination of 
two signals, localized on homologous chromosomes of one of the bivalents (Figs 2–3). 
(TTAGG)n signals of different intensity were found in all bivalents.

In P. (A.) karindus, the haploid chromosome number of n= ca.68 was found in 
MII cells (Table 1, Fig.4). One rDNA cluster was found on one of the chromosomes. 
Numerous (TTAGG)n signals of different intensity were found in all chromosomes. 
The karyotype had three large chromosomes while the other chromosomes had a rela-
tively equal small size.

In P. (A.) morgani, the haploid chromosome number of n=25 was found in MI 
cells of a single individual (Table 1, Fig. 5). One bivalent was found to carry the rDNA 
site. (TTAGG)n signals of different intensity were found in all bivalents.

In P. (A.) peilei, the haploid chromosome number of n=39 was found in MII cells 
(Table 1, Fig. 6). Strong 18S rDNA signals were observed on one of the chromosomes. 
(TTAGG)n signals of different intensity were found in all chromosomes.

In P. (A.) pfeifferi, the chromosome number was only approximately established 
and was n=ca.108 (Table 1, Fig. 7). The karyotype had two large, one medium-sized 
and more than 100 very small chromosomes. In MII cells, a single rDNA cluster was 
found on one pair of relatively large chromatids. Numerous weak (TTAGG)n signals 
were observed in all chromosomes, but their number and localization were difficult to 
estimate due to the background noise.

In P. (A.) sennanensis, the haploid chromosome number of n=27 was found in 
MII cells (Table 1, Fig. 8). In contrast to other studied species, P. (A.) sennanensis had 
two distinct rDNA clusters localized on different, non-homologous chromosomes. 
(TTAGG)n signals of different intensity were found in all chromosomes.

Discussion

Previous investigations by Nguyen et. al. (2010) examined ribosomal clusters in 18 
species of different taxonomic groups of Lepidoptera. Discussing evolutionary dynam-
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ics of rDNA clusters these authors suggest several concepts. One of them implies ori-
gin of one interstitial ribosomal cluster on rDNA-bearing chromosome as a result of 
a fusion between two NOR-bearing chromosomes (Nguyen et. al. 2010). However, 
their own table (fig. 3 in Nguyen et. al. 2010) shows a different picture: nearly all spe-
cies with n=31 and haploid chromosome number less than 31 have one (mostly inter-
stitial) rDNA cluster. Our data based on the study of diverse karyotypes in Polyomma-
tus (subgenus Agrodiaetus) butterflies show a similar pattern. All studied species except 
for P. (A.) sennanensis have one rDNA cluster in haploid karyotype regardless of their 
chromosome number. Therefore, we cannot consider rDNA cluster number reduction 
via fusion as a common trend in the evolution of Lepidoptera genomes. Rather they 
tend to preserve the single rDNA cluster, the state which seems to be an ancestral one.

Specifically for blue butterflies (Lycaenidae), Nguyen et al. (2010) suggested the 
mechanism of rDNA cluster multiplication via chromosome fissions. This hypothesis 
is based on the facts that P. icarus (Rottemburg, 1775) which has ancestral for Lycae-
ninae n=23-24 (Robinson 1971) also has a single interstitial NOR whereas Lysandra 
bellargus (Rottemburg, 1775) has two NORs, therewith the chromosome number in 
L. bellargus was increased to n = 45 most likely via fragmentations (Kandul et al. 
2007, Talavera et al. 2013b). Thus, Nguyen et al. (2010) hypothesized that the single 
ancestral NOR-chromosome was likely to split into two fragments resulting in two 
NOR-chromosomes. According to our data this hypothetical mechanism is, at least, 
not a general one in Lycaenidae since all the studied species with increased number of 
small chromosomes (P. (A.) peilei, n=39; P. (A.) karindus, n=68 and P. (A.) pfeifferi, 
n=ca108) have only one rDNA cluster per haploid genome.

Chromosome fissions lead to strong decrease in size of fragmented chromosomes 
(Lukhtanov and Dantchenko 2002). However, there is an empirical rule that in Lepi-
doptera one (or few) chromosome is evolutionary stable and protected from fragmen-
tation; therefore it preserves its ancestral relatively large size whereas the rest of chro-
mosomes are fragmented and small (White 1973). In our results, 18S rDNA probe in 
P. (A.) pfeifferi (in which the majority of chromosomes are extremely fragmented) is 
located on the largest chromosome (Fig. 7) suggesting possible evolutionary stability 
of rDNA-carrying chromosome.

The third possible mechanism which can change the number of rDNA clusters 
is the formation of a hybrid lineage or a homoploid hybrid speciation (hybridization 
without a change in chromosome number, Arnold 1996). Most likely this scenario 
was realized in Pinus (Pinaceae) and freshwater fishes (Cyprinidae) homoploid hybrids 
(Liu et al. 2003, Pereira et al. 2013). In the case of Pinus, P. densata has nine major 
rDNA clusters in haploid karyotype as a combination of rDNA clusters inherited from 
the paternal genomes. Similarly, homoploid cyprinid hybrids have rDNA patterns 
within the range of possible combinations of parental contributions.

On the basis of rDNA evolutionary dynamics and the repetitive structure of rDNA 
in Lepidoptera Nguyen et al. (2010) proposed ectopic recombination as a possible mecha-
nism of rDNA repatterning. According to this mechanism, non-allelic homologous re-
combination may take place between homologous rDNA loci located on non-homologous 
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chromosomes. Species with more than one rDNA cluster in combination with an ancestral 
chromosome number state n=30-31 (Colias hyale (Linnaeus, 1758) and Inachis io (Lin-
naeus, 1758) as described in Nguyen et al. 2010) are likely to show evidence for recombina-
tion leading to rDNA cluster rearrangements. Thus, karyotype reorganizations which affect 
the number of rDNA-bearing chromosomes can occur without changes in chromosome 
number and be a result of ectopic recombination. To conclude, karyotype reorganizations 
which affect the number of rDNA-bearing chromosomes may occur by multiple mecha-
nisms: chromosome fissions and fusions, hybrid formation and ectopic recombination.

In our study, FISH with telomeric (TTAGG)n probe conclusively demonstrate 
that Polyommatus (subgenus Agrodiaetus) blue butterflies have classical insect telomere 
organization. On small chromosomes of P. (A.) peilei, P. (A.) karindus and P. (A.) 
pfeifferi, originated by fragmentations, telomeric signals are also detected. Generally, 
fissions lead to breakdown in chromosome structure because after this reorganization 
the newly originated fragmented chromosomes lack telomeres and their chromosome 
ends need to be protected from degradation (de Lange 2009). Our data indirectly 
suggest that in Polyommatus (subgenus Agrodiaetus) this protection system arises after 
fragmentations de novo on the basis of TTAGG repeats.

Appearance of a new telomere seems to be a highly important event in genome 
evolution, however its proximate and ultimate mechanisms are still unknown. Polyom-
matus (subgenus Agrodiaetus) butterflies with their diverse karyotypes represent a good 
model system for studying these processes.
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